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COUPLING FINITE ELEMENT AND SPECTRAL METHODS:
FIRST RESULTS

CHRISTINE BERNARDI, NAÏMA DEBIT, AND YVON MADAY

Abstract. A Poisson equation on a rectangular domain is solved by coupling

two methods: the domain is divided in two squares; a finite element approxi-

mation is used on the first square and a spectral discretization is used on the

second. Two kinds of matching conditions on the interface are presented and

compared; in both cases, error estimates are proved.

1. Introduction

To approximate the solutions of partial differential equations, a number of

methods can be successfully applied: among them, spectral-type methods, in

which the discrete solution is a polynomial of high degree, are known to be very

accurate when the solution to be approximated is very smooth (see [16, 8] for a

general description of these methods). Their main drawback lies in the difficulty

to take into account the singularities of the function to be approximated, and
also in the difficulty in handling domains with a complicated boundary. This

last problem is usually solved by decomposition into subdomains and/or trans-

formation of coordinates. On the other hand, the finite element method, where

the discrete solution, restricted to very small domains called "elements", is a

polynomial of low degree, is well suited to problems with complex geometries,

but its accuracy is limited by the degree of the polynomials (general properties

of finite elements are analyzed in [11]). Several attempts have been made to

combine the two methods into a unified framework, and thereby obtaining the

advantages of both. The main idea on which these attempts rely consists of
a decomposition of the domain into (rather) small subdomains so as to fit the

geometric complexity of the boundary, and then use high-degree polynomials on

each subdomain to approximate the solution. Two different approaches have

been proposed: the spectral element method and the p-version of the finite

element method. The spectral element method [25], which consists of using

a spectral algorithm on a fixed number of subdomains, is presently developed

for a growing number of problems (see, for instance, [15, 19, and 23]); on

the opposite side, the so-called p-version of the finite element method, where
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Figure 1.1. Decomposition of the domain.

the analysis of the consistency error and of the approximation error. The final

error estimates, together with concluding remarks, are given in §5.

The main results of this paper were first presented in [5].

Notation. Let A denote any open interval of the real line or any domain in R

with a polygonal boundary. For any real number 5, we consider the classical

Hubert Sobolev spaces HS(A), provided with the usual norm || -\\s A, and also,

when s is an integer, with the seminorm | • |s A. For any real number s > 0

and any p , 1 < p < +oo, p / 2, we also use the Sobolev spaces IVs lP (A),

which are no longer Hubert spaces, provided with the norm || • \\s    A . Finally,

for any real number s > 0, Hq(A) stands for the closure in HS(A) of the space

of infinitely differentiable functions with compact support in A.

Throughout this paper, with any function v defined on Q, we associate the

pair v* = (v~ , v+), where v~ (resp. v+) denotes the restriction of v to Q~

(resp. Q+). The scalar product on L2(Q~) x L2(Q+),

(1.2) (u ,v*)= /    u~(x)v~(x)dx + /    u+(x)v+(x)dx,

coincides with the usual one on L (Q.). We also provide the product H (H~)x

7/'(Q+) with the norm

(1.3) ||u*|| = [(v*, v*) + (Vv*, Vv~)]'

the space of pairs v* in H (Q~) x H (Q+) with v continuous through y is

isomorphic to Hl(Q). Finally, we define on //'(Q~) x 7/'(Q+) the bilinear

form

i'/2.

(1.4) a(u =(Vu , Vv V{u,v*)e[Hl{Sl  )x//'(Q+)]2.
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Clearly, for any function f in L (fi), problem (1.1) is equivalent to the fol-

lowing one: Find u in //¿(fi) such that

(1.5) a(u,v*) = (f,v*)   VveH^ci).

This variational form is precisely the one which will be used in order to define

the discrete problems.

In all that follows, c, c , c", ... are generic positive constants independent

of the discretization parameters.

2. The discrete spaces and problems

2.1. Definition of the discrete spaces. We have to define a discrete space on

each subdomain fi- and fi+ , and then we must make precise the matching

conditions on the interface.

Let A bea real parameter, 0 < h < 1, which will tend to 0. With each

value of h, we associate a triangulation ^ of the domain fi- , i.e., a finite

set of triangles such that the intersection of two triangles is either empty, or a

vertex, or an edge, and such that (cf. Figure 2.1)

(2.1) fi"=  J K;
Ke£rh

h is the upper bound of the diameters of the triangles of ^. We denote by hK

the diameter of any triangle K in ETh, and by pK the diameter of the inscribed

circle in K. Next, we assume that the family [ß^)h is regular in the following

sense (cf. [11, §3.1] or [3, Definition 3.1]): there exists a constant x > 0 such

that, for any h and for any K in ¡Th , the following inequality holds:

(2.2) pK > xhK .

Let k be a fixed integer > 1. For any closed subset A of E (resp. E ), we
denote by Pk{A) the set of the restrictions to A of polynomials of one variable

(resp. two variables) with total degree < k. With any triangulation ¿^, we

have the associated finite-dimensional space Xh defined by

(2.3) Xh = {vh G W\CT); VK efh, vh{K G Pk(K) and vh = 0 on 0£T \y}.

We also need the finite-dimensional trace space

(2-4) Xh = iVh\y>Vh eXh}'

In order to build an appropriate basis of Xh and xh , we consider each triangle

K as the support of a Lagrange finite element (A^, Pk(K), s,K), where E^ is the

set of all points in K with barycentric coordinates i/k, j/k , and (k-i-j)/k ,
0 < i, j < k , i + j < k ; it is well known [11, Theorem 2.2.1] that this set of
points is /,i.(/T)-unisolvent. Next, we set

(2-5) SA=Ua*'

and also

(2.6) <* ={aeEAny}.
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With each point a in Eh n (fi U y), we associate the unique function qa of

Xh which is equal to 1 in a and vanishes at any other point of 5A . Then the

set {qa, a G Eh n (fi~ U y)} is a basis of the space Xh and the set {qa]y, a G Çh}

is a basis of the space xh .

Next, let N be an integer > 1 , which will tend to +co. For any integer

n > 0, we denote by ô„(fi+) the set of the restrictions to fi+ of polynomials

of two variables with degree < n with respect to each variable. For each integer
N, we consider the finite-dimensional space XN defined by

(2.7) XN = {vN g QJCl+) ; vN = 0 on Öfi+ \ y}.

Let (L„)„eN be the family of Legendre polynomials on [0, 1], i.e., of orthog-

onal polynomials on [0, 1 ] such that Ln , n G N, is of degree n and satisfies

Ln(0) = 1. We recall that the set {Lm ® Ln,0 < m,n < N} is a basis of

QN(Ù+). However, we shall also characterize the polynomials of XN by point-

wise values: let Ç , 0 < j < N ,be the roots of the polynomial Ç(l - 0^(0 ,

with 0 = (0 < Ç, < • • • < Çjv = 1 ; we set (cf. Figure 2.1)

(2.8)

and

(2.9)

EN = {(Ci,Cj),0<i,j<N},

CN = ZNny = {(0,r,j),l<j<N-l}.

Figure 2.1. The triangulation ^ and the set H;

Finally, with each value of h and N, we associate the discretization param-

eter S = (h, N~l). The pair u , where u is the solution of problem (1.1),

will be approximated in a subspace of Xh x XN consisting of all pairs which

satisfy a matching condition on the interface y. More precisely, we are going to

consider two kinds of matching conditions, with which we associate two kinds
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of discrete spaces, both denoted by Vs :
p

( 1 ) pointwise matching condition: the space Vs   is defined by

(2.10) V¡ = {v¡ = (vh, vN) eXhxXN;V*eth, uA(a) = vN(*)} ;

(2) integral matching condition: the space v! is defined by

(2.11)

Vi =   [V*S = K . Vn) eXhxXN' *ah ex,,

j(vh-vN)(0,y)qh(y)dy = 0y

Here, we compare the two kinds of spaces; the integral matching condition will

turn out to be better.

Remark 2.1. We immediately note that both methods are nonconforming since

a function vs, associated with a pair v*s   of Vg, is generally discontinuous

through y and consequently does not belong to Hq (fi). Indeed, for N > k,

the function vs associated with the pair v*s = (vh ,vN) in Xh x XN belongs to

HQ (fi) if and only if its restriction to y is a polynomial of Pk(y) n HQ (y) ; in

the particular case k = 1, this implies that both vh and vN vanish on y .

Remark 2.2. From a numerical point of view, to enforce the pointwise matching

condition, one has to interpolate polynomials of XN at every point of i,h and

hence must store the values Ln(a), 0 < n < N, a G £,h . On the other hand,
to enforce the integral matching condition, one needs to store the integrals

fyL„(y)qa{0, y)dy , 0 < n < N, a G ¿¡h . Consequently, the costs of the two

methods are of the same order.

However, when k is equal to 1, for a given value of N, it is possible to

choose the triangulation ¡Th such that the sets £h and ÇN coincide. Then, since

the polynomials of XN are characterized by their values at the points of EN ,

enforcing the pointwise matching condition would be less expensive. But this

would require very strong restrictions on the triangulation ^ ; in particular,

the parameters h and N would be linked by a relation of the type h > cN~ .

Moreover, the triangulation could not be uniformly regular since it is well known

(see [30, Theorem 6.21.3]) that the £7-, I <j < N-\, satisfy £. = sin2 0. with

(2/ - \)n/4N < 6j < (j + \)n/2(N + 1) ; hence, the points of ÇN are not at all

equally distributed (they cluster near +1 ). That is why we do not recommend

such a choice.

2.2. The discrete problems. We are now in a position to define the discrete

problems. We recall (see [13, §2.7 or 18, Chapter 25]) that there exist positive

weights p., 0 < j < N, such that the Gauss-Lobatto quadrature formula

(2.12) /   <&(í)rfí~5>(í,L9,
Jo j=0

is exact for all polynomials of degree < 27V - 1.
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With each point a = (£,-, £.) in EN , we associate the weight pa = p¡pj. We

now introduce the following discrete bilinear form on L2(fi~) x W°{Û+) :

(2.13) (u,v*)s= y  / u~(x)v~(x)dx+J2u+(a)v+{a.)pa,

Kefh JK «€=„

which coincides with the usual scalar product on L2(fi~) x QN_l{Cl+). Finally,

we define on //'(fi-) x W (fi+) the bilinear form

(2.14) as(u*,v*) = (Vu*,Vv*)s   V(M*, v*) G [//'(fi") x W\ù+)]2.

Then, for any pair /* given in L (Q~)xW (fi+), for each kind of matching

condition, the discrete problem is the following: Find us , with u*s in V& , such

that

(2.15) as{ue,v¡) = {f\v¡)s   V^l^.

Remark 2.3. Of course, in definition (2.13), one could, by using a quadrature

formula, replace each integral ¡K u~(x)v~(x)dx by its approximation.   The

resulting algorithm will be thoroughly analyzed in [14].

We recall [9, Lemma 3.2] the property

N ,1

(2.16) yLN(Cj)2Pj = (2 + N-1)      LN(02dC

Since the quadrature formula (2.12) is exact for all polynomials of degree <

2N - 1, the discrete scalar product (•, -)s is uniformly equivalent to (•, •) on

L (Q~)xQN(Ù+). Consequently, the form as satisfies the following properties

of continuity:

(2.17) !«,(«*, «*)|<c||«*||||t;*||   V(M*,v*)G[//1(fi")xßyv(fi+)]2,

and of ellipticity:

(2.18) as{u ,u)>{Vu , Vu)   Vu* G //'(fi") x QN{Ü+).

Now, since both dCl" Ci9fi and <9fi+ n9fi have a positive measure, it follows

from the Poincaré-Friedrichs inequality that the seminorm v* —► (Vv*, Vv*) '

is a norm equivalent to || • || on the space

{v* G//'(fi")x//'(fi+); v = 0on9fi},

which yields in our particular case

(2.19) as(u,u*)>c\\u\\2   VW*G//'(fi")xßJV(fi+).

Thus we have proved the following result.

Proposition 2.4. For pointwise as well as integral matching conditions, problem

(2.15) has a unique solution u¿ with u*s in V&.

The purpose of what follows is to give an estimate for the error between the

solutions u and us of problems (1.1) and (2.15), respectively. We begin with

a classical bound (see [11, Theorem 4.2.2]).
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Proposition 2.5. For pointwise as well as integral matching conditions, the solu-

tions u and us of problems (1.1) and (2.15) satisfy

* * ll        - .       /.     t „       * *ll r       /       * * \

II"  -ua\\<c\   inf {||w  -vs\\+ sup[a(vs,wä)-aa(vs,ws)]/\\ws\\}
[v*€Vs «Îerç

n 9m + sup [(/*, w*) - {f , w¡)s]/\\w¡\\

+        sup í(du/dn)(0,y)(wN-wh)(0,y)dy/\\w¡\\
v¡=(wh,wN)&VsJy

Proof. Let Vg be any element in V,. Using (2.19), we have

c\\us-v*s\\2<a3(us-v¡,u*-v¡)

= - a{v's ,Ug-v'g) + a(v¡ , us - v¡)

- as(v*s . u's - v¡) + (/*. u*s - vsîô ■

Next, it follows from (1.1) that, for any w* in //'(fi") x //'(fi+) such that

w vanishes on dfi,

(f*,w*)=  / f(x)w(x)dx--       (Au)(x)w~ (x) dx -      (Au)(x)w+(x) dx
Ja Jn Jq+

= a{u*,w*)+ f(du/dn)(0,y)(w+ -w~)(0,y)dy.
Jy

Setting w* = u*g - Vg — (wh , wN) and combining this result with the previous

inequality, we obtain

c\\u*g - wjll2 < a(u* - v*, Ug - v*g) + as{v*g , u] - v¡) - a0(v¡ , u¡ - v¡)

- (f* , Ug - v¡) + {f* , Ug - V*g)g

+ j(du/dn)(0,y)(wN - wh)(0, y)dy,

and (2.20) follows.   D

We are now interested in deriving a bound for

( 1 ) the consistency error term

sup        f(du/dn)(0, y)(wN -wh)(0,y)dy/\\w*s||,

(2) the approximation error term

inf ||w  - v. ||,

since estimating the other terms in (2.20) is standard in spectral methods.

3. Analysis of the consistency error

The aim of this section is to study the term

J(du/dn)(0, y){wN - wh)(0 ,y)dy,
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for any pair w*ö = (wh ,wN) in V& , where « is a given function on fi which

we shall assume to be sufficiently smooth. The analysis involves only one-

dimensional approximation operators.

3.1. Pointwise matching. We recall that there exists an interpolation operator

¿h from {v G ^°(7) ; v(0) = v(l) - 0} into xh such that, for any function

v continuous on y and vanishing at 0 and 1, ¿hv is the only element of xh
which satisfies

(3.1) (,;«)(«) = «(*)   Vae{A.

Moreover, there exists a constant c such that, for any real number e, 0 < e <

1/2 , if the function v belongs to H ' +¿{y), the following interpolation error

estimate holds [4]:

(3-2) \\v -¿hv\\07 < (c/V¿)hl,2+E\\v\\l/2+£y.

We are now in a position to prove the following result.

I 1
Proposition 3.1. For any function u in //0(fi)n// (fi), the following estimate

* P
holds for any ws — (wh, wN) in V& :

(3.3)     f(du/dn)(0, y)(wN-wh)(0,y)dy < ch[/2sJ\log(hN2)\ \\u~W, Q-\\w¡\\.
Jy

Proof. Since u belongs to H (fi), the trace du/dn belongs to Hl/2(y), hence

we have

t|0u/d/i||I/2>7 < c||»||2>a- -

Next, we estimate

f(du/dn)(0,y)(wN - wh)(0, y)dy < \\du/dn\\0 J\wh - w
Jy N"0,y

^c\m\2,a-\\wh-wN\\o,y

rP
But, in view of the definition (2.10) of V& , wh is equal to ¿hwN on y, so that
by (3.2),

[(du/dn)(0, y)(wN - wh)(0, y)dy < (c /VE)hl/2+e\\u\
Jy

Applying the inverse inequality [9] gives

f(du/dn)(0,y)(wN-wh)(0,y)dy<(c'/^)N2ehi/2+e
Jy

l"ll2,n-lFArlli/2,,'

Choosing £ = 1/1 log(/i7V )|, we obtain the desired result.   □

Remark 3.2. Of course, the estimate (3.3) is not what we want, since conver-

gence is obtained only if the discretization parameters are linked by the follow-

ing condition:

(3.4) lim hl/2\/\\og(hN2)\   =0



30 CHRISTINE BERNARDI, NAÏMA DEBIT, AND YVON MADAY

(in fact, in (3.3) and in this condition, h can be replaced by h which is the

greatest of the lengths of the edges of triangles K in ^ contained in y ).

Remark 3.3. The estimate (3.3) is independent of k ; indeed, we do not know

how to improve it for large values of k.

3.2. Integral matching. This case turns out to be simpler. We denote by nh

the orthogonal projection operator from L (y) onto xh . We have for any v

in //0'(7),

\v-Jihv\\0tr<\\v-t-hv\\0i?!

so that, for any v in //„' (y) n Hl{y), I <l <k + l,

(3-5) ll»-**f|lo,, ̂̂ Vll/,,-

By interpolation, this inequality also holds for any v in HQ(y), 1/2 < / < 1 .

Finally, recalling that the interpolation space with index 1/2 between //0'(y)

and L (y) is //0q (y) (see [20, Chapter 1, Theorem 11.7]) and denoting by

|| • ||,,2-     the norm of H^ (y), we also obtain for any v in //Q'¿ (y),

(3.6) \\v-7ihv\\0Y<chl/2\\v\\i/2.y.

Now, we prove the following.

1 1
Proposition 3.4. For any function u in //0(fi)n// (fi) such that the function

u~ belongs to H (fi"), where I is a real number, 2 < / < k + 5/2, the following

estimate holds for any w*s = (wh, wN) in V& :

(3.7) J(du/dn)(0,y)(wN - wh)(0, y)dy < cA'^HiTII/.n-lKll •

Proof. Let w*s - (wh , wN) be any element in V& ; by the definition (2.11) of

Vg , wh coincides with nhwN on y. We compute

f(du/dn)(0, y)(wN - wh)(0,y) dy
Jy

= f(du/dn)(0, y)(wN - nhwN)(0, y)dy
Jy

= f[(du/dn) - nh(du/dn)](0, y){wN - TihwN)(0 ,y)dy,
Jy

so that

/
(du/dn)(0,y)(wN-wh)(0,y)dy

< \\(du/dn) - ith{du/dn)\\0JwN - nhwN\\0r/.

rl/2/

We note that du/dn belongs to //0q {y)C\H    ' (y) and that, since wN van-

ishes on dfi+ \ y , wN,   belongs to //0¿ (y). Applying (3.5) or (3.6) to bound
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the first term, and (3.6) to bound the second, we obtain

í(du/dn)(0,y)(wN-wh)(0,y)dy<ch'-l\\du/dn\\¡       r\\wN\\l/2.
Jy

(with \\du/dn\\i/2 replaced by ||<9m/c/«||, ,2- in the case 1 = 2), and the

result follows.   D

Remark 3.5. Clearly, the estimate (3.7) is much better than (3.3), since it is

independent of N. In fact, the term f(du/dn)(0, y)(wN - wh)(0, y) dy goes

to 0 whenever the discretization parameter h decreases to 0.

4. Analysis of the approximation error

We begin by recalling some properties of the approximation by finite element
functions and by polynomials in the two-dimensional case.

First, since for each K in ^ the set EK is />fc(A^)-unisolvent, there exists

an interpolation operator J¿ from {»€? (fi-) ; v = 0 on <9fi- \y} into Xh

such that, for any function v continuous on fi- and vanishing on dQ~ \ y,

J^v is the only element of Xh which satisfies

(4.1) p^)(a) = ti(a)   VaGSAn(fi"uy).

Moreover, if the function v belongs to H (fi- ) for a real number /, 2 < / <

k + 1, the following interpolation error estimate holds [11, Theorem 3.1.5]:

(4.2) \\v-^hvWm,a- ^ch'~mWvh,a->       w = 0 or 1.

Next, we state the following result which can be derived in the same way as
in [22, Theorem 3.2].

Lemma 4.1. Let p be a real number > 1 such that p - 1/2 is not an integer.

There exists a projection operator TlpN from the space {v G Hp(íl+) ; v = 0 on

dfi+ \ y} onto {vN G QN{Û+); vN = 0 on dfi+ \ y} such that, if a function

v vanishing on 9fi+ \ y belongs to Ha{Q+) for a real number a > p, the
following error estimate holds:

(4.3) ||« - n>||„>fl* < cN>-\\v\\v.a> ,       0 < p < p.

We are now going to approximate a function u of //Q (fi), which is suffi-

ciently smooth, by a function vs , with v*s in V& . We set

(4.4) v*g = (Shu- + qh,IlpNu+),

where qh will be chosen in Xh so that vs satisfies the matching condition

under consideration.

4.1. Pointwise matching.     We immediately prove the following result.

Proposition 4.2. For any function u in //0'(fi) such that the pair u belongs

to H (fi-) x Ha(Çl+), where I and a are real numbers, 2 < I < k + 1 and
* P

a > 2, there exists a pair vs in Vs   such that

(4.5) ||«* - v*g\\ < c{h'-l\\u-\\, Q- + {h"-' + Nl-a)\\u\tQ+}.
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Proof. For any function z defined on fi+ , denote by z the function defined

on fi" by

z{x,y) = z{-x,y)   V(x,y)Gfi-.

Next, take 2 < p < inf{k + 1, a}, p - 1/2 ^ N, and choose v*g as in (4.4)

with qh equal to -J^(I7+ -UpNu+). Clearly, we have at any point a of Çh ,

(^tO(a) + 9A(a) = M-(a) -ïï+(a) + (IL>+)(a) = (n>+)(a),

so that Vg belongs to Vs . Moreover, we write

II"* -«¿II < II"" ~^hu~Wi,a- + \\ahh,Q- + Wu+ -nNu+W\,n-

< \\u~ -Shu-\\in- + ||(id-^)(ïï+ -n^+)||ia-

, in +    i-ip  +11
+ 2||m   -\Ynu ||in+.

Finally, applying (4.2) and Lemma 4.1, we deduce

II      * *ll    ^       r//_'ll      _ll ,     i/'_1l|—+ riß       +11 ,      »rl—C ||     +11 1

II«  -Vg\\<c{h     \\u  \\l<a-+h     \\u   -WNu \\Pta-+N     \\u \\aü+}

^     r / /— 1 ii    — m ,    ; P— ' \tP~a w    +11 ,    »7-1 —"■ n    +11 l
<c{h    ||k|I/,o-+a     N"    \\u \\ata+ + N     \\u\\ari+}.

Applying the convexity inequality aß < ap ¡p + ßq /q (l/p+l/q=l,a>0,

ß > 0) gives the proposition,   d

4.2. Integral matching. As far as the approximation error is concerned, this

case is less simple. We are led to make an additional assumption on the family of

triangulations: more precisely, we suppose that there exists a positive constant

a such that, for any h and for any triangles K and K1 in ¿Th such that the

lengths of K n y and of K' n y are positive, the following inequality holds

(4.6) hK < ahK,.

That means that the family of triangulations is uniformly regular over y. The

following result is proven in [7, Lemma 5.1].

Lemma 4.3. If assumption (4.6) is satisfied, there exists a lifting operator Rh

from xh into Xh such that the following estimate holds for any vh in xh :

(4-7) IpVJi.q- ^c\\vhl/r,y
2

We recall that nh stands for the orthogonal projection operator from L (y)
1 /2

onto xh . Our goal is to prove a stability result for this operator in the Z/0¿ -

norm.

Lemma 4.4. If assumption (4.6) is satisfied, the following stability property holds

for any function v in hJ^ (y) :

(4-8) \\nhv\\ii2-,y^c\\vW\i2',y

nr»H     II tt    ill,Proof. First, let v be any function in //¿(y). To bound Hft^H,    , we write

WuVW,       <\\ÍlV\\.      + \\7l.V - i.V   ,       .I    n    111,/ — 11  A    111,)'       H    n h    111,7
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Since the family of the {K n y, K G <^~} is uniformly regular, denoting by h

the maximum of the lengths of K n y, K G !Th, we can apply the standard

inverse inequality [11, Theorem 3.2.6], which gives

|pVl|1>y<   hV\\l,y + C'h~l\\nhV-ihV\\o,y

<   llalli,7 + WV - WWl.y + Ch~l {WV - Wh.y + WV - nhVWo,y)  ■

Using the estimate for the interpolation error [11, Theorem 3.15] together with

(3.5), we obtain

(4-9) IIVlll.y^Hl,,-

Finally, by the definition of the space H^iy), we interpolate this result with

the estimate

\\nhv\\0Y<\\v\\0y

with index 1/2 (cf. [20, Chapter 1, Theorem 5.1]) and we obtain the desired

result.   G

Remark 4.5. It is known that the stability result (4.8) holds if a less restrictive

assumption than (4.6) is satisfied. However, the necessary condition for (4.7)

to be true is not clear.

Proposition 4.6. If assumption (4.6) is satisfied, for any function u in Z/0(fi)

such that the pair u* belongs to H (fi") x //CT(fi+), where I and a are real

numbers, 2 < I < k + 1 and a > 2, there exists a pair v*ô in Vs  such that

(4.10) u -v, <c R' i,or
+ N

\-a

d,n+j

Proof. We choose vs as in (4.4) with p equal to 1 and qh equal to

Rhnh(n\u+ -Jhu~).

Then, we have

J?hu~ +qh- nhYllNu+ = 0,

so that Vg belongs to vj . Moreover, we estimate

< u   - J^u'

+ n1     +

+
i,fi"

i,n+

Rhnh{nNu+-^hu )
1,Q"

u   -<yhu +\\Rh7i.(u   -J^w   )
"       111 ,Q~       II    "   " V "      /111,fi"

+
n /   +       rr1     +MI I   +       n1     +11
R.nh[u   -nNu +\\u   -nNu

h h\ N    /Hi,n- N    lli,n+

Lemmas 4.3 and 4.4 imply

Shu

+
+       n1u   - \ANu

1,0"

+1

+ c u   - J^u
1/2*, 7

+
n1    +nNu

1/2*, y

\,o+
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Using the trace theorem, we obtain simply

<cu v., -S„u
1,0"

+
n1     +nNu

ll,0+,

Finally, using the estimates (4.2) and (4.3) gives the result,   a

Remark 4.7. Here also, the error is better for the integral matching condition

than for the pointwise one. Indeed, in (4.10), the two discretization parameters

enter in a completely independent way.

5. Final estimates and conclusion

First, we recall an estimate which follows at once from a standard result in

spectral methods [10, Lemma 3.2; 24, (3.22)], in a slightly improved form due
to [6, Appendix B].

1 ")      s- 1

Lemma 5.1. For any function f in L (fi) such that the function {y - y )/

belongs to HP(Q+), where p is a real number > 1, the following estimate holds

for any w*s = (wh , wN) in V& :

(5.1)        (f , w¡) - (f , w*s)g < cNl-p\\(y-y2)f+\\p^\\wN\\KQ+.

Our main results are stated in the two following theorems.

Theorem 5.2. Assume that the solution u of problem (1.1) is such that the pair

u   belongs to H (fi") x //<T(fi+), where a is a real number > 2.  Assume
1 1       .~+-

moreover that the function f of L (fi) is such that the function (y - y )y

belongs to Hp{Çl+), where p is a real number > 1.  Then, in the case of the

pointwise matching condition, the solutions u and u& of problems (1.1) and

(2.15) satisfy

(5.2)

|ll* - ug\\ < c |/z'/2\/|log(AiV2)|||M-||2i£2- + (h°
-l+Nl~a)

¡Irj.iT

+ Nl  p\\(y-y :)/%,o+}

Theorem 5.3. Assume that the solution u of problem (I.I) is such that the pair u

belongs to H (fi") x Ha(Q+), where I and a are real numbers, 2 < I < k + 1

and a > 2. Assume moreover that assumption (4.6) is satisfied and that the

function f of L (fi) is such that the function {y-y2)^ belongs to HP(Q+),

where p is a real number > 1. Then, in the case of the integral matching

condition, the solutions u and us of problems (1.1) and (2.15) satisfy

(5.3) ||m*-«J||<c{A'
i-i,

i/,o" + N'
-cr M    +|

\\u (7,O
+ +AT1~P\\\(y-y)f ll„,n+}-

Proof. We set S = (h, (N - 1)"'). Of course, we apply Proposition 2.5 and,

in (2.20), we choose v*ô = (vh, vN) equal to the pair defined in Propositions

4.2 and 4.6, respectively, but with ô replaced by ô. Since vN belongs to

QN_,(fi+) and the quadrature formula (2.12) is exact for all polynomials of

degree < 2N - 1, this implies that, for any w¿ in V& ,

a(v*g , w¡) = aâ(v*g , w¡).
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Then the estimates (5.2) and (5.3) follow from (2.20), Propositions 3.1 and 3.4,
respectively, Propositions 4.2 and 4.6, respectively, and Lemma 5.1.   D

By a classical duality method, it is possible to derive an improved estimate

for ||w - Ug\\0 Q in the case of the integral matching condition.

Proposition 5.4. Under the assumptions of Theorem 5.3, in the case of the integral

matching condition, the solutions u and u& of problems (1.1) and (2.15) satisfy

(5 4)   II" - "Jo,o < c{h'-\h + N-l)\\u-\\ia- + Nx~a{h + N-X)\\u\a,

+Nl-p\\(y-y2)f+\\pil+}.

Proof. We have

llM-"Joo=   SUP       (u-us)(x)8{x)dx/\\g\\oa-
geL2(Si)->o

1 1
Let g be any function in L (fi). The unique solution w in H0 (fi) of the

problem

(5.5) -Aw = g   infi,        w = 0   ondfi,

satisfies

(5-6) \M2,a ^cllsllo,o-

Setting u*g = (uh , uN), we compute

/ (u - us)(x)g(x) dx = a(u -u*g, w*)+ / {dw/dn)(0, y)(uN - uh)(0, y)dy.
Jil Jy

Hence, for any w*6 in Vg , with S = (h, (N - l)- ), we have

(u- us){x)g(x) dx = a(u -u*g,w* - w¡) + (f , w¡) - (/*, w*â)s
Ja

+ í(dw/dn)(0,y)(uN-uh)(0,y)dy.
Jy

Choosing Wg as defined in Proposition 4.6, and using Lemma 5.1, we obtain

/ {u-Ug)(x)g(x)dx
Ja

(5.7) < c{(h + N-l)\\u  -Ug\\ + Nl-p\\(y - y2)/%,0+}IMI2,n

+
'7
f(dw/dn)(0,y)(uN-uh)(0,y)dy.

Jy
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It remains to estimate the last term in (5.7).  We note that uh,   is equal to

nhuN, so that

f(dw/dn)(0,y)(uN-uh)(0,y)dy
J y

= í[(dw/dn) - nh(dw/dn)](0, y)(uN - nhuN)(0, y)dy
Jy

= f[(dw/dn)-nh(dw/dn)](0,y)[(u- nhu)-(id-nh)(u-uN)](0, y)dy
Jy

< \\(dw/dn) - nh(dw/dn)\\0y(\\u - nhu\\Qy + ||(id-^)(« - uN)\\0<y).

Using (3.5) and (3.6) yields

(dw/dn)(0,y)(uN-uh)(0,y)dy

<cA,/2||ô«;/o«||1/2-;5,(/i'-1/2||M-||/)n--r-/i1/2||M+-Mjv||1)ii+),

which, together with (5.6) and (5.7), gives (5.4).   D

The detailed analysis we have performed allows us to compare the two algo-

rithms, corresponding to different matching conditions. Indeed, whatever the

regularity of the exact solution is, we obtain better convergence results in the

case of the integral matching condition. Since we have already noted that the

computational cost of the two methods is of the same order, we believe that this

last algorithm has to be preferred. Numerical tests [14, 19] which are currently

being implemented are expected to confirm the theoretical results.

As already stated, in this paper we are only concerned with a model problem
on a model domain. However, in this very simple example, it turns out that the

order of accuracy in the finite element domain is simultaneously restricted by the

degree of polynomials and by the regularity of the solution, while in the spectral

domain it is only limited by the regularity of the solution. That is why we

believe that, in more general elliptic problems (for instance the Stokes or Navier-

Stokes equations), the finite element domain must be chosen in such a way that

it contains a neighborhood of both the singularities of the solution and the

singularities of the boundary of the domain (for instance, corners of polygons,

which induce singularities of the solution even if the right-hand member is very

smooth). Then, local refinements of the mesh can be applied to improve the

convergence, in a much simpler way than for the p-version of finite elements.

These techniques are presently being developed in [14]. It is important to note

here that the balance between the finite element subdomain and the spectral

element subdomain is much more easy to handle than a local refinement in

the so-called h - p version of finite elements. The matching between the two

domains is indeed less stringent in the present method than in the h -p version,

where the intersection of two different domains is either a whole edge, or a

vertex, or empty.

We conclude this paper by giving an example of a domain with a less trivial

boundary, and by explaining how to choose the parameters in this case.

/
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Example. Let fi be a polygonal domain with vertices a(, 1 < / < K. For

1 < i < K, we denote by toj the measure of the interior angle at a. and by

dj{A) the distance of any closed set A in fi to a(. The domain fi+ is chosen

as a large rectangle contained in fi, such that fi does not contain any vertex

a,, 1 < / < K ; then fi" is defined as fi \ fi+ (cf. Figure 5.1).

Figure 5.1. An example of a domain with a less triv-
ial boundary.

In the domain fi, we solve the problem (1.1). It is known (see [17, Theorem

5.1.3.5] or [27, Theorem 1]) that, if / belongs to //m(fi) for a real number

m > 0, the solution u satisfies:

(1) The function u~ belongs to the space

W2(ÇÎ~) = {v : fi" - K; /   (dJ+kv/dxJdyk)2p(x)dx < +oo, 0 < j+k < 2},
p Ja~

where p(x) is a positive bounded weight equivalent to dt(x) a' in a neighbor-

hood of a(, 1 < i < K, with

J ai = 0   if co¡ < n,

\ ax > 1 - 7t/a>i   if io¡ > n ;

moreover, one has

f    E     /   (dJ+kv/dxJdyk)2p(x)dx)      <c\\f\\oa.

(2) The function u+ belongs to the space //w+2(fi+), and one has

ll"IL+2,o+<^(1|n¡/,(Ü+r/a''-'"-')||/IU,í2.

Next, we consider a regular family of triangulations (^h)h of fi" such that,

for any u>i > n , 1 < i < K, the diameter of each triangle containing the vertex
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a( is bounded by ch l{ ~a,) and the diameter of each triangle K contained in a

fixed neighborhood of a; is bounded by ch d¡(K) ; a way of constructing such a

triangulation was first described in [27]. The finite element functions are chosen

to be piecewise linear continuous functions (i.e., k is equal to 1). Using [27,

Theorem 2] together with Theorem 5.3, we see that the discrete solution us of
problem (2.15) satisfies the error estimate

||«* - K;|| < c(f) \h + AT-' (( Mkdt°'-m"') + AT*} .

Of course, in a practical computation, the parameters will be chosen so as to

make the three error terms h, N~"~l(mfl<i<Kd¡'~"~ ), and N~m of the

same order. For instance, assume that m is equal to 3, that the di are equal to

2-10"' , and that the constants are bounded by 10 ; in order to obtain a precision

of 10-2, we choose h equal to 10-3 and N equal to 23 ~ (103/4) • (57/8),

which requires ff(106) operations in the finite element domain and ¿f(1.2xl04)

in the spectral domain; in order to obtain a precision of 10-3, we choose

h equal to 10-4 and N equal to 41-10- (57/8), which requires ¿f(108)

operations in the finite element domain and ¿f (7 x 104) in the spectral domain.
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