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APPROXIMATION BY MEDIANTS

WIEB BOSMA

Abstract. The distribution is determined of some sequences that measure how

well a number is approximated by its mediants (or intermediate continued frac-

tion convergents). The connection with a theorem of Fatou, as well as a new

proof of this, is given.

0. Introduction

Let x denote an irrational number. From the expansion of x into a regular
continued fraction

= [#o ' B\ ' ß2 ' • • •](0.1) x = B0 +

»■ + *+-

one gets the convergents PJQn of x by truncation,

(0.2) ?f = [B0;Bx,B2,...,Bn],        n>0.

These convergents satisfy the relation

P
(0.3)

BnPn-l+Pn-2

Qn     BnQn_x + Qn_2>
n>2,

and provide very good approximations to x ; for instance, defining {6 (x)}°°=0
by

(0.4) x -
Qn Q2

it is a classical result that &n(x) < 1 always holds. In [1] it was shown that for

almost all x the sequence {©„(x)}^0 has a limiting distribution \^2F(z),

where

0, forz<0,

z, for 0 < z < \ ,

1 - z + log(2z), for ¿ < z < 1,

, log 2, for 1 < z.

(0.5) F(z) = {
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422 WIEB BOSMA

Here we will consider a similar question for the mediants (or secondary conver-

gents, or intermediate convergents) of x ; these are defined by

t(B) dd ,p
(0.6) L"        ü^n_x+rn_2

<>      BQn_x+Qn_2

for integers B, 0 < B < Bn   (n > 2). In particular, we will derive in §1 for

almost all x the limiting distribution of the sequences {©|!S)(x)}^0 for every
( R)

B, where 0„ '(x) is given by

(0.7)
L{B

x-    "
M[B)

®[B)(x)

(<>)2'

j  D\ I ft) (ft)

Note that some care is needed because Ln  /Mn     and hence ©^     does not
( R)

exist for every n and B . The values of Gn    axe not bounded by 1 but satisfy

(0.8) ñ^l<e{nB)<B+i;

thus these values are uniformly bounded for fixed x if and only if the partial
í R)

quotients Bn are bounded. In § 1 we study the distribution of ©^ ' for fixed
IR)

B. In order to be able to study the distribution of the values of ©^ for

all B simultaneously (in §2), we will consider sets of the form {0|@ < C}

(for any positive real constant C), with 0 = Q\Qx - P\, where P/Q ranges

over the rationals that are either convergents or mediants of x. Finally, in §3

and §4 we collect some (previously known) results, especially concerning the

approximation by nearest mediants, that follow from the method employed. In

particular, we show how to retrieve Fatou's theorem, stating that every rational

number P/Q for which Q\Qx - P\ < 1 is either a convergent or a nearest
mediant of x.

In the following we will always assume rationals P/Q (and L/M) to be in

lowest terms, i.e., that gcd(P, Q) = 1 and that Q > 0. Whenever a result is

stated for almost all x, this is meant to be in the Lebesgue sense.

1. Approximation by mediants

The main tool we will use is a variation on a theme that first appeared in [1]

and was used in several papers thereafter. The theme consists of considering

the sequence {(Tn(x), ^„(*))}^10 for an irrational number x , where Tn(x) is

given by

(1-1) Tn = Tn(x) = [0;Bn+x,Bn+2,...]

and Vn(x) by

(1-2) Vn = Vn(x) = [0;Bn,B„_l,...,Bi),

with Bj asin(O.l). For every x and every n, the pair (Tn(x), Vn(x))e[0, l]x

[0, 1], and for almost all x the sequence {(Tn(x), V„(x))}™=0 is distributed

over the unit square with density function

(1-3) T-1^-î-
log2(i + 7-T/)2



APPROXIMATION BY MEDIANTS 423

Basically, this is a consequence of the fact that

( 1.4) (.-# ,3§,p, ET) forms an ergodic system ;

here J? is the unit square and ¡T acts on ^# by

f(x,y)= l-x
i

iU+yJ
¿$ is the collection of Borel subsets of ^# and p is the measure on ./# with

density function  ¡¿—^  (see [10]).   Using ergodicity and the first of the

basic relations

T V
(15) 9   - _<l_    anH    ©       = _i_
{    ] "    i + T„rH *->    l + TnV„>

one gets immediately that

lim - #{;' < n : 0,(x) < z}
«—»oo n J

where %?_ is the subspace of ^f consisting of points under the hyperbola

T

l + TV _Z'

The variation we need here is, that instead of using the function 0n in every

point of the unit square, we consider Bn - 1   functions, namely Qn    with

0 < B < Bn . More precisely, let B > 0; then the function 0^' as in (0.7)

is defined in (Tn_x, V   x) e[0, 1] x [0, 1] precisely when the partial quotient
i ( R)

Bn exceeds B , that is, when Tn , < -^ . So 0^ is defined on the rectangle

(1.6) ^m = \(T,V): 0<T<-^—-,0<V <l

( R\
Instead of (0.6) and (0.7) one would like to have formulas expressing 0^ in
terms of B, T, and V only. This can be done as follows. Combining (0.4),

(0.6), and (0.7), one easily gets

(1.7) e\B) = -B2en_x - b \vn_{Qn_x - |MJ + 0„_2.

Then use (1.5) to express 0n_,  and ©n_2  in terms of Tn_x   and  Vn_x  and

one arrives at

(1.8) ^)=(^-BTn_x)(B + Vn_x)

1 + ^-.^-,        '

This provides the preliminaries for the proof of the following theorem.

(1.9)    Theorem. Let B > 0 be an integer.

(i) For every x and for every n > 1 such that 0 < B < Bn, there holds

B   <e[B\x)<B+i.
B+ 1
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(ii) For almost all x, the sequence {@n  (x)}n=x is distributed according to

the distribution function

1

log^G    (Z)'

where

Hi)
G\r>(z) = o, for z <

B

B+l '

c7   '(z) = -lH-5—z-log| —^r-
5

^)(z)^G<ß'(z) = ^-fyz + log

GjiV) = l-irl-Tz + iog

B

B(B + 2)

f       B 5+1for ——- < z <
B+ 1 5 + 2'

C(z) = log

5+1

B + 2

B+ 1 '

(5+1)

5 + 2

,(5+1)

-    5+ 1
/or ir-— <z<B,

B + 2

2 z ) JorB<z<B+\,

for B +1 < z.

Proo/. From (1.8) we see that Q(B) < z if and only if (Tn_x, Vn_x) is in ^(B)

and satisfies

or, equivalently,

(1-5^_1)(5+^,)

l + ^-.^-i
< z

B%_l + z-B
V      <
"-'    i-(5 + z)r

n-l

So, for given x and fixed 5 we have to find all pairs (Tn_{(x),  Vn_l(x)) in

3ly ' under the hyperbola

V =
B-T + z-B

l-(B + z)T

AB)Denote by %?K     the set of points (T, V) under the hyperbola

(1.10) AB)(z): V<BT + Z-B
l-(B + z)T'

Since â?{B)n^{B)(z) is empty for z < -^ and &KB) C\ß?(B)(z) = m{B) for

z > 5 + 1, we are done with part (i). For the second part we use the ergodicity

given in (1.4), which implies that for almost all x :

Jim \ #{j < n : e[B](x) < z} = —^u(<%(B)nJr(B)(z)).
n—>oo n p(3lK

Therefore, we are left with the computation of p(¿%( ' C\^(B\z)) as a function

of z, which equals, by (1.3),

1     if 1
1-11

log 2 'J.^'n^Hi o(i + Tvy
dVdT.
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For ^2-r < z < |±± one gets

^B)n^{B\z) = \(T,V): B^<T<J-t,0<V<b2t + 2 ~B
B-

and we find

\og2JjjfiBiog2y/^(«)n^t«)(r) (i + Tvy

5+1

dVdT

\-(B + z)T \ '

1
r =

>-(B+z)T

\og2 Jb-,  [l + TV\
B2

1 fBTÏ   I z

dT
v=o

log 2Co
B

BTf 1 -BT
dT

1

log2 [5(1-57)
+ \og(l-BT)

, _!_
S+l

• ^+'z_logC^lz,
log2 V   5 5

For |±i < z < 5 ,

^wn^(ß)(z)

= {(r,n:^<r<_V1_"z,o<^<g2r + z"g
B1 B¿ + B + z \-(B + z)T

(T,V):   5+1_   Z  <T<^
B' + B + z 5+ 1

and this gives

log 2¡]:>

1

'(«ar""(z) (1 + TF)

1     /       z

¿F¿r

log2 \5(5+l)

1

,      5 5+1+ log^-'-
B2 + B + z

2

+
log 2

1     /

,     5 + 2    ,       (5 + 1log -E—- - loë TT-
5+ 1

+ log

BA + B + z

5(5+ 2) A

(5+1)2 Jlog2 \^5(5+l)

by a computation similar to the above.
Finally, for 5 < z < 5 + 1,

^{B)nßr{B)(z)=l(T,V):0<T<  B2+\~Z ,0<V<1
B' + B + z \-(B + z)T

UUT,V):   B,+ l_   Z  < TK-^^,0^ V < 1

5Z + B + z 5+1
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and the double integral (1.11) equals

1

log 2
1 -

5+ 1
+ log

(5+l)z

B2 + B + z
+

log 2
,     5 + 2 (B+iylog -5—¡- - log -\-—

.      B+l B2 + B + z

log 2

5 + 2
+ log—     —z

5+1 (5 + r

-(B)
To find the distribution function G    , we have to normalize, i.e., we have to

divide in each of the cases by

M&(B), 1    ,     5 + 2

ioi210g5TT

This completes the proof of ( 1.9).   D

Remark. The special case 5 = 1 of Theorem (1.9) yields the result that was

found as Lemma 2.24 in [7],

2. Approximation by convergents and mediants

In this section we look at the approximation of an irrational number x by

all of its mediants and convergents simultaneously.

(2.1)    Lemma. Let G    (z) be as in (1.9). Then for the function H(z) defined

by

H(z) = J2G^(z
B=\

we have

H{z)

0, forz<-,

-l+2z-log(2z),    /or-<z<l,

l+log5, for 1 < z.

Proof. Let GiB\z) be as in (1.9) for / = 0, ... , 4. Suppose first that \<z

< 1 ;  let the positive integer k be determined by ^-¡- < z < |^ . Then

*-i

YJG(B\z)=/ZG(2B)(z) + G^(z)+  j:  ëB\z)
B=k+\

B(B + 2)\

B=\ B=\

k-\

B=\

1

5(5+1
-z + log

(5+i;

.     k+l       .    k +1
+   (  -1   +—7-Z-log—:-Z  |   +0

=  1
1\       ,    k+l     ,     k+l       .k+l
-jz + loë^r-l + nrz-loënrz

1 +2z-log2z.
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For 1 < z we let the integer k be such that k < z < k + 1. Then

k-l

Y,G(B\z)=JZG\B)(z) + Gf(z)+  £  G2B\z)
B=k+\

1

B=\ B=\

k-l

= Elogia 4
B=l

5+1

,      k + 2
z + log —

+ E

k + l "(k + l

B(B + 2)\

B=k+\
5(5+1

+ log
(5 + r

,    k + l     ,
= log ̂ — + 1

1 .      k + 2
z + log —

+
k + l

z + log

k + l

k+ 1

~k + 2

(k + iy

= l+log^-

This completes the proof of (2.1).   D

For any irrational x we introduce the following notation for the collection

of all convergents and mediants of x :

sf(x)
L      L

MMQn       MM
or for some n, 5

For any C > 0 we will denote by s/  (x) the subset

j/c(x) = i^-e^(x): M\Mx-L\<C

of s/(x). We enumerate the elements of s/ (x) after ordering them by in-

creasing denominators; thus every fraction Ln/Mn in s¡f (x) is either a con-

vergent or a mediant of x , and Mi < M ■ if i < j .

(2.2)    Theorem. Let C > 0; for almost all x

lim - # \j < n :
j rC,

n—»oo n

exists and {M'.\M x - L\ : -¡¡f

given by

1

(x),M]\M]x-L]\<z^

C (C)
e srf  (x)}  has limiting distribution H    (z)

j
L. „C

H(C\z) = I

C
1

1+logC

1

forO<z<C, ifO<C<l,

z, for 0 < z < 1 ,

1+logz),   for\<z<C,

ifC > 1.

l+logCv

Proof. Let C > 0 be arbitrary. For 0 < z < C we have to find all n , B (with

0 < 5 < 5„) such that @[B)(x) < z as well as all n for which &Jx) < z. Let
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A(5)(z) c m(B) denote the subset for which S{B)(x) < z and let A(0)(z) be

the subset of [0, 1] x [0, 1] for which Qn(x) < z. By the ergodicity of (1.4)
and the individual ergodic theorem it follows that for almost all x

I Ji,.   , „IB).    ,    .     , _J_

p(J%{">

and

lim -#{j < n : &B)(x) < z} =-l-jr-p(A(B\z))

lim i #{;<«: 0 (x) < z} = p(Am(z)).
n—>oo n J

In (1.9) we saw that

^(z^-l^lz),
^(B)) log2

and by (0.5),

^(A(0)(z)) = ioi2^)-

Denoting the whole space by Ac , these combine to

1 ¡i í L. r
p(Ar) lim -#{j <n: -¿es/  (x), M \M .x - L\ < z
^v   c'n^oon       y M J     J J

;"<a'01(z)) + E-^"(a,i,(Z))
B=\

1 U,„\     : ! V^W«)
'W+cîE^olog 2 log2fi

1 -F(z) + ¿7/(2)
log2 log2

as in (2.1 ). The distribution function H   \z) is now found from the definitions

of F(z) and H(z) and by scaling:

H(C){2)_F(z) + H(z)

F(C) + H(Q-

This proves (2.2).   D

3. Approximation by nearest mediants

In this section we look at the approximation of an irrational number x by

its nearest mediants, that is, by the mediants with 5 = 1 or with 5 = Bn — 1 .

Since the case 5 = 1 is contained in Theorem (1.9), we look here at B = Bn-\ .

Notice that the 'first' mediant (5=1) and the 'final' mediant (5 = 5-1)

coincide in case Bn = 2 ; if Bn = 1 , there are no mediants. The first theorem

tells us how the final mediants are distributed for a given partial quotient. By

we will denote the sequence consisting of the 0's belonging to the final mediants

for which the partial quotient equals D.
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(3.1)    Theorem,    (i) For every x and for every n > 1 such that Bn>2, there

holds
5  — 1      „in _n        25

< & "    ' <
B„ B+r

(*„-»(ii) For almost all x, the sequence {& "     L =D} for D > 2 is distributed
n

according to the distribution function

—^-rJ(D)(z),
log (D+\)

D(D+2)

where

/(D)(z)H

r(i»,   «      - - -D~[J'u,(z)=0,    forz<
D    '

j\D)(z) = -l + ^-Tz-\og(J^
D-l D- 1

for
D- I £>

< z <
D D+\ '

AD\z) =
D(D- 1

1        z + log^-
D1

f       D 2(0-i;for ——- < z <
D+\ D+\    '

j(D). D + 2 (D+iyJ3     (Z)= l~ ^-rT-2 + l°gl
2D 2D¿

for
2(D

D+\
< z <

2D

D + 2'

l(D). (D+\y        .      2D

D(D + 2) D + 2

Proof. The proof is an imitation of the proof of Theorem (1.9), the difference

being that we have to consider pairs (T, V) here in ¿% \3$ . We leave

the details to the reader,   o

Let SF(x) denote the collection of final mediants:

?(x) = < 17 :
L      L

■(*.-D

M ' M      MB«~X
for some n for which 5„ > 2

We enumerate the elements of &(x) again after ordering them by increasing

denominators; thus every fraction Ln/Mn in ^ is a final mediant of x, and

M < M   if i < j.i        j ■>

(3.2)    Theorem. For almost all x

lim -#lj<n: -¿- e 9~(x), M\M,x -L\<z\
n^oo n       1 Mj J      J J
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exists and {MAM ¡x - L ,| : jf e .9~(x)} has limiting distribution  —4-/(z),
J J J j log j

where

0, forz<-,

-l+2z-log(2z),    forl-<z<^,

J(z)=l
z     ,     3
2+log^, for -<z<\,

l-- + logl-zl ,   /orl<z<2,

3
log 2 , for2< z.

Proof. We have to find all n with &[B"~l)(x) < z.  Let A(fi»_1) c 3î{B"~x)
i>   _i \

denote the subset for which 0^ "    '(x) < z . By the ergodicity of (1.4) and the

individual ergodic theorem it follows that for almost all x

*„h

From (3.1) we can see that

This gives

p(mKD«-l)\9¿KD«])

,k(B-\).    .. 1       t(B-\),    s
p(K "     (z)) = j—*J (z)-

log 2

lim -#\j <n: -j-e ,9~(x), M¡\M¡x - LA < z 1

E"_i=iMA
(*.-').

2))

E?-, = 1log((5„ + l)V5„(5„ + 2))      log|f,£'
ci,

z .

Suppose first that \ < z < | ; then
00 00

^y(0)(z) = /1(2)(z) + ^/r(-)
0=2 D=3

= - 1 + 2z - log(2z) + 0.

Next, let § < z < 1 ; let the positive integer k be determined by ^- < z <

£^y . Then (just as in the proof of (2.1))

00 k — \ 00

j;/(ß,(z)=/f(z)+x;/r)(z)+/r,(z)+ x; -c^
D=2 D=3 D=k + \

= l-z + log   -Z    +£

jfe-1

D=3
/)(/>- 1

1 (D-1)(D+1)
z + log -

(Dy

C—Z -log-r—
k- 1 k- 1

z     ,     3
= 2+1°g4-
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2(k-2)  ^ _    . 2(k-\)
For 1 < z < 2 we let the integer k be such that ^^ <z< ^~A1. Then

oo k—2 oo

^7(o)(z)=5:/r)(z)+yf-i)(z)+x;/2(D)(r)
D=2 D=2 D=k

^2,     (D+\)2      /        k+\ ,    (     k2       W
= ̂ dw+^)+\x-w^)z+^

+ f ^^tW^^
tMD-U D2

.     .     3(Jfc-l)     ,       fc + 1 ,     (     k2
= 1 + log-^—£ + 1 - -rj--z + log '

2k 2(k-\) b\2(k-\)2  J

1 ,    k-l

z    ,     3z
-l-I + logT.

This completes the proof of (3.2).   D

Next, we look at the sequence of 0's coming from convergents and nearest

mediants of a given x . Let JV(x) denote the collection of convergents and

nearest mediants:

^ W = \M:M = t°TM = M^0rM = ¡^Fïï f0r SOme " } '

enumerated in order of increasing denominators M.

(3.3) Theorem. For almost all x

lim -#{j <n: -rj- eJT(x), M \M .x - 1,1 < z \
n-oo n     1 M. J'    J J' -

exists and {MAM-x - L\ : jf e ^(x)} has limiting distribution  2Tog2-^(z) •

where
0, /orz<0,

z, for 0 < z < 1,

2 - z + 2 log z,   for 1 < z < 2,

2 log 2, for 2 < z.

Proof. We consider convergents and nearest mediants now, so it is clear from

their definitions that

(3.4) K(z) = F(z) + (7(1)(z) + J(z) - C(z)

if we denote by C(z) the function that gives the distribution of 0's in case

that the first and the final mediants coincide, that is if Bn — 2 (see the remark

before Theorem (3.1)). To find C(z), we have to evaluate

p({3?(i)\3?{2)}nßr{l)(z))

K(z)
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(cf. (1.6) and (1.10)). For z < \ this equals

p(&ll]n. (z)) GW(z) J(z)

For | < z < 1 we find that

(2,}n^(1,(z)
[(T,

V): \<T<2^3 -     - 2 + z
0< V <

T+z-l

UUT, V):

and a straightforward calculation of

1

2 + z

(i + z)r

<r< 2",0< V < l| ,

SL i
\og2jJ^iB)nriB){:) (i +TVJ-

dVdT

in this case, as in the proof of (1.9), leads to

0,

C(z) =

■l+2z log(2z),

9
1-Z + lOg     tZ

log

forz<-,

for - < z < -,
2 -    - 3

for | < z < 1 ,

for 1 < z.

If we use this with (0.5), Theorems (1.9) and (3.2) in (3.4) we immediately get

the function K(z) as in the statement of the theorem.   □

(3.5) Remarks. In [4], Ito proved the part of (3.3) with z < 1 . Using this, he

was able to prove that for 0 < X < 1 :

•im r—-#\(p,q)\
rt—oo log«

X-
X 112

< -^ with %ed(p, q) = 1 and q < n \ = —jÀ
q )      n

(for almost all x). In fact, this holds for arbitrary X > 0 and is known as

Erdös' theorem (see [2]). Jager proved all of Theorem (3.3) in [7]; there, he

also gives an alternative proof for the part of Erdös' theorem with 0 < X < 1 ,

using Fatou's theorem (see §4 below). Notice that K(z) = 2F(|).

4. Theorems of Legendre and Fatou

The linear part in the distribution function F of (0.5) for 0 < z < ^ reflects

the fact that the convergents to any x include all rationals P/Q for which

Q\Qx - P\ < j ; this is known as Legendre's theorem, and it is part (i) of

Theorem (4.1) below, cf. [5, 2, 4]. Since the distribution function in (3.3) is

linear up to z = 1 , one wonders whether this indicates that for every x all

rationals satisfying Q\Qx-P\ < 1 are among the set of convergents and nearest

mediants to x . This is indeed the case, and it seems that this was first observed

in [3], where it is stated without proof. The first proof, apparently, appeared

in a paper by Koksma (see [8 and 9]). Fatou's theorem is part (ii) of Theorem

(4.1) below.
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(4.1)    Theorem. Let x be an irrational number and P/Q a rational number

(Q>0 and gcd(P,Q) = 1).

(i) // Q\Qx - P\ < \, then

P = Pn(x)

Q    Qn(x)

(ii) If Q\Qx-P\ < 1, then

P      BPn_x(x) + Pn_2(x)

for some n > 0.

Q     BQn_x(x) + Pn_2(x)
for some « > 2 and B e {0, 1, Bn - 1}.

Proof. The proof consists of two parts; first we show (using Koksma's argument)

that if £ is not a convergent or mediant, then necessarily Q\Qx-P\ > 1 . For,

in this case we can find integers n > 0 and 5 (0 < 5 < Bn) such that 4 lies

between

P'      BPn_i+Pn_2    and    r= (5+l)5„_,+5„_2

Q'     BQn_x+Qn_2 Q"     (B+\)Qn_x+Qn_2-

If we assume (the other case being similar) that tj < x, then

P'      P      P"

W<Q<^<X
This implies

1       <L-_^P"        P'        Pn-)Qn-2-Pn-2Qn-
—   n        r\l

QQ' - Q    Q'     Q"    Q' Q'Q" Q'Q"

since Pn_xQn_2 - P„_2Q„_X = 1. So we see that Q> Q" .

But on the other hand,

1 P"     P P
î" — T^ji ~ 7î ^ x ~ 7i '

so if

we would get

QQ" - Q"    Q Q

P      l

Q     Q2

1 l
<

QQ"    Q2

and thus Q" > Q, a contradiction.

In the second part of the proof we therefore consider only convergents and

mediants of x . By (1.9)(i) we have ©„ > 5 for any n if 5 > 0 ; this finishes

the proof of (4.1 )(i).

It remains to prove that Q\Qx - P\ < 1 can only hold for convergents and

nearest mediants; thus suppose that

Q\Qx-P\< 1;
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and suppose, moreover, that 5 > 2 in

P      BPn_x+Pn_2

Q     BQn_x+Qn_2

We will show that in that case, 5 = 5 - 1.

By (1.8), the inequality Q\Qx -P\ = ©jf} < 1 is equivalent to

(\-BTn_x)(B + Vn_x)<\ + Tn_xVn_x.

Then
T      >      B+V^~l      >B^1

->      B2 + BVn_x + Vn_x'     B2

since jA+BV v increases monotonically with V  (V > 0). This implies

1 !•..>*-' '
B„ + T        »-I        jî    -fi+l+   '

so

ß„<^ + ^<ß+l + ß^T<^ + 2,

in which the last inequality follows from our assumption that 5 > 2 . Thus we

see that 5 > Bn - 2, and since by definition 5 < Bn , we find that 5 = 5-1.
This completes the proof of (4.1 ).   D
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