MULTIVARIATE INTERPOLATION AND CONDITIONALLY POSITIVE DEFINITE FUNCTIONS. II

W. R. MADYCH AND S. A. NELSON

ABSTRACT. We continue an earlier study of certain spaces that provide a variational framework for multivariate interpolation. Using the Fourier transform to analyze these spaces, we obtain error estimates of arbitrarily high order for a class of interpolation methods that includes multiquadrics.

1. Introduction

This paper continues a study, [11], of certain subspaces C_h of $C(\mathbf{R}^n)$, the continuous complex-valued functions on *n*-space \mathbf{R}^n . The spaces C_h provide a variational framework for the following interpolation problem: given numerical values at a scattered set of points in \mathbf{R}^n , make a good choice of a function f in $C(\mathbf{R}^n)$ that takes on those values.

For the reader's convenience we review some basic features of the development in [11]. The starting point is the selection of an integer $m \geq 0$ and a continuous function h on \mathbf{R}^n that is conditionally positive definite of order m. For example: m=1, $h(x)=-\sqrt{1+|x|^2}$. Using h, a space C_h with a semi-inner product $(\cdot,\cdot)_h$ is constructed. C_h is a subspace of $C(\mathbf{R}^n)$, and the null space of $(\cdot,\cdot)_h$ is P_{m-1} , the polynomials on \mathbf{R}^n of degree m-1 or less. A key property of C_h is this: if x_1,\ldots,x_N are distinct points in \mathbf{R}^n and v_1,\ldots,v_N are complex numbers, then among all functions f in C_h that satisfy the interpolation conditions $f(x_i)=v_i$, the quadratic $\|f\|_h^2=(f,f)_h$ is minimized by a function of the form f=s+p, where p is in P_{m-1} and

(1.1)
$$s(x) = \sum_{i=1}^{N} c_i h(x - x_i)$$

with $\sum_{i=1}^N c_i x_i^\alpha = 0$ for all $|\alpha| < m$. For the example mentioned, (1.1) is a multiquadric interpolant.

Because the spaces C_h are translation-invariant, the Fourier transform is a natural tool for analyzing them; it plays a central role here. To clarify basic ideas and make an orderly division of our results, we avoided Fourier techniques in

Received December 8, 1988.

¹⁹⁸⁰ Mathematics Subject Classification (1985 Revision). Primary 41A05, 41A63.

Both authors were partially supported by a grant from the Air Force Office of Scientific Research, AFOSR-86-0145.

[11]. We did, however, rely on them in our earlier investigation [10], which was in fact prompted by the Fourier methods in Duchon [5]. Use of Fourier transforms allows us to give improved descriptions of the spaces C_h (see §3) and allows us to single out certain cases where error estimates of order $l \ge m$ are possible (see §4). These estimates apply to the multiquadric case as well as to related examples given in §5; for each example given there, the integer l can be arbitrarily large.

2. Preliminaries

In this section we recall some notation and results involving Fourier transforms and conditionally positive definite functions.

Let $\mathscr{D}(\mathbf{R}^n)$ denote the space of complex-valued functions on \mathbf{R}^n that are compactly supported and infinitely differentiable. The Fourier transform of a function φ in \mathscr{D} is

(2.1)
$$\widehat{\varphi}(\xi) = \int e^{-i\langle x, \xi \rangle} \varphi(x) \, dx \, .$$

In order to make use of theorems from Gelfand and Vilenkin [7], we adopt their definition of mth-order conditional positive definiteness. (Equivalence with the definition used in [11] can be seen from Proposition 2.4 and Theorem 6.1 below.) Thus, for a continuous function h we assume

(2.2)
$$\int h(x)\varphi * \tilde{\varphi}(x) dx \ge 0$$

holds whenever $\varphi=p(D)\psi$ with ψ in $\mathscr Q$ and p(D) a linear homogeneous constant coefficient differential operator of order m. Here $\tilde\varphi(x)=\overline{\varphi(-x)}$ and * denotes the convolution product

$$\varphi_1 * \varphi_2(t) = \int \varphi_1(x) \varphi_2(t-x) dx.$$

Note that (2.2) can be rewritten as

(2.3)
$$\iint h(x-y)\varphi(x)\overline{\varphi(y)}\,dx\,dy \ge 0.$$

The following result can be found in Chapter II, Section 4.4 of [7]; we incorporate a remark at the end of that section concerning the case where h is continuous.

Theorem 2.1. Let h be continuous and conditionally positive definite of order m. Then it is possible to choose a positive Borel measure μ on $\mathbf{R}^n \sim \{0\}$, constants a_{γ} , $|\gamma| \leq 2m$ and a function χ in $\mathscr D$ such that: $1 - \widehat{\chi}(\xi)$ has a zero of order 2m+1 at $\xi=0$; both of the integrals $\int_{0<|\xi|<1} |\xi|^{2m} d\mu(\xi)$, $\int_{|\xi|\geq 1} d\mu(\xi)$ are finite; for all $\psi \in \mathscr D$,

(2.4)
$$\int h(x)\psi(x) dx = \int \left[\widehat{\psi}(\xi) - \widehat{\chi}(\xi) \sum_{|\gamma| < 2m} D^{\gamma} \widehat{\psi}(0) \frac{\xi^{\gamma}}{\gamma!} \right] d\mu(\xi) + \sum_{|\gamma| < 2m} D^{\gamma} \widehat{\psi}(0) \frac{a_{\gamma}}{\gamma!}.$$

This uniquely determines the measure μ and the constants a_{γ} for $|\gamma| = 2m$. In addition, for every choice of complex numbers c_{α} , $|\alpha| = m$,

(2.5)
$$\sum_{|\alpha|=m} \sum_{|\beta|=m} a_{\alpha+\beta} c_{\alpha} \bar{c}_{\beta} \ge 0.$$

The choice of χ affects the value of the coefficients a_{γ} for $|\gamma| < 2m$. Note that the value of the right side of (2.4) does not change if, for suitable φ , $\widehat{\chi}$ is replaced by $\widehat{\chi} + \varphi$ and the a_{γ} , for $|\gamma| < 2m$, are replaced by $a_{\gamma} + \int \varphi(\xi) \xi^{\gamma} d\mu(\xi)$.

As can be seen from

$$(2.6) \qquad (-i)^{|\gamma|} \int x^{\gamma} \varphi(x) \, dx = D^{\gamma} \widehat{\varphi}(0) \,,$$

changing a coefficient a_{γ} on the right-hand side of (2.4) corresponds to changing h(x) on the left side by adding a constant multiple of x^{γ} .

For m = 0, (2.4) reduces to $\int h \psi = \int \widehat{\psi} d\lambda$, where λ is the Borel measure on \mathbb{R}^n given by

$$\lambda(E) = \mu \left(E \sim \{0\} \right) + a_0 \delta(E).$$

Here δ is the measure corresponding to a unit mass at the origin; $\delta(E)=1$ if $0\in E$ and $\delta(E)=0$ otherwise. Recall that Borel measures that are finite on compact sets are called Radon measures. We make the usual identification of a Radon measure on an open set $\Omega\subset \mathbf{R}^n$ with the corresponding distribution in $\mathscr{D}'(\Omega)$ and write $\langle\lambda,\psi\rangle=\int\psi d\lambda$. Also, if $f\in L^1_{\mathrm{loc}}(\mathbf{R}^n)$, we identify it with the distribution in \mathscr{D}' given by $\langle f,\psi\rangle=\int\psi(x)f(x)dx$. Thus, for m=0, (2.4) says $\langle h,\phi\rangle=\langle\lambda,\widehat{\phi}\rangle$.

For an illustration of the theorem when $m \neq 0$, take n = 2, m = 1, $h(x) = -\sqrt{1+|x|^2}$. Then $d\mu(\xi) = w(\xi)d\xi$ with

$$w(\xi) = \frac{(1+|\xi|)e^{-|\xi|}}{(2\pi)^2|\xi|^3}$$

and $a_{\gamma}=0$ for $|\gamma|=2$. If χ is even, then the coefficients a_{γ} for $|\gamma|=1$ are also 0. The remaining coefficient is $a_0=-\left(1+\int\left[1-\widehat{\chi}(\xi)\right]w(\xi)d\xi\right)$. Details for this and related examples are given in §5.

We use $T^k \varphi$ to denote the kth-order Taylor polynomial for φ about 0:

(2.7)
$$T^{k}\varphi(\xi) = \sum_{|\alpha| \leq k} D^{\alpha}\varphi(0)\frac{\xi^{\alpha}}{\alpha!}.$$

The integral on the right side of (2.4) can then be written as $\int \widehat{\psi} - \widehat{\chi} T^{2m-1} \widehat{\psi} d\mu$. The Schwartz space of rapidly decreasing C^{∞} functions and its dual, the space of tempered distributions, are denoted by the usual letters $\mathscr S$ and $\mathscr S'$.

Proposition 2.2. Let k be a positive integer and let σ be a Radon measure on $\mathbf{R}^n \sim \{0\}$ such that $\int |\xi|^k (1+|\xi|^k)^{-1} d|\sigma|(\xi) < \infty$. Let s be a continuous

function such that $|\xi|^k s(\xi)$ is bounded on \mathbb{R}^n and $1 - s(\xi) = O(|\xi|^k)$ at $\xi = 0$. Let

(2.8)
$$u(x) = \int \left[e^{-i\langle x,\xi\rangle} - s(\xi) \sum_{r=0}^{k-1} \frac{(-i\langle x,\xi\rangle)^r}{r!} \right] d\sigma(\xi).$$

Then $u \in C(\mathbf{R}^n)$, $u(x) = o(|x|^k)$ as $|x| \to \infty$ and for all φ in \mathcal{S}

(2.9)
$$\int u(x)\varphi(x)\,dx = \int \left(\widehat{\varphi} - sT^{k-1}\widehat{\varphi}\right)\,d\sigma.$$

Proof. Let $E(t) = e^{-it} - \sum_{r=0}^{k-1} (-it)^r / r!$ and note that $u = u_0$, where

$$u_a(x) = \int_{|\xi| > a} (1 - s(\xi)) e^{-i\langle x, \xi \rangle} + s(\xi) E(\langle x, \xi \rangle) d\sigma(\xi).$$

From $|E(t)| \le |t|^k$ we have $|s(\xi)E(\langle x, \xi \rangle)| \le |x|^k |\xi|^k |s(\xi)|$. Our assumptions on σ and s ensure that $1 - s(\xi)$ and $|\xi|^k |s(\xi)|$ belong to $L^1(\sigma)$. Continuity of u can be established using dominated convergence.

To prove $u(x) = o(|x|^k)$, note that $|u_0(x) - u_a(x)| \le (c_1(a) + c_2(a)|x|^k)$, where $c_1(a)$ and $c_2(a)$ are the results of integrating $|1-s(\xi)|$ and $|\xi|^k|s(\xi)|$ over $0 < |\xi| \le a$ with respect to $|\sigma|$. Given $\varepsilon > 0$, choose a > 0 so that $c_1(a) < \varepsilon$ and $c_2(a) < \varepsilon$. From $|E(t)| \le 2|t|^{k-1}$ and a > 0 we have $u_a(x) = O(|x|^{k-1})$ as $|x| \to \infty$. Thus, we may choose $R \ge 1$ such that $|u_a(x)| \le \varepsilon |x|^k$ for all |x| > R. Then, for |x| > R,

$$|u(x)| \le |u_a(x)| + |u_0(x) - u_a(x)| \le \varepsilon |x|^k + \varepsilon + \varepsilon |x|^k$$
.

It follows that $u(x) = o(|x|^k)$.

To establish (2.9), apply Fubini's theorem and use

$$\int \frac{(-i\langle x,\xi\rangle)^r}{r!} \varphi(x) \, dx = \sum_{|\alpha|=r} D^{\alpha} \widehat{\varphi}(0) \frac{\xi^{\alpha}}{\alpha!} \, .$$

This can be verified by using $(y_1 + \cdots + y_n)^r/r! = \sum_{|\alpha|=r} y^{\alpha}/\alpha!$ and (2.6). \square

If u is defined by (2.8) with $\sigma = \mu$, k = 2m and $s = \widehat{\chi}$, then from (2.4), (2.9) and (2.6) we have $\langle h - u, \psi \rangle = \langle q, \psi \rangle$ for all ψ in \mathscr{D} . Here, $q(x) = \sum_{|\gamma| \le 2m} a_{\gamma} (-ix)^{\gamma} / \gamma!$.

Corollary 2.3. Suppose h is continuous and positive definite of order m. If m > 0, then there are unique constants a_n , $|\gamma| = 2m$, such that

$$h(x) - \sum_{|\gamma|=2m} a_{\gamma} (-ix)^{\gamma} / \gamma! = o(|x|^{2m}), \quad as |x| \to \infty.$$

These constants are the same as those appearing in (2.4).

For ease in dealing with (2.5), we develop some related notation. Let V_m be the space of vectors $v=(v_\alpha)_{|\alpha|=m}$ and let A be the operator on V_m defined

by Av=w where $w_{\alpha}=\sum_{|\beta|=m}A_{\alpha,\,\beta}v_{\beta}$ and $A_{\alpha,\,\beta}=a_{\alpha+\beta}/(\alpha!\beta!)$. Because of (2.5), A must be real-symmetric. Thus Av=0 if and only if $v^T\overline{Av}=0$. Equivalently, the null space, N_A , of A is the null space of the semi-inner product $(v\,,\,w)_A=v^T\overline{Aw}$. Let $H_A=V_m/N_A$ be the Hilbert space obtained by identifying v and w whenever $\|v-w\|_A=0$. The elements of H_A are the cosets $v+N_A$, and as w varies over such a coset, Aw remains fixed.

By applying Theorem 2.1 we can recover (2.2) for a more convenient set of functions φ . Let

(2.10)
$$\mathscr{D}_m = \left\{ \varphi \in \mathscr{D} : \int x^{\alpha} \varphi(x) \, dx = 0 \quad \text{for all } |\alpha| < m \right\}.$$

Clearly, $\mathscr{D}_m = \{ \varphi \in \mathscr{D} : \widehat{\varphi}(\xi) = O(|\xi|^m) \text{ at } \xi = 0 \}$. If $\psi = \varphi * \widetilde{\varphi}$, then $\widehat{\psi} = |\widehat{\varphi}|^2$, so

$$D^{\gamma}\widehat{\psi} = \sum_{\alpha+\beta=\gamma} \frac{\gamma!}{\alpha!\beta!} D^{\alpha}\widehat{\varphi} D^{\beta} \overline{\widehat{\varphi}}.$$

Hence, for $\psi = \varphi * \tilde{\varphi}$ with $\varphi \in \mathcal{D}_m$,

$$(2.11) \qquad \sum_{|\gamma| \le 2m} D^{\gamma} \widehat{\psi}(0) \frac{a_{\gamma}}{\gamma!} = \sum_{|\alpha| = m} \sum_{|\beta| = m} a_{\alpha+\beta} \frac{D^{\alpha} \widehat{\varphi}(0)}{\alpha!} \frac{D^{\beta} \overline{\widehat{\varphi}(0)}}{\beta!} = \|\widehat{\varphi}^{(m)}(0)\|_{A}^{2},$$

where $\widehat{\varphi}^{(m)}(0)$ is the vector v in V_m given by $v_\alpha = D^\alpha \widehat{\varphi}(0)$. From (2.4) we see that if $\varphi \in \mathcal{D}_m$, then

(2.12)
$$\int h(x)\varphi * \tilde{\varphi}(x) dx = \int |\hat{\varphi}|^2 d\mu + ||\hat{\varphi}^{(m)}(0)||_A^2,$$

and (2.2) holds. Since \mathscr{D}_m includes the functions φ for which (2.2) was assumed, we conclude that requiring (2.2) for all $\varphi \in \mathscr{D}_m$ is an equivalent definition of h being conditionally positive definite of order m.

Since $\mathscr{D}_{m+1}\subset \mathscr{D}_m$, the latter definition makes it clear that h will be conditionally positive definite of order m+1 if it is conditionally positive definite of order m. If m is replaced by m+1 in Theorem 2.1, with h held fixed, the measure μ will remain the same, the coefficients a_{γ} , $|\gamma|=2(m+1)$, will be 0, and the lower-order coefficients will change to reflect changes in $\widehat{\chi}$ and additional terms in the Taylor polynomial.

In order to apply results from [11], we verify that h is in the space $Q_m(\mathbf{R}^n)$ defined there.

Proposition 2.4. Let h be continuous and assume (2.2) holds for all $\varphi \in \mathcal{D}_m$. If x_1, \ldots, x_N are distinct points in \mathbf{R}^n and c_1, \ldots, c_N are constants that satisfy $\sum_{i=1}^N c_i x_i^{\alpha} = 0$ for all $|\alpha| < m$, then

(2.13)
$$\sum_{i=1}^{N} c_i \bar{c}_j h(x_i - x_j) \ge 0.$$

Proof. Choose g in $\mathscr D$ with $\int g(x)dx=1$ and g(x)=0 for all $|x|\geq 1$. For $\varepsilon>0$, let $g_{\varepsilon}=\varepsilon^{-n}g(x/\varepsilon)$ and take $\varphi_{\varepsilon}(x)=\sum_{k=1}^N c_k g_{\varepsilon}(x-x_k)$. Then

 $\widehat{\varphi_{\varepsilon}}(\xi) = \tau(\xi)\widehat{g}(\varepsilon\xi)$ with $\tau(\xi) = \sum_{k=1}^N c_k e^{-i\langle x_k \rangle, \xi \rangle}$. From

$$D^{\alpha}\tau(\xi) = \sum_{k=1}^{N} c_k (-ix_k)^{\alpha} e^{-i\langle x_k, \xi \rangle}$$

we find $\tau(\xi) = O\left(\left|\xi\right|^m\right)$ at $\xi = 0$. Thus $\varphi_{\varepsilon} \in \mathscr{D}_m$ and

$$0 \le \int h(x) \varphi_{\varepsilon} * \tilde{\varphi}_{\varepsilon}(x) dx = \iint h(t-y) \varphi_{\varepsilon}(t) \overline{\varphi_{\varepsilon}(y)} dt dy.$$

Letting $\varepsilon \to 0$, we obtain (2.13). \square

The following observations will be used in the next section. Let $\widehat{\mathcal{D}}_m = \{\widehat{\varphi} : \varphi \in \mathcal{D}_m\}$.

Proposition 2.5. Let $m \ge 0$ and let μ be a positive Borel measure on $\mathbb{R}^n \sim \{0\}$ that satisfies $\int (|\xi|^m/(1+|\xi|^m))^2 d\mu(\xi) < \infty$. If $2k \ge m$, then $\widehat{\mathscr{D}}_{2k}$ is a dense subset of $L^2(\mu)$.

Proof. Let $g \in L^2(\mu)$ and $\varepsilon > 0$. Choose $g_1 \in \mathscr{D}(\mathbf{R}^n \sim \{0\})$ so that $\|g - g_1\|_{L^2(\mu)} < \varepsilon$. Then $f(\xi) = |\xi|^{-2k} g_1(\xi)$ is in \mathscr{D} . Since $\widehat{\mathscr{D}}$ is dense in \mathscr{S} , we can find $\psi \in \mathscr{D}$ so that for all ξ in \mathbf{R}^n , $|f(\xi) - \widehat{\psi}(\xi)| \le \varepsilon/(1 + |\xi|^{2k})$. Multiplying by $|\xi|^{2k}$ gives

$$|g_1(\xi) - |\xi|^{2k} \widehat{\psi}| \le \frac{\varepsilon |\xi|^{2k}}{1 + |\xi|^{2k}}.$$

Let $\varphi = (-\Delta)^k \psi$. Then $\varphi \in \mathcal{D}$, $\widehat{\varphi}(\xi) = |\xi|^{2k} \widehat{\psi}(\xi)$ and

$$\int |g_1 - \widehat{\varphi}|^2 d\mu \le \varepsilon^2 \int \left(\frac{|\xi|^{2k}}{1 + |\xi|^{2k}}\right)^2 d\mu(\xi).$$

Thus $\|g-\widehat{\varphi}\|_{L^2(\mu)}$ can be made as small as desired with $\varphi \in \mathscr{D}_{2k}$. \square

Proposition 2.6. If $T \in \mathcal{D}'$ satisfies $T(\varphi) = 0$ for all φ in \mathcal{D}_m , then T belongs to P_{m-1} .

Proof. Define $T_{\alpha} \in \mathscr{D}'$ by $T_{\alpha}(\varphi) = \int x^{\alpha} \varphi(x) dx$ and note that $\bigcap \{T_{\alpha}^{-1}(0) : |\alpha| < m\} = \mathscr{D}_m$. By assumption, \mathscr{D}_m is contained in $T^{-1}(0)$, the null space of T. It follows (see Theorem 1.3 of [9]) that there are constants c_{α} such that $T = \sum_{|\alpha| < m} c_{\alpha} T_{\alpha}$. \square

3. Fourier description of C_h

After analyzing the space $\mathscr{C}_{h,m}$ defined below, we will see that it coincides with the space C_h studied in [11]. Among the results emerging from this analysis is a Fourier transform description of $\mathscr{C}_{h,m}$.

Definition. Let h be a continuous function on \mathbf{R}^n that is conditionally positive definite of order m. We write $f \in \mathscr{C}_{h,m}(\mathbf{R}^n)$ if $f \in C(\mathbf{R}^n)$ and there is a constant c(f) such that for all φ in \mathscr{D}_m

$$(3.1) \qquad \left| \int f(x)\varphi(x) \, dx \right| \le c(f) \left\{ \iint h(x-y)\varphi(x)\overline{\varphi(y)} \, dx \, dy \right\}^{1/2}.$$

If $f \in \mathscr{C}_{h,m}(\mathbf{R}^n)$ we let $c_*(f)$ denote the smallest constant for which (3.1) is true.

It is easily checked that if f_1 and f_2 are in $\mathscr{C}_{h,m}$, then f_1+f_2 and af_1 , $a\in \mathbb{C}$, are also in $\mathscr{C}_{h,m}$ with $c_*(f_1+f_2)\leq c_*(f_1)+c_*(f_2)$ and $c_*(af_1)=|a|c_*(f_1)$. If $f\in P_{m-1}$ and $\varphi\in\mathscr{D}_m$, then $\langle f,\varphi\rangle=0$, so $f\in\mathscr{C}_{h,m}$ and $c_*(f)=0$. Conversely, if $c_*(f)=0$, then $f\in P_{m-1}$ by Proposition 2.6. Thus $c_*(f)$ is a seminorm with null space P_{m-1} ; for m=0, take $P_{-1}=\{0\}$.

Using (2.12), we note that (3.1) is equivalent to

(3.2)
$$\left| \langle f, \varphi \rangle \right| \le c(f) \left\{ \|\widehat{\varphi}\|_{L^{2}(\mu)}^{2} + \|\widehat{\varphi}^{(m)}(0)\|_{A}^{2} \right\}^{1/2}$$

for all φ in \mathcal{D}_m . If $v \in V_m$ and

(3.3)
$$q(x) = \sum_{|\alpha|=m} (Av)_{\alpha} (-ix)^{\alpha},$$

then $\langle q\,,\,\varphi\rangle=\sum_{|\alpha|=m}(Av)_{\alpha}D^{\alpha}\widehat{\varphi}(0)=(\widehat{\varphi}^{(m)}(0)\,,\,\overline{v})_{A}$, so $q\in\mathscr{C}_{h\,,\,m}$ with $c_{*}(q)=\|\bar{v}\|_{A}$. If $g\in L^{2}(\mu)$ and u is defined by (2.8) with $\sigma=g\mu$, k=m and an appropriate choice of s (take s=0 for m=0), then, for $\varphi\in\mathscr{D}_{m}$, (2.9) gives $\langle u\,,\,\varphi\rangle=\int\widehat{\varphi}g\,d\mu$. It follows that $u\in\mathscr{C}_{h\,,\,m}$ with $c_{*}(u)=\|g\|_{L^{2}(\mu)}$.

Clearly, $\mathscr{C}_{h,m}$ includes all functions of the form f = u + q + p with u, q as above and $p \in P_{m-1}$. The next result, when combined with Proposition 2.6, shows that all functions in $\mathscr{C}_{h,m}$ can be obtained in this way.

From the behavior of u(x) as $|x| \to \infty$, described by Proposition 2.2, we see that if m > 0 and f = u + q + p, then $f(x) = o(|x|^m)$ is equivalent to q = 0 (or Av = 0). In any case,

(3.4)
$$\mathscr{C}_{h,m}(\mathbf{R}^n) \subset \{ f \in C(\mathbf{R}^n) : f(x) = O(|x|^m) \text{ as } |x| \to \infty \}.$$

Proposition 3.1. Let m, h, μ and a_{γ} be as in Theorem 2.1. If $f \in \mathcal{C}_{h,m}$, then there is a function $g \in L^2(\mu)$ and a vector $v \in V_m$ such that for all φ in \mathcal{D}_m

(3.5)
$$\langle f, \varphi \rangle = \int \widehat{\varphi} g \, d\mu + \sum_{|\alpha|=m} (Av)_{\alpha} D^{\alpha} \widehat{\varphi}(0).$$

This uniquely determines g and the coset $v + N_A$.

Proof. Define $J\colon \mathscr{D}_m \to H = L^2(\mu) \oplus H_A$ by $J\varphi = \widehat{\varphi} \oplus (\widehat{\varphi}^{(m)}(0) + N_A)$. From (3.2) we see that $|\langle f, \varphi \rangle| \leq c_*(f) \|J\varphi\|_H$. From this we deduce that, if $J\varphi_1 = J\varphi_2$, then $\langle f, \varphi_1 \rangle = \langle f, \varphi_2 \rangle$. It follows that there is a bounded linear functional L on the image $J\mathscr{D}_m$ such that $L(J\varphi) = \langle f, \varphi \rangle$ for all φ

in \mathscr{D}_m . Since H is a Hilbert space, we can choose $\bar{g} \oplus (\bar{v} + N_A)$ so that for all φ in \mathscr{D}_m , $\langle f, \varphi \rangle = (J\varphi, \bar{g} \oplus (\bar{v} + N_A))_H$. This gives (3.5).

For uniqueness, we show that $J\mathscr{D}_m$ is dense in H. Let $g_1\in L^2(\mu)$, $w\in V_m$ and $\eta>0$ be given. Take 2k>m and use Proposition 2.5 to choose $\varphi_1\in \mathscr{D}_{2k}$ with $\|g_1-\widehat{\varphi}_1\|_{L^2(\mu)}<\eta$. Note that $J\varphi_1=\widehat{\varphi}_1\oplus 0$ since 2k>m. Put $p(\xi)=\sum_{|\alpha|=m}w_{\alpha}\xi^{\alpha}/\alpha!$ and take $\chi\in\mathscr{D}$ so that $1-\widehat{\chi}(\xi)=O(|\xi|^{m+1})$ at $\xi=0$. Define $\psi_{\varepsilon}\in\mathscr{D}$ by $\widehat{\psi_{\varepsilon}}(\xi)=p(\xi)\widehat{\chi}(\varepsilon^{-1}\xi)$. Then $J\psi_{\varepsilon}=\widehat{\psi_{\varepsilon}}\oplus (w+N_A)$. Choosing ε close enough to 0, we have $\|\widehat{\psi_{\varepsilon}}\|_{L^2(\mu)}<\eta$. Then $\|g_1+(w+N_A)-J(\varphi_1+\psi_{\varepsilon})\|_{H}<2\eta$. \square

If $f \in \mathscr{C}_{h,m}$, let $\Lambda f = g \oplus (v + N_A)$ be the point in $H = L^2(\mu) \oplus H_A$ determined by (3.5). Clearly, the resulting map $\Lambda : \mathscr{C}_{h,m} \to H$ is linear. That Λ maps onto H is evident from the remarks leading up to Proposition 3.1. From (3.2) and (3.5) we see that $c_*(f) = \|\Lambda f\|_H$. Note $\|\Lambda f\|_H = \left\{(f, f)_h\right\}^{1/2} = \|f\|_h$, where $(f_1, f_2)_h = (\Lambda f_1, \Lambda f_2)_H$ is a semi-inner product for $\mathscr{C}_{h,m}$. There is a corresponding inner product on $\mathscr{C}_{h,m}/P_{m-1}$, which is then a Hilbert space isomorphic to H under the quotient map associated with Λ .

The following provides a converse to Proposition 3.1 and clarifies how the Fourier transform relates f to g, v in (3.5).

Proposition 3.2. Let m, h, μ and a_{γ} be as in Theorem 2.1. Fix $g \in L^2(\mu)$, $v \in V_m$ and $f \in \mathcal{D}'$. The following are equivalent:

- (a) (3.5) holds for all φ in \mathcal{D}_m ;
- (b) $f \in \mathcal{S}'$ and for every $|\alpha| = m$, $\xi^{\alpha} F = \lambda_{\alpha}$, where F is the inverse Fourier transform of f and λ_{α} is the Radon measure on \mathbb{R}^n given by

(3.6)
$$\lambda_{\alpha}(E) = \int_{E \sim \{0\}} \xi^{\alpha} g(\xi) d\mu(\xi) + \alpha! (Av)_{\alpha} \delta(E).$$

When this is the case, $f \in \mathcal{C}_{h,m}$, $\Lambda f = g \oplus (v + N_A)$ and $(f, f)_h = \int |g|^2 d\mu + v^T \overline{Av}$.

Proof. Let q be as in (3.3) and let u be defined by (2.8) with $\sigma = g\mu$, k = m and a choice of s that satisfies the hypotheses of Proposition 2.2. If (a) holds, then $\langle f, \varphi \rangle = \langle u + q, \varphi \rangle$ for all $\varphi \in \mathcal{D}_m$. By Proposition 2.6, $f - (u + q) = p \in P_{m-1}$. If $\widehat{F} = f$ and $\widehat{\psi}(\xi) = \xi^{\alpha} \varphi(\xi)$, then

$$\langle \xi^{\alpha} F, \varphi \rangle = \langle F, \widehat{\psi} \rangle = \langle f, \psi \rangle = \langle u, \psi \rangle + \langle q + p, \psi \rangle$$
$$= \int (\widehat{\psi} - s T^{m-1} \widehat{\psi}) g \, d\mu + \sum_{|\alpha| \le m} b_{\alpha} D^{\alpha} \widehat{\psi}(0),$$

where the constants b_{α} are determined by $q + p(x) = \sum_{|\alpha| \le m} b_{\alpha}(ix)^{\alpha}$. Thus,

(3.7)
$$\langle \xi^{\alpha} F, \varphi \rangle = \int (\xi^{\alpha} \varphi(\xi) - 0) g(\xi) d\mu(\xi) + \alpha! (Av)_{\alpha} \varphi(0),$$

which establishes (b). To see that (b) implies (a), let $f_1=u+q$ with u and q as above. Then (3.7) holds for F_1 , where $\widehat{F}_1=f_1$. Hence, $\xi^\alpha F_1=\lambda_\alpha$. If (b) holds, then $\xi^\alpha F_1=\xi^\alpha F$ for all $|\alpha|=m$. This implies $F_1-F=\sum_{|\alpha|< m}b_\alpha D^\alpha \delta$, which says $f_1-f\in P_{m-1}$. Therefore, (a) and the other assertions about f follow from the corresponding facts about f_1 . \square

For typical choices of h (e.g. those considered in §5) the measure μ is absolutely continuous with respect to Lebesgue measure, $d\mu(\xi)=w(\xi)d\xi$, and $a_{\gamma}=0$ for all $|\gamma|=2m$. In such cases the measures λ_{α} in (3.6) are given by functions F_{α} in $L^1_{\text{loc}}(\mathbf{R}^n)$; $d\lambda_{\alpha}(\xi)=F_{\alpha}(\xi)d\xi$, where $F_{\alpha}(\xi)=\xi^{\alpha}g(\xi)w(\xi)$. From $D^{\alpha}f=\left((-i\xi)^{\alpha}F\right)^{\hat{}}=(-i)^{m}\widehat{\lambda_{\alpha}}$, we see that $(D^{\alpha}f)^{\hat{}}=(-i)^{m}(2\pi)^{n}\check{F}_{\alpha}\in L^1_{\text{loc}}(\mathbf{R}^n)$, where $\check{F}_{\alpha}(\xi)=F_{\alpha}(-\xi)$. Let

(3.8)
$$r(\xi) = \frac{1}{(2\pi)^{2n} |\xi|^{2m} w(-\xi)},$$

with $r(\xi) = \infty$ when $w(-\xi) = 0$. If $d\rho(\xi) = r(\xi)d\xi$, then $(D^{\alpha}f)^{\hat{}} \in L^2(\rho)$ and

$$\|\left(D^{\alpha}f\right)^{\hat{}}\|_{L^{2}(\rho)}^{2}=\int\frac{\xi^{2\alpha}|g(\xi)|^{2}}{\left|\xi\right|^{2m}}\,d\mu(\xi)\,.$$

Using (4.2) below with l = m,

(3.9)
$$\sum_{|\alpha|=m} \frac{m!}{\alpha!} \| (D^{\alpha} f)^{\hat{}} \|_{L^{2}(\rho)}^{2} = \int |g|^{2} d\mu = (f, f)_{h}.$$

Corollary 3.3. Let m, h, μ , and a_{jj} be as in Theorem 2.1. Assume $d\mu(\xi) = w(\xi) d\xi$ and $a_{jj} = 0$ for all $|\gamma| = 2m$. Let ρ be the Borel measure on \mathbb{R}^n defined by $d\rho(\xi) = r(\xi) d\xi$, with r as in (3.8). Then $f \in \mathscr{C}_{h,m}$ if and only if $f \in \mathscr{S}'$ and $(D^{\alpha}f)^{\hat{}} \in L^2(\rho)$ for every $|\alpha| = m$. In that case, $(f, f)_h$ is given by (3.9).

The translation invariant nature of $\mathscr{C}_{h,m}$ is evident in the following

Proposition 3.4. Let τ be a compactly supported Radon measure on \mathbb{R}^n . If f is in $\mathscr{C}_{h,m}$, then so is $\tau * f$. Furthermore, if $\Lambda : \mathscr{C}_{h,m} \to L^2(\mu) \oplus H_A$ is as defined above and $\Lambda f = g \oplus (v + N_A)$, then $\Lambda(\tau * f) = tg \oplus (t(0)v + N_A)$, where $t(\xi) = \int e^{i\langle x, \xi \rangle} d\tau(x)$.

Proof. If $\psi(x) = \int \varphi(x+y)d\tau(y)$, then $\langle \tau * f, \varphi \rangle = \langle f, \psi \rangle$ and

(3.10)
$$\widehat{\psi}(\xi) = \iint e^{-i\langle x, \xi \rangle} \varphi(x+y) \, dx \, d\tau(y) \\ = \iint e^{-i\langle z-y, \xi \rangle} \varphi(z) \, dz \, d\tau(y) = \widehat{\varphi}(\xi) t(\xi) \, .$$

If $\Lambda f = g \oplus (v + N_A)$, so that (3.5) holds, then for all $\varphi \in \mathcal{D}_m$

$$\begin{split} \langle \tau * f, \varphi \rangle &= \int \widehat{\psi} g \, d\mu + \sum_{|\alpha| = m} D^{\alpha} \widehat{\psi}(0) (Av)_{\alpha} \\ &= \int \widehat{\varphi} t g \, d\mu + \sum_{|\alpha| = m} t(0) D^{\alpha} \widehat{\varphi}(0) (Av)_{\alpha} \, . \end{split}$$

This gives (3.5), with f, g, v replaced by $\tau * f$, tg, t(0)v; the assertions made are now apparent. \square

In the next result, (3.11) is equivalent to $\Lambda(\nu*h)=n\oplus(w+N_A)$ and (3.12) says $\nu(\bar{f})=(\nu*h\,,\,f)_h$. From this it is clear that $\mathscr{C}_{h\,,\,m}$ satisfies condition (c) in Theorem 1.1 of [11]. That conditions (a) and (b) are also satisfied can be seen from the discussion above in which the map Λ was introduced. Applying Theorem 1.1 of [11], we conclude that $\mathscr{C}_{h\,,\,m}=C_h$.

Proposition 3.5. Let m, h, μ and a_{γ} be as in Theorem 2.1. Let ν be a compactly supported Radon measure on \mathbf{R}^n and assume that $\int x^{\alpha} d\nu(x) = 0$ for all $|\alpha| < m$. Then $\nu * h \in \mathscr{C}_{h-m}$ and for all φ in \mathscr{D}_m

(3.11)
$$\langle \nu * h, \varphi \rangle = \int \widehat{\varphi} n \, d\mu + \sum_{|\alpha|=m} (Aw)_{\alpha} D^{\alpha} \widehat{\varphi}(0),$$

where $n(\xi) = \int e^{i\langle x,\xi\rangle} d\nu(x)$ and $w_{\beta} = D^{\beta} n(0) = \int (ix)^{\beta} d\nu(x)$. Furthermore, if $f \in \mathscr{C}_{h,m}$ and $\Lambda f = g \oplus (v + N_A)$, then

(3.12)
$$\int \overline{f(x)} d\nu(x) = \int n\bar{g} d\mu + w^T \overline{Av}.$$

Proof. If $\psi(z) = \int \varphi(z+y)d\nu(y)$, then from (2.4),

(3.13)
$$\langle \nu * h, \varphi \rangle = \langle h, \psi \rangle = \int \widehat{\psi} - \widehat{\chi} T^{2m-1} \widehat{\psi} d\mu + \sum_{|\gamma| \le 2m} D^{\gamma} \widehat{\psi}(0) \frac{a_{\gamma}}{\gamma!}$$

and, as in (3.10), $\widehat{\psi} = \widehat{\varphi} n$. Clearly, $D^{\alpha} n(0) = 0$ for all $|\alpha| < m$. If $\varphi \in \mathcal{D}_m$, then $D^{\gamma} \widehat{\psi}(0) = 0$ for $|\gamma| < 2m$, and for $|\gamma| = 2m$

$$D^{\gamma}\widehat{\psi}(0) = \sum_{\alpha+\beta=\gamma} \frac{\gamma!}{\alpha!\beta!} D^{\alpha}\widehat{\varphi}(0) w_{\beta}.$$

Thus, (3.11) follows from (3.13). To establish (3.12), choose a real-valued function r in $\mathscr D$ with $\widehat r(0)=1$, and for $\varepsilon>0$ let $\overline{\varphi_\varepsilon(x)}=\int \varepsilon^{-n} r\left(\frac{x-y}{\varepsilon}\right) d\nu(y)$. Then $\varphi_\varepsilon\in\mathscr D_m$ and

$$\langle f, \varphi_{\varepsilon} \rangle = \int \widehat{\varphi_{\varepsilon}} g \, d\mu + \sum_{|\alpha|=m} (Av)_{\alpha} D^{\alpha} \widehat{\varphi_{\varepsilon}}(0) \,.$$

This yields (3.12) because

$$\int \overline{f(x)} \, d\nu(x) = \lim_{\varepsilon \to 0} \overline{\langle f, \varphi_{\varepsilon} \rangle} \quad \text{and} \quad \widehat{\varphi_{\varepsilon}}(\xi) = \widehat{r}(\varepsilon \xi) \overline{n(\xi)} \,. \quad \Box$$

For s as in (1.1) we have $s = \nu * h$ with $\int \varphi \, d\nu = \sum_{i=1}^{N} c_i \varphi(x_i)$. Thus, such functions s belong to $\mathscr{C}_{h,m}$.

The distribution $D^{\kappa}h$, $|\kappa| \ge m$, can be obtained as a limit of $\nu * h$'s by choosing ν 's that correspond to appropriate difference operators. Such ν 's satisfy the orthogonality condition $\int x^{\alpha}d\nu(x) = 0$, $|\alpha| < m$. Hence, the following may be regarded as a limiting case of the situation considered above.

Proposition 3.6. Let m, h, μ and a_{γ} be as in Theorem 2.1. Fix κ with $|\kappa| \ge m$ and let $p(\xi) = (i\xi)^{\kappa}$. Then, $p \in L^2(\mu)$ if and only if the distribution $D^{\kappa}h$ belongs to $\mathscr{C}_{h,m}$. In that case, $\Lambda\left((-D)^{\kappa}h\right) = p \oplus (w+N_A)$ with $w_{\alpha} = D^{\alpha}p(0)$, $|\alpha| = m$.

Proof. Let $\psi = D^{\kappa} \varphi$, so $\widehat{\psi} = p \widehat{\varphi}$. If $\varphi \in \mathcal{D}_m$, then, by a calculation like that for (2.11),

$$\sum_{|\gamma| \le 2m} D^{\gamma}(p\widehat{\varphi})(0) \frac{a_{\gamma}}{\gamma!} = \sum_{|\alpha| = m} \sum_{|\beta| = m} a_{\alpha+\beta} \frac{D^{\alpha}p(0)}{\alpha!} \frac{D^{\beta}\widehat{\varphi}(0)}{\beta!}.$$

Using (2.4), we have

$$(3.14) \qquad \langle (-D)^{\kappa} h, \varphi \rangle = \langle h, \psi \rangle = \int p \widehat{\varphi} d\mu + \sum_{|\beta|=m} (Aw)_{\beta} D^{\beta} \widehat{\varphi}(0)$$

for all $\varphi \in \mathscr{D}_m$. This is (3.5) with $f = (-D)^\kappa h$, g = p and v = w. If $p \in L^2(\mu)$ we apply Proposition 3.2 to see that $f \in \mathscr{C}_{h,m}$ and $\Lambda f = p \oplus (w + N_A)$. If $p \notin L^2(\mu)$ we apply Proposition 2.5 to obtain a sequence $\varphi_i \in \mathscr{D}_{2k}$ such that $\int |\widehat{\varphi}_i|^2 d\mu = 1$ and $\int p \widehat{\varphi}_i d\mu \to \infty$. We take 2k > m so that $D^\beta \widehat{\varphi}_i(0) = 0$ when $|\beta| = m$. Then (3.14) gives

$$\langle \left(-D\right)^{\kappa}h\,,\,\varphi_{i}\rangle = \int p\widehat{\varphi}_{i}\,d\mu \to \infty\,.$$

Since $\|\widehat{\varphi}_i\|_{L^2(\mu)}^2 + \|\widehat{\varphi}_i^{(m)}(0)\|_A^2 = 1$, we see that $f = (-D)^\kappa h$ cannot satisfy (3.2) and hence cannot be in $\mathscr{C}_{h,m}$. \square

4. Error estimates

In this section we derive bounds on the difference between a function g in $\mathscr{C}_{h,m}$ and a function g^X of minimal $\mathscr{C}_{h,m}$ norm that agrees with g on a set $X \subset \mathbf{R}^n$ of 'interpolation points'. These error estimates involve a parameter that measures the spacing of the points in X and are of order I in that parameter; our derivation assumes $I \geq m$ and

For the examples given in §5, this assumption is satisfied for arbitrarily large values of l; see (5.2) below. In particular, the estimates apply to multiquadric interpolation, since the example there with a = -1 gives $h(x) = -2\sqrt{\pi(1+|x|^2)}$.

Before starting on the error estimates, we look at a related implication of (4.1). Let $p_{\alpha}(\xi) = (i\xi)^{\alpha}$. From

$$(\xi_1^2 + \dots + \xi_n^2)^l = \sum_{|\alpha|=l} \frac{l!}{\alpha!} \, \xi^{2\alpha}$$

we observe that (4.1) holds if and only if $p_{\alpha} \in L^2(\mu)$ for all $|\alpha| = l$. If a distribution has all of its lth order derivatives given by continuous functions, then it will belong to $C^l(\mathbf{R}^n)$. Thus, the following result shows that (4.1) holds if and only if $\mathscr{E}_{h,m} \subset C^l(\mathbf{R}^n)$.

Proposition 4.1. Let m, h, μ and a, be as in Theorem 2.1. Fix α with $|\alpha| \ge m$. Then the following are equivalent:

- (a) $p_{\alpha} \in L^{2}(\mu)$, where $p_{\alpha}(\xi) = (i\xi)^{\alpha}$;
- (b) for every f in $\mathscr{C}_{h,m}$, the distribution $D^{\alpha}f$ belongs to $C(\mathbf{R}^n)$ and there is a constant c_{α} such that for all f in $\mathscr{C}_{h,m}$, $\|D^{\alpha}f\|_{\infty} \leq c_{\alpha}\|f\|_{h}$;
- (c) there is a point x_0 in \mathbf{R}^n and a constant c_α such that for all f in $\mathscr{C}_{h,m} \cap C^\infty$, $|D^\alpha f(x_0)| \leq c_\alpha ||f||_h$.

If these are true, then for all $f \in \mathcal{C}_{h,m}$ and all $y \in \mathbf{R}^n$,

$$D^{\alpha} f(y) = \left(f, \, \delta_{y} * (-D)^{\alpha} h \right)_{h}.$$

Proof. Let $f \in \mathcal{C}_{h,m}$ and let F be its inverse Fourier transform, so that $\widehat{F} = f$. If $|\alpha| = m$, then, by Proposition 3.2, $\xi^{\alpha}F = \lambda_{\alpha}$ with λ_{α} given by (3.6). If $|\alpha| > m$, then $\alpha = \alpha' + \beta$ with $|\alpha'| = m$. Hence, $\xi^{\alpha}F = \lambda_{\alpha}$ with $\lambda_{\alpha} = \xi^{\beta}\lambda_{\alpha'}$ where $\lambda_{\alpha'}$ is given by (3.6). If (a) holds, then λ_{α} is finite; for $|\alpha| = m$, $\int d|\lambda_{\alpha}| = \int |\xi^{\alpha}g(\xi)|d\mu(\xi) + |(Av)_{\alpha}|$ and for $|\alpha| > m$, $\int d|\lambda_{\alpha}| = \int |\xi^{\alpha}g(\xi)|d\mu(\xi)$. Thus, $\widehat{\lambda_{\alpha}}$ is continuous and bounded by $\int d|\lambda_{\alpha}|$. Since $(iD)^{\alpha}f = (\xi^{\alpha}F)^{\widehat{\ }} = \widehat{\lambda_{\alpha}}$, we see that (b) holds with $c_{\alpha} = \|p_{\alpha} \oplus (p_{\alpha}^{(m)}(0) + N_{A})\|_{H}$. Thus, (a) implies (b). That (b) implies (c) is obvious. To see that (c) implies (a), let ψ be an

That (b) implies (c) is obvious. To see that (c) implies (a), let ψ be an arbitrary function in $\mathscr{D}(\mathbf{R}^n \sim \{0\})$ and define u by (2.8) with $\sigma = \psi \mu$ and k = m. Then, $u \in \mathscr{C}_{h,m}$, $\Lambda u = \psi \oplus 0$ and $\|u\|_h^2 = \int |\psi|^2 d\mu$. In addition, $u \in C^{\infty}$ and

$$D^{\alpha}u(x_0) = \int e^{-i\langle x_0,\xi\rangle} (-i\xi)^{\alpha}\psi(\xi) d\mu(\xi).$$

Thus, (c) gives $|\int e^{-i\langle x_0,\xi\rangle}(-i\xi)^{\alpha}\psi(\xi)d\mu(\xi)| \le c_{\alpha}||\psi||_{L^2(\mu)}$. Since this holds for all ψ in $\mathscr{D}(\mathbf{R}^n \sim \{0\})$, a dense subset of $L^2(\mu)$, (a) must be true.

To verify the last assertion, suppose $f \in \mathscr{C}_{h,m}$ with $\Lambda f = g \oplus (v + N_A)$. By Proposition 3.6, $\Lambda((-D)^{\alpha}h) = p_{\alpha} \oplus (p_{\alpha}^{(m)}(0) + N_A)$. Using Proposition 3.4 with $\tau = \delta_v$, we have $t(\xi) = e^{i\langle v, \xi \rangle}$ and

(4.3)
$$\Lambda(\delta_{v} * (-D)^{\alpha} h) = t p_{\alpha} \oplus (p_{\alpha}^{(m)}(0) + N_{A}).$$

Thus, $(f, \delta_y * (-D)^{\alpha} h)_h = \int g \overline{tp_{\alpha}} d\mu + v^T \overline{Ap_{\alpha}^{(m)}(0)} = (-i)^m \widehat{\lambda_{\alpha}}(y)$. Here, λ_{α} is as above so, as already noted, $\widehat{\lambda_{\alpha}} = (iD)^{\alpha} \widehat{f}$; this gives the desired equality. \square

Our error estimates will be based on the following

Theorem 4.2. Let m, h, μ and a_{γ} be as in Theorem 2.1. Assume that μ satisfies (4.1) with $l \ge \max\{1, m\}$. For a point x_0 in \mathbf{R}^n suppose that σ is a real-valued, compactly supported Radon measure on \mathbf{R}^n such that

$$(4.4) p(x_0) = \int p(x) d\sigma(x)$$

for all p in P_{l-1} . Then for all f in $\mathcal{C}_{h,m}$,

(4.5)
$$|f(x_0) - \int f(x) d\sigma(x)| \le c ||f||_h \int |x - x_0|^l d|\sigma|(x),$$

where $c = \{s + \int |\xi|^{2l}/(l!)^2 d\mu(\xi)\}^{1/2}$ with $s = \sum_{|\alpha|=m} \sum_{|\beta|=m} |A_{\alpha,\beta}|$ for l = m and s = 0 for l > m.

Proof. Let $\nu = \delta_{x_0} - \sigma$. By (4.4), $\int p(x)d\nu(x) = 0$ for all $p \in P_{l-1}$. Since $l \ge m$, Proposition 3.5 applies to ν , and from (3.12),

$$\left| \int \overline{f(x)} d\nu(x) \right| \le \|n \oplus (w + N_A)\|_H \|f\|_h.$$

Here, $w_{\beta} = \int (ix)^{\beta} d\nu(x)$, $|\beta| = m$. If l > m, then w = 0; if l = m, then

$$w_{\beta} = i^{m} \int (x - x_{0})^{\beta} d\nu(x) = 0 - i^{m} \int (x - x_{0})^{\beta} d\sigma(x).$$

Defining $R(\theta)$ by $e^{i\theta} = \sum_{k=0}^{l-1} (i\theta)^k / k! + R(\theta)$, we have $|R(\theta)| \le |\theta|^l / l!$ and

$$\begin{split} e^{-i\langle x_0,\xi\rangle} n(\xi) &= \int e^{i\langle x-x_0,\xi\rangle} \, d\nu(x) = \int R\left(\langle x-x_0,\xi\rangle\right) \, d\nu(x) \\ &= -\int R\left(\langle x-x_0,\xi\rangle\right) \, d\sigma(x) \, . \end{split}$$

If $b = \int |x - x_0|^l d|\sigma|(x)$, then $|n(\xi)| \le b|\xi|^l/l!$ and, for l = m, $|w_\beta| \le b$. From this we obtain $||n \oplus (w + N_A)||_H \le cb$ and (4.5) follows. \square

To obtain the error estimates mentioned at the beginning of this section, we apply Theorem 4.2 to $f = g - g^X$. Because of the minimum norm property of g^X , $\|f\|_h \le \|g\|_h$. Since other fixed bounds on $\|f\|_h$ result in acceptable error estimates, the minimum norm requirement on g^X could be relaxed to simply a requirement that $\|g^X\|_h$ not exceed some set bound. If we choose σ so that supp $\sigma \subset X$, then $\int g - g^X d\sigma = 0$, and (4.5) gives

$$\left| g(x_0) - g^X(x_0) \right| \le c \|f\|_h \int |x - x_0|^l d|\sigma|(x).$$

To make such a choice of σ possible, it may be necessary to restrict x_0 . From (4.4) we see that if $p \equiv 0$ on supp σ then $p(x_0) = 0$. Let

$$N_{l-1}(X) = \{ p \in P_{l-1} : p(x) = 0 \text{ for all } x \in X \},$$

 $\langle X \rangle_{l-1} = \{ x \in \mathbf{R}^n : p(x) = 0 \text{ for all } p \in N_{l-1}(X) \}.$

Proposition 4.3. Let $E_{l-1}(x_0,X)$ be the set of all real-valued, compactly supported Radon measures on \mathbf{R}^n that satisfy both (4.4) and $\mathrm{supp}\,\sigma\subset X$. Then $E_{l-1}(x_0,X)$ is nonempty if and only if $x_0\in\langle X\rangle_{l-1}$.

Proof. Necessity of $x_0 \in \langle X \rangle_{l-1}$ is evident from the preceding discussion. To see that this is also sufficient, consider the linear functionals on P_{l-1} defined by $L_x(p) = p(x)$. Choose a (finite) subset Y of X such that $\{L_y: y \in Y\}$ is linearly independent and $L_x \in \operatorname{span}\{L_y: y \in Y\}$ for all x in X. Then, $N_{l-1}(Y) = N_{l-1}(X)$ and $\langle Y \rangle_{l-1} = \langle X \rangle_{l-1}$. Also, $\{L_y: y \in Y\}$ is a basis for $(P_{l-1}/N_{l-1}(Y))'$; let $\{p_y + N_{l-1}(Y): y \in Y\}$ be the dual basis. If the polynomials p_y are replaced by their real parts, the result is still dual to $\{L_y: y \in Y\}$. We may therefore assume that each p_y is real-valued. For x_0 in $\langle Y \rangle_{l-1}$, L_{x_0} gives a linear functional on $P_{l-1}/N_{l-1}(Y)$. Thus, $L_{x_0} = \sum_{y \in Y} c_y L_y$ with $c_y = L_{x_0}(p_y)$, and it follows that $\sigma = \sum_{y \in Y} c_y \delta_y$ is in $E_{l-1}(x_0, X)$. \square

Of course, (4.7) will give a better error estimate if σ is chosen from $E_{l-1}(x_0, X)$ so as to minimize $\int |x - x_0|^l d|\sigma|(x)$; we made no attempt to do this with our choice of σ in the preceding proof.

We turn now to an analysis of the rate at which the error estimate goes to zero as the coverage by X improves. For this we fix a region Ω and a function $g \in \mathscr{C}_{h,m}$ and, for various X, look at bounds on $|g - g^X|_{\Omega}$ given by (4.7). Here we use the notation $|f|_{\Omega} = \sup_{x \in \Omega} |f(x)|$.

The number $d = d(\Omega, X)$ defined by

(4.8)
$$d(\Omega, X) = \sup_{v \in \Omega} \inf_{x \in X} |y - x|$$

is a standard measurement of how closely X covers Ω . Using (4.7) and some mild assumptions about Ω , we will show that

$$(4.9) |g - g^X|_{\Omega} = O(d^I).$$

In order to use (4.7), we assume (4.1). In that case, Proposition 4.1 assures us of a uniform bound for the lth order derivatives of $g - g^X$. From this and (4.9), we can deduce that the derivatives $D^{\alpha}(g - g^X)$ of intermediate order $0 < |\alpha| < l$ satisfy $O(d^{l-|\alpha|})$ estimates.

To establish (4.9), we proceed along lines used by Duchon [6]. We start by assuming that there are positive constants M, ε_0 such that for every $0<\varepsilon<\varepsilon_0$,

(4.10)
$$\Omega \subset \bigcup \{B(t, \varepsilon M) : t \in T_{\varepsilon}\},\,$$

where $T_{\varepsilon}=\{t\in\mathbf{R}^n: B(t,\varepsilon)\subset\Omega\}$, $B(t,r)=\{x\in\mathbf{R}^n: |x-t|\leq r\}$. Arguments in §1 of [6] show that such constants M, ε_0 will exist if Ω satisfies a cone condition.

Next we select a P_{l-1} -unisolvent set of points $\mathbf{a}(\alpha) \in \mathbf{R}^n$, $|\alpha| < l$. A corresponding set of Lagrange polynominals, $p_{\gamma}^{\mathbf{a}} \in P_{l-1}$, $|\gamma| < l$, is determined by the requirements: $p_{\gamma}^{\mathbf{a}}(\mathbf{a}(\alpha)) = 1$, for $\alpha = \gamma$; $p_{\gamma}^{\mathbf{a}}(\mathbf{a}(\alpha)) = 0$, for $\alpha \neq \gamma$. The matrix $A_{\alpha,\beta} = (\mathbf{a}(\alpha))^{\beta}$, $|\alpha| < l$, $|\beta| < l$ is nonsingular. If $p_{\gamma}(x) = \sum_{|\beta| < l} (A^{-1})_{\beta,\gamma} x^{\beta}$, then $p_{\gamma}(\mathbf{a}(\alpha)) = (AA^{-1})_{\alpha,\gamma}$, so $p_{\gamma} = p_{\gamma}^{\mathbf{a}}$. The function $\alpha \to \mathbf{a}(\alpha)$ can be identified with a point in $\mathbf{B} = \prod_{|\alpha| < l} B(\mathbf{a}(\alpha), \delta)$. Clearly, $\mathbf{b} \in \mathbf{B}$ if and only if $|\mathbf{b}(\alpha) - \mathbf{a}(\alpha)| < \delta$ for all $|\alpha| < l$. Now choose $\delta > 0$ so that $B_{\alpha,\beta} = (\mathbf{b}(\alpha))^{\beta}$ is invertible for all $\mathbf{b} \in \mathbf{B}$. As justified by replacing the points $\mathbf{a}(\alpha)$ with the points $\delta^{-1}\mathbf{a}(\alpha)$, we assume $\delta = 1$.

Choose R so that B(0,R) contains all the unit balls $B(\mathbf{a}(\alpha),1)$, $|\alpha| < l$. The Lagrange polynomials $p_{\alpha}^{\mathbf{b}}$ depend continuously on \mathbf{b} . Let

$$\lambda(r) = \sup \left\{ \sum_{|\alpha| < l} |p_{\alpha}^{\mathbf{b}}(x)| : |x| \le r, \, \mathbf{b} \in \mathbf{B} \right\} .$$

For $d=d(\Omega,X)<\varepsilon_0/R$, set $\varepsilon=Rd$ and fix a point t in T_ε . The balls $B(t+d\mathbf{a}(\alpha),d)$ are contained in $B(t,Rd)=B(t,\varepsilon)\subset\Omega$. By (4.8), for every $|\alpha|< l$, there is at least one point x_α in $X\cap B(t+d\mathbf{a}(\alpha),d)$. If \mathbf{b} is the point in \mathbf{B} defined by $x_\alpha=t+d\mathbf{b}(\alpha)$, and

$$\sigma = \sum_{|\alpha| < l} p_{\alpha}^{\mathbf{b}} \left(\frac{x_0 - t}{d} \right) \delta_{x_{\alpha}}$$

with x_0 arbitrary, then supp $\sigma \subset X \cap B(t, \varepsilon)$, and (4.4) holds for all $p \in P_{l-1}$; to verify (4.4), take q so that p(x) = q((x-t)/d) and use $\sum_{|\alpha| < l} p_{\alpha}^{\mathbf{b}}(y) q(\mathbf{b}(\alpha)) = q(y)$ with $y = (x_0 - t)/d$.

Suppose $x_0 \in B(t, \varepsilon M + d)$. Then, $|x_0 - t|/d \le (RM + 1)$, so $\int d|\sigma| \le \lambda(RM + 1)$. Also, for $x \in \text{supp } \sigma$,

$$|x - x_0| \le |x - t| + |t - x_0| \le (R + RM + 1)d$$
.

Thus, $\int |x-x_0|^l d|\sigma| \leq C^0 d^l$ with $C^0 = (R+RM+1)^l \lambda(RM+1)$. Since x_0 is any point in $B(t, \varepsilon M+d)$, (4.7) gives $|g-g^X|_{B(t,\varepsilon M+d)} \leq c \|f\|_h C^0 d^l$. By (4.10), if $y \in \Omega$, we can choose $t \in T_\varepsilon$ so that $y \in B(t,\varepsilon M)$. Then $B(y,d) \subset B(t,\varepsilon M+d)$, so for every $y \in \Omega$,

$$(4.11) |g - g^X|_{B(v,d)} \le c C^0 ||f||_h d^l.$$

This is more than required for (4.9), but will be useful for derivative estimates. By Proposition 4.1, $f = g - g^X$ is in $C^l(\mathbf{R}^n)$. For $y \in \Omega$, $\theta \in \mathbf{R}$ and $u \in \mathbf{R}^n$ with |u| = 1, let $\varphi(\theta) = f(y + \theta u)$. Then

(4.12)
$$\varphi^{(k)}(\theta) = k! \sum_{|\alpha|=k} \frac{u^{\alpha}}{\alpha!} D^{\alpha} f(y + \theta u).$$

By (b) in Proposition (4.1), $|\varphi^{(l)}|_{\mathbf{R}} \leq C' ||f||_h$ with $C' = l! \sum_{|\alpha|=l} c_{\alpha}/\alpha!$. From (4.11) we also have a bound on $|\varphi|_I$ where I is the interval [-d, d]. For 0 < k < l, the results of Gorny [8] summarized in [12] then give

$$|\varphi^{(k)}(0)| \le C_k ||f||_h d^{l-k},$$

where $C_k = 16(2e)^k (c C^0)^{1-k/l} [\max(C', l!2^{-l} c C^0)]^{k/l}$. Note that C_k can be calculated from n, l, m, h and M; the choice of R depends only on l and n, so C^0 requires only l, n, M, while c and C' require only m, h, l, n. Combining (4.12) and (4.13) gives

$$(4.14) \qquad \sup_{|u|=1} \left| \sum_{|\alpha|=k} \frac{u^{\alpha}}{\alpha!} D^{\alpha} f(y) \right| \leq \frac{C_k}{k!} \|f\|_h d^{l-k}$$

for every $y \in \Omega$. Since

$$|v|_k = \sup_{|u|=1} \left| \sum_{|\alpha|=k} \frac{u^{\alpha}}{\alpha!} v_{\alpha} \right|$$

is a norm for V_k , we conclude that $|D^\alpha f|_\Omega=O(d^{l-|\alpha|})$ for every $|\alpha|\leq l$. To summarize, we state

Theorem 4.4. Let m, h, μ and a_{γ} be as in Theorem 2.1. Assume (4.1) holds with $l \geq \max\{1, m\}$, and suppose Ω is a subset of \mathbf{R}^n that satisfies (4.10) for some M, $\varepsilon_0 > 0$. Then there are positive constants C, d_0 such that if $f \in \mathscr{C}_{h,m}$ vanishes on a set X and the number $d = d(\Omega, X)$ defined by (4.8) is less than d_0 , then for all $|\alpha| \leq l$,

$$|D^{\alpha}f|_{\Omega} \le C||f||_{h} d^{l-|\alpha|}.$$

5. Examples

In this section we look at some examples of conditionally positive definite functions h. For these examples we determine the measure μ and coefficients a_{γ} , $|\gamma|=2m$, that appear in (2.4). As can be seen from (5.2) below, these examples all satisfy (4.1) and do so for arbitrarily large choices of l. Thus the error estimates in $\S 4$ apply, showing that for interpolation based on any of the h's given here, approximation of arbitrarily high order can be achieved.

For $a \in \mathbf{R}$, let w_a be the function on \mathbf{R}^n defined by

(5.1)
$$w_a(\xi) = \frac{2 K_{(n-a)/2}(|\xi|)}{(2\pi)^{n/2} 2^{a/2} |\xi|^{(n-a)/2}},$$

where K_{ν} is a modified Bessel function of the second kind. From the behavior of $K_{\nu}(r)$ at r=0 and $r=\infty$ we note that

$$\int \left|\xi\right|^{2l} w_a(\xi) d\xi < \infty$$

if and only if a+2l>0. For $a\in \mathbb{R}$, $a\neq 0, -2, -4, \ldots$, let

(5.3)
$$h_a(x) = \frac{\Gamma(a/2)}{(1+|x|^2)^{a/2}},$$

and for a = -2k, k = 0, 1, 2, ..., define h_a by

(5.4)
$$h_{-2k}(x) = \lim_{a \to -2k} \left[h_a(x) - \Gamma(a/2)(1 + |x|^2)^k \right]$$
$$= \frac{(-1)^{k+1}}{k!} (1 + |x|^2)^k \log(1 + |x|^2).$$

The last equality can be verified by using $\Gamma(\frac{a}{2}+k+1)=(\frac{a}{2}+k)\cdots(\frac{a}{2})\Gamma(\frac{a}{2})$ together with

$$\frac{d}{dt}\Big|_{t=k} (1+|x|^2)^t = \lim_{a \to -2k} \frac{(1+|x|^2)^{-a/2} - (1+|x|^2)^k}{(-a/2) - k}.$$

Lemma 5.1. If $\widehat{\varphi} \in \mathcal{D}(\mathbf{R}^n \sim \{0\})$, then for all a in \mathbf{R}

(5.5)
$$\int h_a(x)\varphi(x)dx = \int \widehat{\varphi}(\xi)w_a(\xi)\,d\xi.$$

Proof. A basic fact used in the theory of Bessel potentials is that (5.5) holds for all $\varphi \in \mathcal{S}$ if a > 0; see [2], [3] or [4]. For $\widehat{\varphi} \in \mathcal{D}(\mathbf{R}^n \sim \{0\})$ an analytic continuation argument gives (5.5) for $a \neq 0, -2, -4, \ldots$. To obtain (5.5) for the remaining values of a = -2k, we take limits. If $f(t) = (1 + |x|^2)^t$ and $a \neq 0, -2, -4, \ldots$, then

$$\left[h_a(x) - \Gamma\left(\frac{a}{2}\right) \left(1 + |x|^2\right)^k\right] = \left(\frac{a}{2} + k\right) \Gamma\left(\frac{a}{2}\right) \int_0^1 f'\left(k - \left(\frac{a}{2} + k\right)s\right) ds.$$

Estimates from this can be used to justify an application of Lebesgue's dominated convergence theorem that shows

$$\int h_{-2k}(x)\varphi(x)dx = \lim_{a \to -2k} \int \left[h_a(x) - \Gamma\left(\frac{a}{2}\right) \left(1 + |x|^2\right)^k \right] \varphi(x) dx.$$

Now $\widehat{\varphi} \in \mathscr{D}(\mathbf{R}^n \sim \{0\})$, so $\int (1+|x|^2)^k \varphi(x) dx = 0$. We therefore have $\int h_{-2k}(x) \varphi(x) dx = \lim_{a \to -2k} \int \widehat{\varphi}(\xi) w_a(\xi) d\xi$, which gives (5.5) for a = -2k. \square

Theorem 5.2. If m is a nonnegative integer and a+2m>0, then (2.4) holds with $h=h_a$, $d\mu(\xi)=w_a(\xi)d\xi$, and $a_\gamma=0$ for $|\gamma|=2m$.

Proof. If m=0, then a>0. As already mentioned, (5.5) holds for all φ in $\mathcal S$ if a>0; thus, we have (2.4) with m=0 and a>0. For the rest of the proof we assume $m\geq 1$. Let

$$u_a(x) = \int \left[e^{-i\langle x,\xi\rangle} - \widehat{\chi}(\xi) \sum_{k=0}^{2m-1} \frac{(-i\langle x,\xi\rangle)^k}{k!} \right] w_a(\xi) d\xi.$$

By Proposition 2.2 we have $u_a \in C(\mathbf{R}^n)$, $u_a(x) = o(|x|^{2m})$, and for all φ in $\mathcal S$

$$\int u_a(x)\varphi(x)\,dx = \langle S_a\,,\,\widehat{\varphi}\rangle\,,$$

where $\langle S_a,\,\psi\rangle=\int [\psi-\widehat{\chi}T^{2m-1}\psi](\xi)w_a(\xi)d\xi$. Let T_a be the tempered distribution defined by $\int h_a(x)\varphi(x)dx=\langle T_a,\,\widehat{\varphi}\rangle$. By (5.5), $\langle T_a,\,\psi\rangle=\langle S_a,\,\psi\rangle$ for all $\psi\in\mathscr{D}(\mathbf{R}^n\sim\{0\})$. Thus, $(T_a-S_a)^{\widehat{}}=h_a-u_a$ is a polynomial q. Both h_a and u_a are $o(|x|^{2m})$ at $|x|=\infty$, so deg q<2m. The desired instance of (2.4) now follows from $\langle h_a-q\,,\,\varphi\rangle=\langle S_a\,,\,\widehat{\varphi}\rangle$. \square

6. Equivalence of definitions

Theorem 6.1 below, when combined with Proposition 2.4, shows the equivalence of the definition of conditional positive definiteness adopted here with that used in [11]. As in [11], we define P_{m-1}^{\perp} to be the space of all finite measures ν on \mathbf{R}^n that have support consisting of a finite set of points and satisfy $\nu(p)=0$ for all $p\in P_{m-1}$. The space obtained by relaxing the support requirement to allow compact sets, rather than only finite sets, will be denoted by $\langle P_{m-1}^{\perp} \rangle$. If $\nu=\sum_{i=1}^{N}c_i\delta_{x_i}$, then

$$\nu\left(\overline{\nu*\bar{h}}\right) = \sum_{i=1}^{N} \sum_{j=1}^{N} c_i \bar{c}_j h(x_i - x_j),$$

and $\nu \in P_{m-1}^\perp$ if and only if $\sum_{i=1}^N c_i x_i^\alpha = 0$ for all $|\alpha| < m$. If $d\nu(x) = \varphi(x) dx$ then

$$\nu\left(\overline{\nu*\overline{h}}\right) = \iint \varphi(x)\overline{\varphi(y)}h(x-y)\,dx\,dy\,,$$

and ν is in $\langle P_{m-1}^{\perp} \rangle$ if $\varphi \in \mathcal{D}_m$.

Theorem 6.1. Let h be an arbitrary function in $C(\mathbf{R}^n)$. If $\nu\left(\overline{\nu*\overline{h}}\right) \geq 0$ holds for all $\nu \in P_{m-1}^{\perp}$, then it holds for all $\nu \in \langle P_{m-1}^{\perp} \rangle$.

Proof. Fix ν in $\langle P_{m-1}^{\perp} \rangle$ and let K be its support. Recall that the finite Borel measures on K form the dual C(K)' of C(K), the continuous functions on K with the sup norm topology. The norms involved in this duality will be written as follows: for $f \in C(K)$, $|f|_K = \sup_{x \in K} |f(x)|$; for $\sigma \in C(K)'$, $||\sigma|| = \int d|\sigma|$. Let $h_y(x) = h(y-x)$. K is compact, so for every $\varepsilon > 0$ there is a finite set $F_{\varepsilon} \subset K$ such that, if $y \in K$, then $|h_y - h_{y_0}|_K < \varepsilon$ for at least one $y_0 \in F_{\varepsilon}$. If σ is in the weak* neighborhood

$$U(\nu \ , \ F_{\varepsilon} \ , \ \varepsilon) = \left\{ \sigma \in C(K)' : \ |(\sigma - \nu)(\bar{h}_{y_0})| < \varepsilon \ \text{for all} \ y_0 \in F_{\varepsilon} \right\}$$

and $y \in K$, then, for a suitable choice of $y_0 \in F_{\varepsilon}$,

$$|(\sigma - \nu)(\bar{h}_{v})| = |(\sigma - \nu)(\bar{h}_{v} - \bar{h}_{v_{o}}) + (\sigma - \nu)(\bar{h}_{v_{o}})| \le (\|\sigma - \nu\| + 1)\varepsilon.$$

Since $(\sigma - \nu) * \bar{h}(y) = (\sigma - \nu)(\bar{h}_y)$, we get $|(\sigma - \nu) * \bar{h}|_K \le (\|\sigma - \nu\| + 1)\varepsilon$ for all $\sigma \in U(\nu, F_\varepsilon, \varepsilon)$. For such σ let w be the number defined by

$$w = \sigma\left(\overline{\sigma * \overline{h}}\right) - \nu\left(\overline{\nu * \overline{h}}\right) = \sigma\left((\overline{\sigma - \nu}) * \overline{h}\right) + (\sigma - \nu)\left(\overline{\nu * \overline{h}}\right)$$

and observe $|w| \le ||\sigma|| |(\sigma - \nu) * \bar{h}|_K + |(\sigma - \nu)(\overline{\nu * \bar{h}})|$.

Let $B = \{ \sigma \in C(K)' : \|\sigma\| \le \|\nu\| \}$ and take $C = B \cap \langle P_{m-1}^{\perp} \rangle$, $S = B \cap P_{m-1}^{\perp}$. By arguments given below, S is weak* dense in C. This allows us to choose

$$\sigma \in S \cap \{ \sigma \in U(\nu, F_{\varepsilon}, \varepsilon) : |(\sigma - \nu)(\overline{\nu * \bar{h}})| < \varepsilon \}.$$

For that choice we have $\sigma(\overline{\sigma * \overline{h}}) \ge 0$ and

$$|w| \le ||\sigma|| (||\sigma - \nu|| + 1) \varepsilon + \varepsilon \le ||\nu|| (2||\nu|| + 1) \varepsilon + \varepsilon.$$

Since w is arbitrarily small, we see that $\nu(\overline{\nu * \overline{h}})$ must be arbitrarily close to points on the positive real axis and hence must be greater than or equal to zero.

C is convex and weak* compact so, by the Krein-Milman theorem, C is the closed convex hull of its extreme points. Since S is convex, it will be weak* dense if it contains all of the extreme points of C. Suppose σ_0 is an extreme point of C that is not in S. Then supp σ_0 cannot be a finite set, so we can subdivide it into $J=2(1+\dim P_{m-1})$ disjoint subsets E_1,\ldots,E_J with $|\sigma_0|(E_j)\neq 0$. Let $\sigma_j(E)=\sigma_0(E_j\cap E)$ and take $c_{\alpha,j}=\int x^\alpha d\sigma_j(x)$. By a dimension argument, there is a point $a\in \mathbf{R}^J\sim\{0\}$ that satisfies the equations

$$\sum_{j=1}^{J} a_{j} \|\sigma_{j}\| = 0; \qquad \sum_{j=1}^{J} a_{j} c_{\alpha, j} = 0, \quad |\alpha| < m.$$

For $t \in \mathbf{R}$, let $\sigma^t = \sum_{j=1}^J (1 + t a_j) \sigma_j$. Then, $\sigma^t \in \langle P_{m-1}^{\perp} \rangle$, and if $(1 + t a_j) \ge 0$,

$$\|\sigma^t\| = \sum_{j=1}^J (1 + t \, a_j) \|\sigma_j\| = \sum_{j=1}^J \|\sigma_j\| = \|\sigma_0\| \le \|\nu\|.$$

Thus, $\sigma^t \in C$ for all t in an interval about 0. This contradicts the assumption that σ_0 was an extreme point of C because $\sigma^t = \sigma_0$ only if t = 0, as seen from the fact that $a \neq 0$ and $\|\sigma_j\| \neq 0$ for all $j = 1, \ldots, J$. \square

BIBLIOGRAPHY

- 1. J. H. Ahlberg, E. N. Nilson, and J. L. Walsh, *The theory of splines and their applications*, Academic Press, New York, 1967.
- 2. N. Aronszajn and K. T. Smith, *Theory of Bessel potentials*. I, Ann Inst. Fourier 11 (1961), 385-475.
- 3. A. P. Calderon, Lebesgue spaces of differentiable functions and distributions, Proc. Sympos. Pure Math., vol. 5, Amer. Math. Soc., Providence, R.I., 1961, pp. 33-49.
- 4. W. F. Donoghue, Distributions and Fourier transforms, Academic Press, New York, 1969.
- 5. J. Duchon, *Splines minimizing rotation-invariant semi-norms in Sobolev spaces*, in Constructive Theory of Functions of Several Variables (W. Schempp and K. Zeller, eds.), Springer-Verlag, Berlin-Heidelberg, 1977, pp. 85–100.
- Sur l'erreur d'interpolation des fonctions de plusieurs variables par les D^m-splines, RAIRO Anal. Numér. 12 (1978), 325–334.
- 7. I. M. Gelfand and N. Ya. Vilenkin, *Generalized functions*, Vol. 4, Academic Press, New York, 1964.
- 8. A. Gorny, Contribution à l'étude des fonctions dérivables d'une variable réelle, Acta Math. 71 (1939), 317-358.

- 9. J. L. Kelly and I. Namioka, Linear topological spaces, Van Nostrand, Princeton, NJ, 1963.
- 10. W. R. Madych and S. A. Nelson, *Multivariate interpolation: a variational theory*, manuscript, 1983.
- 11. _____, Multivariate interpolation and conditionally positive definite functions, Approx. Theory and its Applications 4 (1988), no. 4, 77-89.
- 12. D. S. Mitrinović, Analytic inequalities, Springer-Verlag, Berlin-Heidelberg, 1970.

Department of Mathematics, University of Connecticut, Storrs, Connecticut 06268. *E-mail*: madych@uconnvm.bitnet

DEPARTMENT OF MATHEMATICS, IOWA STATE UNIVERSITY, AMES, IOWA 50011