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MULTIVARIATE INTERPOLATION AND
CONDITIONALLY POSITIVE DEFINITE FUNCTIONS. II

W. R. MADYCH AND S. A. NELSON

Abstract. We continue an earlier study of certain spaces that provide a vari-

ational framework for multivariate interpolation. Using the Fourier transform

to analyze these spaces, we obtain error estimates of arbitrarily high order for

a class of interpolation methods that includes multiquadrics.

1. Introduction

This paper continues a study, [11], of certain subspaces Ch of C(R"), the

continuous complex-valued functions on «-space R" . The spaces Ch provide a

variational framework for the following interpolation problem: given numerical

values at a scattered set of points in R" , make a good choice of a function /
in C(Rn) that takes on those values.

For the reader's convenience we review some basic features of the develop-

ment in [11]. The starting point is the selection of an integer m > 0 and a

continuous function h on R" that is conditionally positive definite of order

m . For example: m = 1, h(x) - -y 1 + \x\2. Using h , a space Ch with

a semi-inner product (•, -)h is constructed. Ch is a subspace of C(R"), and

the null space of (•, •)/, is Pm_l , the polynomials on R" of degree m - 1 or

less. A key property of Ch is this: if x{,..., xN are distinct points in R"

and v{, ... , vN are complex numbers, then among all functions / in Ch that

satisfy the interpolation conditions f{x¡) = v¡, the quadratic ||/||A = (/, f)h

is minimized by a function of the form f = s + p , where p is in Pm_x and

N

(1.1) s(x) = J2c¡h(x-x¡)
(=1

with 5^.=, CjX" = 0 for all \a\ < m. For the example mentioned, (1.1) is a

multiquadric interpolant.

Because the spaces Ch are translation-invariant, the Fourier transform is a

natural tool for analyzing them; it plays a central role here. To clarify basic ideas

and make an orderly division of our results, we avoided Fourier techniques in
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[11]. We did, however, rely on them in our earlier investigation [10], which

was in fact prompted by the Fourier methods in Duchon [5]. Use of Fourier

transforms allows us to give improved descriptions of the spaces Ch (see §3)

and allows us to single out certain cases where error estimates of order / > m

are possible (see §4). These estimates apply to the multiquadric case as well as

to related examples given in §5; for each example given there, the integer / can

be arbitrarily large.

2. Preliminaries

In this section we recall some notation and results involving Fourier trans-

forms and conditionally positive definite functions.

Let 3{R") denote the space of complex-valued functions on R" that are

compactly supported and infinitely differentiable. The Fourier transform of a

function tp in Q¡ is

(2.1) m = ¡e-l(x-i)(p{x)dx.

In order to make use of theorems from Gelfand and Vilenkin [7], we adopt

their definition of mth-order conditional positive definiteness. (Equivalence

with the definition used in [11] can be seen from Proposition 2.4 and Theorem

6.1 below.) Thus, for a continuous function h we assume

(2.2) i h{x)<p*y{x)dx>0

holds whenever to — p{D)\¡/ with y/ in 3 and p(D) a linear homogeneous

constant coefficient differential operator of order m . Here tp{x) = <p(-x) and

* denotes the convolution product

<Pi *92(t)= I (pl(x)(p2{l-x)dx.

Note that (2.2) can be rewritten as

(2.3) If h{x-y)<p{x)W)dxdy>0.

The following result can be found in Chapter II, Section 4.4 of [7]; we in-

corporate a remark at the end of that section concerning the case where h is

continuous.

Theorem 2.1. Let h be continuous and conditionally positive definite of order

m. Then it is possible to choose a positive Borel measure ¡x on R" ~ {0},

constants a.,, \y\ < 1m and a function x in 3¡ such that:  1 ~x(í) has a zero

of order 2m + \ at £ = 0; both of the integrals /0<|i|<1 \£,\2m d n{Z), /|{|>, dp{Ç)

are finite; for all y e 9$,

/ h{x)y/{x)dx =  /

(2.4) \y\<2m

dßß)

+ £ D"mA.
\y\<2», /'
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This uniquely determines the measure ß and the constants av for \y\ — 2m. In

addition, for every choice of complex numbers cn , \a\ - m,

(2-5) £  E W^*0-
|«|=ra \ß\=m

The choice of x affects the value of the coefficients a for \y\ < 2m . Note

that the value of the right side of (2.4) does not change if, for suitable <p , x is

replaced by x + tp and the a„, for |y| < 2m , are replaced by a +J $(£,)£'d p(£,).

As can be seen from

(2.6) {-i)M f x7y>(x)dx = D7y(0),

changing a coefficient a., on the right-hand side of (2.4) corresponds to changing

h(x) on the left side by adding a constant multiple of xy.

For m = 0, (2.4) reduces to /hyi = j y/dX, where X is the Borel measure

on R" given by

X(E) = ß(E~{0}) + a0S(E).

Here a is the measure corresponding to a unit mass at the origin; 5(E) = 1 if

0 € E and ô(E) = 0 otherwise. Recall that Borel measures that are finite on

compact sets are called Radon measures. We make the usual identification of a

Radon measure on an open set Q c R" with the corresponding distribution in

SJ'(Q.) and write (X, y/) = / yidk. Also, if / e L, (R"), we identify it with

the distribution in 2' given by (/, yi) — / y/(x)f(x)dx. Thus, for m — 0,

(2.4) says {h, <p) = (X, <p).

For an illustration of the theorem when  m ± 0, take n = 2,   m = 1,

h(x) = -yjl + \x\2. Then <//j(i) = w{Ç)di with

(1 + Icf j) e>_lil

(27r)-|¿:|3

and a., = 0 for \y\ = 2. If x lS even, then the coefficients a for |y| = 1 are

also 0. The remaining coefficient is aQ = - (1 + / [1 - £(£)] w(Ç)d<l). Details

for this and related examples are given in §5.

We use T <p to denote the /cth-order Taylor polynomial for <p about 0:

(2.7) T*f(Ç) = £ D>(0)^-.
|t»|<*

The integral on the right side of (2.4) can then be written as / y/~xT m~ y/dp..

The Schwartz space of rapidly decreasing C°°  functions and its dual, the

space of tempered distributions, are denoted by the usual letters S' and 57'.

Proposition 2.2. Let k be a positive integer and let a be a Radon measure

on R" ~ {0} such that /|<?|A(1 + |cj|i:)_1^|cr|(^) < oo. Let s be a continuous
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function such that |£| s(£) is bounded on R" and 1 - s(Ç) = 0(\Ç\ ) at Ç = 0.

Let

r T     ./.. « izi l_i/v   ?\Y'
do{<l).■'<*•« -j(c;) V (-,'<*'W

r!
r=0

(2.8) w(x) = |

77ze« « 6 C(R ), u{x) - o(\x\ ) as | jc| —» oo and for all y> in 5*

(2.9) fu(x)<p(x)dx = Í (<p-sTk~X(p} da.

Proof. Let E(t) = e~" - J2r~0 {—it)r/r\ and note that u = u0, where

ua(x)=  j (l-s(c;))e-l{x-S)+s(c;)E((x,i))d<j(t;).

\(\>ä

From \E(t)\ < \t\k we have \s(Ç)E({x, Ç))\ < \x\k\Ç\k\s(Ç)\. Our assumptions

on o and j ensure that 1 - s(Ç) and |£| \s(¿,)\ belong to l\o) . Continuity

of u can be established using dominated convergence.

To prove u{x) = o(\x\ ), note that \u0{x) - ua(x)\ < {c¡(a) + c2{a)\x\ ),

where c{(a) and c-,{a) are the results of integrating |1-í(¿;)| and |<j;| \s{£,)\ over

0 < |<j;| < a with respect to \a\. Given s > 0, choose a > 0 so that cx(a) < e

and c2(a) < e. From \E{t)\ < 2\t\       and a > 0 we have ua(x) = 0(\x\ _1)

as |jc| ->oo. Thus, we may choose R > 1 such that |wfl(x)| < e|x| for all

\x\ > R. Then, for \x\> R,

|w(x)| < \ua(x)\ + \u0(x) - ua{x)\ < e\x\k + e + e\x\k.

It follows that u(x) — o [\x\ J .

To establish (2.9), apply Fubini's theorem and use

rtik^f{x)dx = Y,ifm^
\"\=r

This can be verified by using (y{-\-\-ynY/r\ = 2~2i„\=ry"/ce\ and (2.6).   D

If u is defined by (2.8) with a = ß, k — 2m and s = x, then from
(2.4), (2.9) and (2.6) we have (h - u, y/) = (a, y/) for all y/ in 3. Here,

Q{x) = lZ\y\<2l„a)X-ixf ly\.

Corollary 2.3. Suppose h is continuous and positive definite of order m. If

m > 0, then there are unique constants a„, \y\ - 2m, such that

h(x) -  £ a(-ix)y/y[ = o(\x\m),    as \x\ —> oo.

\y\=2m

These constants are the same as those appearing in (2.4).

For ease in dealing with (2.5), we develop some related notation. Let Vm be

the space of vectors v = {va),a,=m and let A be the operator on  Vm defined
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by Av = w where wa = lZ\ß\=mAa,ßvß and Aa,ß = aa+ß/(a]ßl) ■ Because

of (2.5), A must be real-symmetric. Thus Av = 0 if and only if vTAv = 0.

Equivalently, the null space, N4, of A is the null space of the semi-inner

product (v , w)A — v1Aw . Let HA — Vm/NA be the Hubert space obtained by

identifying v and w whenever ||u - w\\A = 0. The elements of HA are the

cosets v + NA , and as w varies over such a coset, Aw remains fixed.

By applying Theorem 2.1 we can recover (2.2) for a more convenient set of

functions <p. Let

(2.10) 3m = Í<pe3: fxa<p(x)dx = 0   for all |q| < m\ .

Clearly, 3m = {<p € 3: p(i) = 0(\Ç\m) at £ = 0} .   If y/ = <p * (j>, then

y/ = \ip\~, so

a+ß=y     'H'

Hence, for y/ = <p * y> with tp e 3  ,

«,,„    Ez,v-(o)i=EE^^^ = ii^W,
|;'|<2m ''        \o\=m\ß\=m H'

where ^<m)(0) is the vector w in Vm given by vt = Du<p{0). From (2.4) we

see that if cp e i^w , then

(2.12) | h(x)<p * <p(x)dx = j \<p\2 du + \\<p(m)m\2A ,

and (2.2) holds. Since 3m includes the functions y> for which (2.2) was as-

sumed, we conclude that requiring (2.2) for all y> € 3m is an equivalent defi-

nition of h being conditionally positive definite of order m .

Since 3 \ c 3m , the latter definition makes it clear that h will be condi-

tionally positive definite of order m + 1 if it is conditionally positive definite

of order m. lfm is replaced by m + 1 in Theorem 2.1, with h held fixed,

the measure p. will remain the same, the coefficients a„, \y\ = 2(m + 1), will

be 0, and the lower-order coefficients will change to reflect changes in x and

additional terms in the Taylor polynomial.

In order to apply results from [11], we verify that h is in the space Qm(R")

defined there.

Proposition 2.4. Let h be continuous and assume (2.2) holds for all tpe3m. If

xx, ... , xN are distinct points in R" and c,, ..., cN are constants that satisfy

Yj¡=\ c,x'i - o f°r aH \a\ < m • men

N

(2.13) £c^./j(x,-x,.)>0.
'.;=■

Proof. Choose g in 3 with / g(x)dx = 1 and g(x) = 0 for all \x\ > 1.

For e > 0, let ££ = e~"g{x/e) and take tpe{x) = £¿=1 ckg(x - xk). Then
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f¡(i) = T(í)?(eí) with t(í) = ELi <V?~'W,Í> . From

D"r(¿;) = £c,(-/x,)V

we find t(í) = O (Iff) at e; = 0. Thus ç>£ e ^w and

0 < jh(x)<pe * (¡>£{x)dx = jjh(t-y)g>e(t)!p¿yjdtdy.

Letting e —► 0, we obtain (2.13).   D

The following observations will be used in the next section.   Let 3m -

{y3:<pe3J.

Proposition 2.5. Let m > 0 and let p be a positive Borel measure on R" ~ {0}

that satisfies /(|if/(l + \i\m))2dfi(ct) < oo. If 2k > m, then 3¿~k is a dense

subset of L (fi).

Proof. Let g € L2{p) and e > 0. Choose g{ e 3(R" ~ {0}) so that

H# ~ 8i»L2(n) < e- Then f^> = W^Sxß) is in 3. Since 3 is dense in

J?7, we can find y/ € 3 so that for all Ç in R" , |/({) - y/£)\ < e/(l + |f|2*).

Multiplying by |£|     gives

Let <p = (-A)V • Then ç> e # , p(£) = |¿;|2A'<//(£) and

Thus || jj - í>||¿2(„) can be made as small as desired with q> 6 32k .   D

Proposition 2.6. If T e3' satisfies T(<p) - 0 for all <p in 3m , then T belongs

toPm-x-

Proof. Define  F  6 3' by r(p) = jx"<p(x)dx and note that flR"1^):

|q| < m) = ^m . By assumption, i^m is contained in T~ (0), the null space

of T. It follows (see Theorem 1.3 of [9]) that there are constants cn such that

*   = ¿J\„\<mC<t   n •     D

3. Fourier description of Ch

After analyzing the space Wh m defined below, we will see that it coincides

with the space Ch studied in [11]. Among the results emerging from this anal-

ysis is a Fourier transform description of Wh m.
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Definition. Let h be a continuous function on R" that is conditionally positive

definite of order m. We write /e^ m(R") if / € C(R") and there is a

constant c(/) such that for all <p in 3

[3.11 jf(x)y>(x)dx <c{f)Ujh(x-y)<p(x)<p(y)dxdy\
1/2

If / G ^ m(R") we 'et c*(/) denote the smallest constant for which (3.1) is

true.

It is easily checked that if /, and f2 are in Wh m , then /, +f2 and af , ae

C, are also in Wh m with cJJx +/2) < c+(/,) + ^(/2) and ct(a/¡) = |a|c,(/i).

If / € Pm_, and j)€^, then (/,?> = 0, so / € «£>M and c,(/) = 0.

Conversely, if c„(/) = 0, then /e POT_1 by Proposition 2.6. Thus ct(/) is a

seminorm with null space Pm_i ; for m = 0, take P_, = {0}.

Using (2.12), we note that (3.1) is equivalent to

(3-2) K/.^l^cí/íjllfH^ + II^ÍOJIE}

for all ç? in â?m . U v eVm and

(3.3) g(x) = £(^)a(-/x)a,

"1="'

■2

1/2

then (<?, y>) = £H=,„(^),(Ö'W) = (^'"'(0), v)A , so q e %m with c,(q)

\\v\\A . If g € L (p) and u is defined by (2.8) with a = gp, k - m and an
appropriate choice of s (take 5 = 0 for m = 0 ), then, for <p e ^m , (2.9) gives

(u, <p) = ¡ipgdp. It follows that ueWhm with ct{u) = \\g\\L2, y

Clearly, Wh m includes all functions of the form / = u + q + p with u, q

as above and p e Pm_, . The next result, when combined with Proposition 2.6,

shows that all functions in ^      can be obtained in this way.

From the behavior of u(x) as |x| —> oo, described by Proposition 2.2, we

see that if m > 0 and / = u + q + p , then f(x) = o (|x|m) is equivalent to

q = 0 (or Av = 0 ). In any case,

(3-4) ?M(R")C{/€C(R"): f(x) = 0(\x\'") as |x| -» oo}.

Proposition 3.1. Le? m, h , p and a„ be as in Theorem 2.1. If f eWh m, then

there is a function g e L (p) and a vector v e Vm such that for all y> in 3m

(3.5) (/» = j98 dp + ^(Av)nD"c(0).
\a\=m

This uniquely determines g and the coset v + NA.

Proof. Define /: 3m -► H = L2{p) ® HA by Jtp = ç ® (p(""(0) + NA).
From (3.2) we see that \(f, <p)\ < c9(f)\\J<p\\fI. From this we deduce that,

if J<px = Jy>2, then (/, <px) = (/, <p2). It follows that there is a bounded
linear functional L on the image J3    such that L(J<p) = (f, <p) for all y>
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in 3m . Since H is a Hubert space, we can choose g © (v + N4) so that for

all <p in 3m , {f,y>) = {J(p,g®(v + NA))H . This gives (3.5).

For uniqueness, we show that J3m is dense in H. Let gx G L2(p), w G V

and n > 0 be given. Take 2k > m and use Proposition 2.5 to choose tpx G 32k

with  ||g, - rp] \\L2. , < 'I ■ Note that Jq>x = ^, ©0 since 2k > m . Put /?(£) =

E|„|=« «»„r/a! and take ^ e ^ so that 1 -*({) = 0(|£f+1) at Í = 0. Define

y/Ee3 by ^(f) = p(Z)x(e~lÇ) ■ Then /^£ = y^®{w + NA). Choosing £ close

enough to 0, we have ||^||¿2(/í) < -1. Then \\gx + {w + NA) - J{<px + W£)\\H <

2r\.   D

If / G %m , let Kf = g © (v + NA) be the point in H = L2(/i) © r^ de-

termined by (3.5). Clearly, the resulting map A : Wh m —► // is linear. That A

maps onto // is evident from the remarks leading up to Proposition 3.1. From

(3.2) and (3.5) we see that ct(f) = \\Af\\H. Note ||A/||„ = {(/, f)h}"2 =
\\f\\h, where (/,, f)h = (A/,, Af2)fl is a semi-inner product for %m. There

is a corresponding inner product on Wh m/Pm_x , which is then a Hubert space

isomorphic to H under the quotient map associated with A.

The following provides a converse to Proposition 3.1 and clarifies how the

Fourier transform relates / to g, v in (3.5).

Proposition 3.2. Let m,h, p and a be as in Theorem 2.1. Fix g g L (p),

v G Vm and fe3'. The following are equivalent:

(a) (3.5) holds for all <p in 3m;

(b) / G 5?' and for every \a\ = m,  Ç"F — Xa, where F is the inverse

Fourier transform of f and X(t is the Radon measure on R" given by

(3.6) Xn(E)=    j   ?g(i)dii(Ç) + al{Av)aô(E).

£-{0}

When this is the case, f &% m, Af = g © [v + NA) and (f, f)h = f \g\2dp +

v Av.

Proof. Let q be as in (3.3) and let u be defined by (2.8) with a = gp , k — m
and a choice of 5 that satisfies the hypotheses of Proposition 2.2. If (a) holds,

then {f, (p) = (u + q, <p) for all y> G 3m . By Proposition 2.6, f - (u + q) =

p G Pm_, . If F = / and v(Ç) = f>(£), then

(¿;"F, f) = (F,y) = {f, y/) = (u,y/) + (q+p,y/)

= i(y}-sT'"-'y/)gdp+ £ b,D"y)(0),

\„\<m

where the constants bn are determined by q + p(x) - E|„|<w b(t(ix)" . Thus,

(3.7) (?F ,<p)=J (í>(í) - 0) /j(í)<MO + a!(^)„ç>(0),
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which establishes (b). To see that (b) implies (a), let fx = u + q with u and q

as above. Then (3.7) holds for Fx , where Fx = fx . Hence, ÇaFi = Xa . If (b)

holds, then cf'F, = <f*F for all \a\ = m . This implies Fx-F = ¿iQi<m bnD"S ,

which says fx - f G P,n_x ■ Therefore, (a) and the other assertions about /

follow from the corresponding facts about /, .   D

For typical choices of h (e.g. those considered in §5) the measure p is

absolutely continuous with respect to Lebesgue measure, dp(¿;) = w(¿l)dc¡, and

a   = 0 for all |y| = 2m.   In such cases the measures Xa  in (3.6) are given

by functions F   in L¡JRn); dXJi) = F^dcl, where Ftt(i) = Zng(Ç)w(Z).

From D"f = ((-ii)°F)~ = (-/)'% , we see that (Daf)~ = (-i)m(2n)"Fn g

L;oc(R"), where F (Í) = Fn (-{). Let

(3.8) r(i) =
(2x)2n\t\2mw(-t)

with r(i) = oo when w{-Ç) = 0. If <//>({) = r(f)df, then (Z)"/)" G L2(/>)
and

11(^^11^, = /^^^«)-

Using (4.2) below with I = m,

M E ^HD"fy\\lHP) = f\s\2^ = (f,f)h.
\n\=m

Corollary 3.3. Let m,h, p, and a., be as in Theorem 2.1. Assume dp{£,) =

w{£,)d£, and a., = 0 for all \y\ = 2m. Let p be the Borel measure on R"

defined by dp(£) = r{<l)d£, with r as in (3.8).  Then f e?t m if and only if

f G S*' and [D" f)~ g L"(p) for every \a\ — m . In that case, (f, f)h is given

by (3.9).

The translation invariant nature of Wh m is evident in the following

Proposition 3.4. Let r be a compactly supported Radon measure on R". // /

is in ffh     , then so is x * f.   Furthermore, if A: Wh m —» L~(p) © HA  is as

defined above and Af = g@{v + N ¡), then A{x*f) = tg®(t{0)v + NA), where

m = Jei{x-i)dr(x).

Proof. If y/{x) = f y>(x + y)dx(y), then (t * f, q>) = (/, y/) and

(3.10)

$(<;) = jje i{x'i)<p(x + y)dxdT(y)

= IJe~'{'-y-i)ç(z)dzdr(y) = £«;)/({).
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If Af = g © (v + NA), so that (3.5) holds, then for all <p G 3m

(x*f, <p)=jy)gdp+ ¿2 Da$(0)(Av)a
\n\=m

= jçtgdp+J2 t(0)D"cp(0)(Av)a.
\a\=m

This gives (3.5), with f,g,v replaced by x * f, tg, t{0)v ; the assertions

made are now apparent.   D

In the next result, (3.11) is equivalent to A{v*h) = n®(w + N4) and (3.12)

says v(f) = (v * h , f)h. From this it is clear that Wh m satisfies condition (c)

in Theorem 1.1 of [11]. That conditions (a) and (b) are also satisfied can be

seen from the discussion above in which the map A was introduced. Applying

Theorem 1.1 of [11], we conclude that ^     = Ch .

Proposition 3.5. Let m, h, p and a„ be as in Theorem 2.1. Let v be a com-

pactly supported Radon measure on R" and assume that / xadv{x) - 0 for all

\a\ < m. Then v * h G Wh m and for all y> in 3m

(3.11) (v*h,<p) = Jylndp+ ¿2(Aw)aDav(0),
\a\=m

where n{¡,) = JV dv{x) and wß = D^n(0) = j(ix) du(x). Furthermore,

if fe Whm and Af=g@(v + NA), then

(3.12) ¡J{x)dv{x)= Í ngdp + wTAv.

Proof. If y/{z) = J <p(z + y)dv{y), then from (2.4),

(3.13) (v*h,<p) = (h,yt)= \y,-xTlm'X(pdp+   ^   D7ys(0)^

and, as in (3.10), y) — ipn . Clearly, D"n(0) = 0 for all |a| < m . If <p G 3m ,

then D7y/(0) = 0 for \y\ < 2m , and for \y\ = 2m

a+ß=y      H'

Thus, (3.11) follows from (3.13). To establish (3.12), choose a real-valued

function r \n 3 with r(0) = 1 , and for e > 0 let <pE(x) = J e~"r (^f^) du(y).

Then y)£ G 3m and

{f,<P£)=Jrcgdp+   J2(AV)aDX(°)-
\a\=m

This yields (3.12) because

if(x)dv{x) = lim {f, <p£)   and   c¡{C) = f(e¿;)ñ(|).   D
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For s as in ( 1.1 ) we have s — v *h with J tpdv — £,.= 1 c¡<p(x¡). Thus, such

functions 5 belong to Wh m .

The distribution DKh , \k\ > m , can be obtained as a limit of v * h 's by
choosing v 's that correspond to appropriate difference operators. Such v 's sat-

isfy the orthogonality condition f xadv(x) - 0, \a\< m . Hence, the following

may be regarded as a limiting case of the situation considered above.

Proposition 3.6. Let m, h , p and a  be as in Theorem 2.1. Fix k with \k\ > m

and let p(Ç) = (iÇ)K. Then, p e L (p) if and only if the distribution DKh
belongs to Wh m. In that case, A ((-D)Kh) = p®(w + NA) with wa = Dnp(0),

\a\ = m.

Proof. Let y/ = DK<p , so y/ = pip . If y> G 3m , then, by a calculation like that
for (2.11),

\y\<lm \a\=m\ß\=m H'

Using (2.4), we have

(3.14) ((-D)Kh,(p) = (h,y,}= fpipdp+ ]T (Aw)ßDßy3(0)
\ß\=m

for all <p G 3m . This is (3.5) with / = {-D)Kh , g = p and v — w . Upe

L~{p) we apply Proposition 3.2 to see that /G ^      and Af = p®(w + NA).

If p £ L (p) we apply Proposition 2.5 to obtain a sequence <pj G 32k  such

that /1^1 dp = 1 and /pcp^p —» oo. We take 2k > m so that 1)^(0) = 0
when \ß\ = m . Then (3.14) gives

{{-D)Kh,<p,) = jpy>,dp oo.

Since ||^||22    + ||^"!,(0)||2 = 1 , we see that /= {-Dfh cannot satisfy (3.2)

and hence cannot be in Wh m .   a

4. Error estimates

In this section we derive bounds on the difference between a function g in

Wh      and a function  g    of minimal Wh      norm that agrees with g on a

set IcR" of 'interpolation points'. These error estimates involve a param-

eter that measures the spacing of the points in X and are of order / in that

parameter; our derivation assumes I > m and

(4.1) [ \c;\2ldp(c;) < oc.

For the examples given in §5, this assumption is satisfied for arbitrarily large val-

ues of / ; see (5.2) below. In particular, the estimates apply to multiquadric in-

terpolation, since the example there with a = -1 gives h(x) = -2y n(\ + |x|2).
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Before starting on the error estimates, we look at a related implication of

(4.1). Let po(i) = (iÇ)° . From

(4-2) (Î + - + Ô'=E^

we observe that (4.1) holds if and only if pa G L (//) for all |a| = /. If a

distribution has all of its /th order derivatives given by continuous functions,

then it will belong to C (Rw). Thus, the following result shows that (4.1) holds

if and only if Wh mC C'(R").

Proposition 4.1. Let m, h, p and a be as in Theorem 2.1. Fix a with

\a\ > m . Then the following are equivalent:

(a) pa eL2(p), where pa(Q = (/E)°;

(b) for every f in Wh    , the distribution D"f belongs to C(R") and there

is a constant ca such that for all f in Whm, p"/!^ < cjf\\h ;

(c) there is a point x0  in R"  and a constant c   such that for all f in

^nC"- \Daf(Xo)\<cJf\\h.

If these are true, then for all /6Í¡ m and all yeR°,

D"f(y) = (f,Sy*(-D)"h)h.

Proof. Let / G Wh     and let F be its inverse Fourier transform, so that F = f.

If \a\ - m, then, by Proposition 3.2, c;"F = Xa with Xit given by (3.6).  If

\a\ > m , then a = a + ß with |q'| = m . Hence, £°F = ¿a with Xn = <lß Xy

where X , is given by (3.6). If (a) holds, then Xa is finite; for \a\ = m,

¡d\kn\ = f\Zag(Z)\dp(Z)+\(Av)n\ andfor \a\> m ,"j d\XJ = f \Cg(¿l)\dp(¿í).
Thus, Xn is continuous and bounded by ¡ d\XJ . Since {iD)a f = (<^UF)" = Xa ,

we see that (b) holds with ca = \\pn ® {p{am)(0) + NA)\\H . Thus, (a) implies (b).

That (b) implies (c) is obvious. To see that (c) implies (a), let y/ be an

arbitrary function in 3(R" — {0}) and define u by (2.8) with a = y/p and

k = m. Then, u G ^ m, Au = y/ ® 0 and ||m||a = J \y/\ dp. In addition,

u G C°° and

D"u(x0) = J e-'^^i-iÇfyv&dpic;).

Thus, (c) gives \¡e~i(Xo'®(-it)ayr(i)dn{C)\ < cJy/\\L2{fl). Since this holds for

all yi in 3(R" ~ {0}), a dense subset of L2(p), (a) must be true.

To verify the last assertion, suppose / G Wh m with Af = g © (v + NA). By

Proposition 3.6, A{{-D)"h) = pn ® {p[t'n)(0) + NA). Using Proposition 3.4 with

T = Ô , we have /(¿;) = e'^'^' and

(4.3) A(S * (-D)"h) = tpa © (¿m)(0) + NA).



MULTIVARIATE INTERPOLATION. II 223

Thus, (/, 5y * {-D)"h)h =fgWadp + vTApW(Q) = (-i)mXa(y). Here, Xa is

as above so, as already noted, Xa = (iD)af; this gives the desired equality.   G

Our error estimates will be based on the following

Theorem 4.2. Let m, h, p and av be as in Theorem 2.1. Assume that p

satisfies (4.1) with I > max{l, m). For a point x0 in R" suppose that o is a

real-valued, compactly supported Radon measure on R" such that

(4.4) p{x0)=     p(x)da(x)

for all p in P/_x . Then for all f in Wh m,

(4.5) M) - / fMdo(x)\ < c\\f\\h j\x- x0\'d\a\(x),

1/2
where c = {s + f\Zf/(l\ydp®}1" with s = E]a\=mEm=m\Aa>ß\ for I = m
and s = 0 for I > m .

Proof. Let v = Sx - a . By (4.4), ¡p{x)dv{x) = 0 for all p G P¡_x. Since

I > m , Proposition 3.5 applies to v , and from (3.12),

(4.6) |y'/(x)^(x)|<||«©(u; + ^)||// /; •

Here, w„ - f(ixydv{x), \ß\ = m . If / > m , then w = 0; if / = m, then

wß = '"' / (x ~ xo) dv{x) — 0 - /'" / (x - x0)  da{x).

Defining R(6) by e'B = Z't'l (i6)k/k\ +R{0),v/e have \R(0)\ < \6\'/l\ and

e-^^nd) = Íe'{x x°-i)dv(x)= I,R((x-x0,t))dv\

= -ÍR{(x-x0,Q)da(x).

x)

If b = f \x - xjd\o\{x), then |«(¿:)| < b\ct\'/l\ and, for / = m,  \wß\ < b.

From this we obtain ||n © (w + N4)\\H < cb and (4.5) follows.   D

To obtain the error estimates mentioned at the beginning of this section, we
Y

apply Theorem 4.2 to f = g - g   . Because of the minimum norm property of
Y

g   , 11/11/, < \\g\\„ • Since other fixed bounds on ||/||A result in acceptable error
Y

estimates, the minimum norm requirement on g    could be relaxed to simply
y

a requirement that \\g  \\h not exceed some set bound. If we choose a so that

supp a c X, then / g - g do — 0, and (4.5) gives

(4.7) g(x0) - /(x0)| < c\\f\\h j\x- xJd\o\(x).
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To make such a choice of o possible, it may be necessary to restrict x0 . From

(4.4) we see that if p = 0 on supp o then p(x0) — 0. Let

#/_,(*) = {pe P,_x : P{x) = 0   for all x g X),

{X)i_x ={xGR" : p{x) = 0   for all/>€#,_,(*)}.

Proposition 4.3. Let E/_x(x0, X) be the set of all real-valued, compactly sup-

ported Radon measures on R" that satisfy both (4.4) and supper c X.  Then

•£/_ i (x0, X) is nonempty if and only if x0 G {X)¡_, .

Proof. Necessity of x0 G {X)¡_x is evident from the preceding discussion. To

see that this is also sufficient, consider the linear functionals on P/_1 defined

by Lx(p) = p(x). Choose a (finite) subset Y of X such that {L : y G Y}

is linearly independent and Lv G span{Lv, : y G Y} for all x in X. Then,

N^iY) = #,_,(*) and {Y),'_x = (JT>/_i - Also> Rr :ye^} is a basis for

(Pl_JN¡_l(Y))';let {py+N,_{{Y) : y G Y} be the dual basis. If the polynomi-

als p are replaced by their real parts, the result is still dual to {L : y G F}.

We may therefore assume that each p is real-valued. For x0 in {Y)t_x ,

Lv gives a linear functional on P[_xINt_x(Y). Thus, Lv =Eveycy^v witn

c = Lx (pv), and it follows that o - ^2yeYc Ö   is in E¡_x{x0, X).   O

Of course, (4.7) will give a better error estimate if o is chosen from

E¡_x(x0, X) so as to minimize / |x - x0| rf|rx|(x) ; we made no attempt to

do this with our choice of o in the preceding proof.

We turn now to an analysis of the rate at which the error estimate goes to

zero as the coverage by X improves. For this we fix a region Q and a function
y

g G Wh m  and, for various X, look at bounds on  \g - g  \a given by (4.7).

Here we use the notation |/|n = supY(££i |/(x)|.

The number d = d(Q., X) defined by

(4.8) d{Çl,X) = s\xpvaf\y-x\
yeaxex

is a standard measurement of how closely X covers Q. Using (4.7) and some

mild assumptions about il, we will show that

(4.9) \g-gX\a = 0(dl).

In order to use (4.7), we assume (4.1). In that case, Proposition 4.1 assures us
Y

of a uniform bound for the /th order derivatives of g - g . From this and

(4.9), we can deduce that the derivatives D"(g - g' ) of intermediate order

0 < |«| < / satisfy 0{d'~1"1) estimates.

To establish (4.9), we proceed along lines used by Duchon [6]. We start by

assuming that there are positive constants M, e0 such that for every 0 < e <

e0,

(4.10) fie \J{B(l,cM): t€T£},
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where T£ = {t G R" : B(t, e) c Q}, B{t, r) = {x G R" : \x -1\ < r). Argu-
ments in § 1 of [6] show that such constants M, e0 will exist if fi satisfies a

cone condition.

Next we select a 7^,-unisolvent set of points a(a) G Rn, |a| < /. A corre-

sponding set of Lagrange polynomials, p* G P¡_x , \y\ < I, is determined by the

requirements: //,a(a(a)) = 1, for a = y; pa,(a(a)) = 0, for a^y. The matrix

A„,ß = (a("))^> M^. 1^1 </ is nonsingular. If p,,(x) = T,\fl\<i(A~l)fir/xfi ,

then /?„(a(a)) = (AA~ ) , so p., = /?* . The function a —► a(a) can be iden-

tified with a point in B = ^.¡B^a), ^)- Clearly, b G B if and only if

|b(a) - a(a)| < ¿ for all |a| < /. Now choose ô > 0 so that 5Q ß = (b(a)/

is invertible for all b G B. As justified by replacing the points a(a) with the

points S~ a(a), we assume ö = 1 .

Choose R so that B(0, R) contains all the unit balls B(a(a), 1), |q| < /.

The Lagrange polynomials pn depend continuously on b. Let

X{r) = sup I ^2 \pht(x)\ : \x\ < r, b G B I .

For d = d(Q, X) < e0/R, set £ = Rd and fix a point / in T£. The balls
B(t + da{a), d) are contained in B{t, Rd) = B{t, e) c Q. By (4.8), for every

|a| < /, there is at least one point xn in Xfl B(t + da(a), d). If b is the point

in B defined by xit = t + db{a), and

|a|</      v '

with x0 arbitrary, then supp o c A"n>3(/, e), and (4.4) holds for all p G P¡_x\

to verify (4.4), take q so that p(x) = q{{x-t)/d) and use Ei^/^OOtfOKa)) =

GOO with y = (x0-t)/d.
Suppose x0 G B(t, eM + d). Then, |x0 - t\/d < (RM + 1 ), so / d\o\ <

X(RM + 1). Also, for x G supp o ,

|x-x0| < \x-t\ + \t-x0\ < {R + RM+ l)d.

Thus, f\x-xjd\a\ < cV with C° = {R + RM + l)'X(RM + 1). Since

x0 is any point in ß(i, eM + d), (4.7) gives \g - gX\B(l,eM+d) < c\\f\\hC°d'.

By (4.10), if y G Q., we can choose t e T£ so that j; g 5(f, eM). Then

5Q>, d) C /3(/, eM + d),so for every yefi,

(4.11) \g-gX\B(yd)<cC°\\f\\hd'.

This is more than required for (4.9), but will be useful for derivative estimates.

By Proposition 4.1, f = g - gX   is in C (R").   For y e £1,  fieR and

u G R" with |w| = 1 , let <p{6) = f(y + du). Then

(4.12) 9lk\0) = kl¿2 ^D"f(y + 6u).
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By (b) in Proposition (4.1), \<pU)\R < C' h with C' = /! Ew=/ cja\. From

(4.11) we also have a bound on \(p\t where / is the interval [-d, d]. For

0 < k < I, the results of Gorny [8] summarized in [12] then give

|/'(0)|<C,
,1-k

-/^O •,,*.-//

(4.13)

where Ck = l6(2e)k(cCy~K'l[max{C, l\2~'cCv)]K" . Note that Ck can be

calculated from n, I, m, h and M ; the choice of R depends only on / and

n , so C requires only I, n , M, while c and C' require only m, h , I, n .

Combining (4.12) and (4.13) gives

sup
l»l=i

(4.14)

for every yeQ. Since

E ^m
\a\=k

<
k\

,l-k

sup
l»l = l

v-^   U

\a\=k
a\| "a

/-|o|,
is a norm for Vk , we conclude that \D"f\Q = 0(d '"') for every |q| < /. To

summarize, we state

Theorem 4.4. Let m,h, p and a be as in Theorem 2.1. Assume (4.1) holds

with I > max{ 1, m}, and suppose Q ¿j a subset of R" that satisfies (4.10) for

some M, e0 > 0. Then there are positive constants C, d0 such that if f e^h m

vanishes on a set X and the number d = d(Q., X) defined by (4.8) is less than

dn, then for all \a\ < I,

(4.15) \Daf\a < C ,i-W\

5. Examples

In this section we look at some examples of conditionally positive definite

functions h . For these examples we determine the measure p and coefficients

a.,, \y\ = 2m, that appear in (2.4). As can be seen from (5.2) below, these

examples all satisfy (4.1) and do so for arbitrarily large choices of /. Thus the

error estimates in §4 apply, showing that for interpolation based on any of the

h 's given here, approximation of arbitrarily high order can be achieved.

For a G R, let w   be the function on R" defined by

(5.i; w8«) =

2K
(n-a)ll (IÍI)

(2^)"/22fl/2|c:|("""fl)/2'

where Kp is a modified Bessel function of the second kind. From the behavior

of Kp{r) at r = 0 and r = oo we note that

(5.2)
/

IéPWWí < °°
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if and only if a + 2l >0. For aeR, a/0, -2, -4, ... , let

r(«/2)
(5.3) W = (i + ixi2r/2'

and for a = -2k , k = 0, 1, 2, ... , define /za by

2xk

(5.4)

Ä_2,(x) = Jim^ [ha(x) - r(a/2)(l + |x|¿)

M + |jc|2)^log(l + |jc|2)
k\

The last equality can be verified by using r(f + k + 1) = (§ + fc) ■ • • (f ) T (f )
together with

,2a,,   ,   ,    ,2,, .. (l + |x|2)-û/2-(l + |X|
1 + x  ) =   hm

t=k a->-2k {-a/2)-k

Lemma 5.1. If ß e 3{R" ~ {0}), then for all a in R

(5.5) jha{x)<p{x)dx = j ip{C)wa{Z)dli.

Proof. A basic fact used in the theory of Bessel potentials is that (5.5) holds

for all <p G 57 if a > 0 ; see [2], [3] or [4]. For cp G 3(Rn ~ {0}) an analytic

continuation argument gives (5.5) for a ^ 0, -2, -4, .... To obtain (5.5) for

the remaining values of a — -2k, we take limits. If f(t) = (1 + |x|2)' and

a^O, -2, -4,... , then

[W-r(î)(i + WV]-(î+*)r(?)j[V(*-(5+*).)*-
Estimates from this can be used to justify an application of Lebesgue's domi-

nated convergence theorem that shows

J h_2k{x)<p{x)dx=   Km^J   ha(x) - r(|) (1 + |x|Y  <p(x)dx.

Now (fi g ^(R" ~ {0}), so ¡(I + \x\2)k<p(x)dx = 0. We therefore have

f h_2k{x)<p{x)dx = lima^_2/t f ip(Ç)wa(c;)dÇ, which gives (5.5) for a = -2k . D

Theorem 5.2. If m is a nonnegative integer and a + 2m > 0, then (2.4) holds

with h = ha, dp(Ç) = wa(Ç)dÇ, and a„ = 0 for \y\ - 2m .

Proof. If m — 0, then a > 0. As already mentioned, (5.5) holds for all <p in
5^ if a > 0 ; thus, we have (2.4) with m = 0 and a > 0. For the rest of the

proof we assume m > 1. Let

"„(*) =
/

2m— 1 ,     -,       >-, ,A-_^)EH(x,0)

/U0
Jfc! wa(Z)dt.

By Proposition 2.2 we have ua G C(R"),  wfl(x) = o(|x| '"), and for all <p
in J?

/ ua{x)<p{x)dx = (Sa, (p),
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where (Sa, y/) = J[y/ - xT2" ' y/](4)wa((;)d(;. Let Ta be the tempered distri-

bution defined by / ha{x)tp{x)dx = (Ta , <p). By (5.5), (Ta, y/) = {Sa , y/) for

all y/ G 3{R" ~ {0}). Thus, (Ta - Sa)~ = ha-ua is a polynomial q . Both

ha and ua are o(|x| m) at |x| = oo, so deg q <2m. The desired instance of

(2.4) now follows from (ha - q, y>) = {Sa , íp).   D

6. Equivalence of definitions

Theorem 6.1 below, when combined with Proposition 2.4, shows the equiv-

alence of the definition of conditional positive definiteness adopted here with

that used in [11]. As in [11], we define Pm_x to be the space of all finite mea-

sures v on R" that have support consisting of a finite set of points and satisfy

v{p) - 0 for all p G Pm_x ■ The space obtained by relaxing the support re-

quirement to allow compact sets, rather than only finite sets, will be denoted by

<O.If^Ef:,cA,>then

_ N     N

v(v*h) = j2J2cisJh(xi-xj)>
i=\ ;=!

and v G P^_x if and only if EÍ=| c¡x" - 0 for all \a\ < m . If dv(x) = <p{x)dx

then

v iv * h) = // <p(x)<p(y)h(x -y)dxdy,

and v is in {P^_, ) if tp g 3m .

Theorem 6.1. Let h be an arbitrary function in C(R"). If v ( v * h ) > 0 holds

for all v g P~\_x, then it holds for all v g (P^_x) ■

Proof. Fix v in (Pm_{) and let K be its support. Recall that the finite Borel

measures on K form the dual C(K)' of C(K), the continuous functions on K

with the sup norm topology. The norms involved in this duality will be written

as follows: for / G C(K), \f\K = supvGJÏ |/(x)| ; for o e C(K)', \\o\\ = J d\o\.
Let h (x) = h{y — x). K is compact, so for every e > 0 there is a finite set

F£ c K such that, if y G K, then \h - hy \K < e for at least one y0 G F£. If

o is in the weak* neighborhood

U(v ,F£,e) = {oG C(K)' : \{o - u){hy)\ < e for all y0 G F£)

and y E K , then, for a suitable choice of y0e F£,

|(o- - v){hy)\ = \(o - v){hy - hy) + (o- u)(hy)\ < (||cr -v\\ + l)e.

Since [a - v) * h(y) = (o - v){h ), we get \(o -v)* h\K < (\\o - v\\ + l)e for

all o G U(v , F£, e). For such o let w be the number defined by

w = a io * h) - v (is *h) — o ((a - v) * h) + (o - u) (v * h)

and observe |iü| < ||ct|||(ct - v) * h\K + \{o - v){v * h)\.
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Let B = {o G C(K)' : \\o\\ < \\v\\} and take C = B n(P^_x), S ^ B nP^_x.
By arguments given below, 5 is weak* dense in C. This allows us to choose

o G S n {o G U{u, F£, e) : \(o - u)(v*h)\ < e}.

For that choice we have 0(0 * h) > 0 and

M < ||cr||(||fT -v\\ + l)e + e< H|(2|M| + l)e + e.

Since w is arbitrarily small, we see that v(v * h) must be arbitrarily close to

points on the positive real axis and hence must be greater than or equal to zero.

C is convex and weak* compact so, by the Krein-Milman theorem, C is

the closed convex hull of its extreme points. Since S is convex, it will be

weak* dense if it contains all of the extreme points of C. Suppose oQ is an

extreme point of C that is not in S. Then supp oQ cannot be a finite set,

so we can subdivide it into J = 2(1 + dimPml) disjoint subsets Ex,... , E}

with \o0\(Ej) ¿0. Let o}\E) = er0(£V n£) and take caJ = ¡xadoj(x). By a

dimension argument, there is a point a G R ~ {0} that satisfies the equations

j j

£>,-KH = o;    Ea/«j = 0'   |a|<w.

For /GR,let o' ='£¡ml(l + taJ)aj. Then, a' G (/¿_,), and if (l+taf) >0,

j j

llcr'H = £(1 + ta^WOjW = J2 KH = H^oll ^ H^ll •
7=1 7=1

Thus, o' G C for all / in an interval about 0. This contradicts the assumption

that Oq was an extreme point of C because er' = o0 only if / = 0, as seen

from the fact that a ¿ 0 and ||cr.|| ̂  0 for all ; = 1, ... , J.   a
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