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ON THE CONVERGENCE OF SHOCK-CAPTURING
STREAMLINE DIFFUSION FINITE ELEMENT METHODS

FOR HYPERBOLIC CONSERVATION LAWS

CLAES JOHNSON, ANDERS SZEPESSY, AND PETER HANSBO

Abstract. We extend our previous analysis of streamline diffusion finite ele-

ment methods for hyperbolic systems of conservation laws to include a shock-

capturing term adding artificial viscosity depending on the local absolute value

of the residual of the finite element solution and the mesh size. With this term

present, we prove a maximum norm bound for finite element solutions of Burg-

ers' equation and thus complete an earlier convergence proof for this equation.

We further prove, using entropy variables, that a strong limit of finite element

solutions is a weak solution of the system of conservation laws and satisfies

the entropy inequality associated with the entropy variables. Results of some

numerical experiments for the time-dependent compressible Euler equations in

two dimensions are also reported.

1. Introduction

In this note we continue our study of streamline diffusion finite element

methods (SD methods for short below) for hyperbolic conservation laws started

in [12, 13]. SD methods may be viewed as Petrov-Galerkin variants of the

usual Galerkin finite element method with certain modifications of the test func-

tions giving added stability without sacrificing accuracy (the error is of order

0(h + ) for smooth solutions if polynomials of degree k are used). We re-

call that conventional finite element methods for hyperbolic problems lack in

either stability, like the standard Galerkin method, giving spurious oscillations

if the exact solution is nonsmooth, or in accuracy, like the classical artificial

diffusion method with considerable smearing of sharp fronts and at most first-

order accuracy. The basic SD method was proposed by Hughes in 1980/81, and

the method has since been developed, theoretically and computationally, into a

general finite element technique for hyperbolic-type problems with applications

to convection-diffusion equations, the incompressible and compressible Euler

and Navier-Stokes equations, see [5-9, 10, 11, 12-14, and 16-18].

The basic modification of the test functions in the SD method is obtained

by adding a multiple of (a linearized form of) the hyperbolic operator involved
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applied to the test function (in a scalar convection problem, this corresponds to

introducing artificial diffusion acting in the direction of the streamlines). The

residual of the finite element solution will then be controlled in L2 to a certain

degree, which gives added stability. We recall that the usual Galerkin method

is related to a weak formulation of the given hyperbolic equation, and thus we

may say that the basic SD method seeks to find an approximate solution which

satisfies (approximately) the given hyperbolic equation in both a weak and a

strong sense.

Although the basic SD method gives a dramatic improvement over the stan-

dard Galerkin method, some over- and undershoots of approximate solutions

may still persist at discontinuities or shocks. Recently, in the context of sta-

tionary problems, a second modification of the test functions was proposed in

[7, 8], consisting of adding a certain 'shock-capturing' term which introduces

some 'crosswind' control close to discontinuities. In numerical experiments this

eliminated the oscillations at shocks without degrading the accuracy in smooth

regions, and thus gave an SD method with very satisfactory properties, see [7]

and also [12, 13], where the shock-capturing idea was extended to SD methods

for time-dependent problems. However, no theoretical analysis explaining the

remarkably improved properties of the shock-capturing SD method is available

in the literature.

The main purpose of this note is now to initiate such an analysis. To this

end, we shall first give a different interpretation of the shock-capturing term

than that used in [7, 9] and [12, 13], We shall view this term as a certain ar-

tificial viscosity with viscosity coefficient depending (locally) on the residual of

the finite element solution, where the residual is obtained by inserting the finite

element solution into the given hyperbolic differential equation. In fact, from

this perspective we are led to somewhat different shock-capturing terms, e.g. for

nonhomogeneous problems or time-dependent problems, than those proposed

in [7, 9]. Further, by viewing the shock-capturing method in this way, it seems

natural to expect the method to add significant artificial viscosity close to a

discontinuity where the residual will be large, but only little in smooth regions

where the residual may be small. Thus, the shock-capturing term would seem

to act qualitatively as the artificial viscosity introduced in many finite difference

schemes for hyperbolic conservation laws. Continuing this analogy, it seems as if

the shock-capturing SD method, through the streamline diffusion modification,

introduces high-order consistent 'streamline' artificial viscosity in the whole re-

gion, and through the shock-capturing term, first-order viscosity close to shocks

with a continuous transition from first to higher order away from shocks. Thus,

with piecewise linear continuous basis functions (k = 1) the shock-capturing

SD method would seem to have the qualitative properties of a 'quasi second-

order' finite difference scheme, which is second-order in smooth regions and

first-order close to shocks. Recalling that the main difficulty in constructing

such difference schemes is the artificial viscosity term, it seems possible that the

shock-capturing SD method could offer a solution to this fundamental problem

with wide applicability, since general meshes, variable coefficients and boundary

conditions do not pose extra difficulties as in the finite difference case. To give
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experimental support of this belief, we present some computational results for

the time-dependent compressible Euler equations in two space dimensions.

With the new interpretation of the shock-capturing term, the extra stability

introduced through this term becomes visible. As one example of how the

shock-capturing term may be used in the theoretical analysis, we shall in this

note prove a maximum norm bound for the SD solution of Burgers' equation

in the case k - 1 , thus filling a gap in an earlier convergence result [12].

Further convergence results based on a uniqueness result for measure-valued

solutions are given in [16-18] for higher-order accurate shock-capturing SD

approximations of a general scalar conservation law in several dimensions, with

and without boundary conditions.

We now give an outline of the content of this paper, starting by recalling

some of our earlier results. In [12] we proved the following two results for the

basic SD method applied to Burgers' equation: (A) If a sequence of finite ele-

ment solutions converges boundedly a.e. to a function u, then u is an entropy

solution of Burgers' equation. (B) If the finite element solutions stay uniformly

bounded, then a subsequence will converge a.e. to a function u. In this note

we will prove that the hypothesis of (B) holds for the shock-capturing method

in the case k = 1 , that is, we will prove the following result: (C) The finite

element solutions given by the shock-capturing SD method with k = 1 are uni-

formly bounded. Combining (A)-(C) we then obtain that a subsequence of the

finite element solutions given by the shock-capturing SD method with k = 1

will converge to an entropy solution of Burgers' equation. The uniqueness of

this solution follows as in [16] by showing that a limit of finite element solu-

tions is an entropy solution in the Kruzhkov sense, so that all convex entropy

inequalities are satisfied.

In [ 13] we proved for general hyperbolic conservation laws written in entropy

variables a consistency result of type (A), that is, we proved that limits of finite

element solutions given by the basic SD method are entropy solutions of the

conservation law. In this note we extend this result to the shock-capturing SD

method.

The material is organized as follows: In §2 we introduce the shock-capturing

SD method for systems of hyperbolic conservation laws (written in entropy

variables) and discuss the choice of the streamline and shock-capturing modifi-

cations. In §3 we prove the result of type (A) for systems in several dimensions.

In §4 we prove the result (C) in the case of Burgers' equation. Finally, in §5 we

briefly discuss some aspects of the numerical implementation of the method,

which also includes automatic adaptivity of the finite element meshes, and we

give some computational results related to the time-dependent Euler equations

for compressible flow in two dimensions.

We denote by C a positive constant independent of the mesh parameter h ,

not necessarily the same at each occurrence. Further, for œ c M we denote by

H"(co) the Sobolev space of functions with derivatives of order < n belonging

to L-,(oj) , and we use the notation

n.(0 -     'H//"(r«) ' \'W(o — \\'\\L,(o>)'
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2.  SHOCK-CAPTURING SD METHODS FOR SYSTEMS OF CONSERVATION LAWS

We consider a time-dependent hyperbolic system of conservation laws in E  ,

d> 1,

d

(2.1a) u, + ^2/{u)x =0,        t>0,xERd,
(=i

(2.1b) m(0,x) = u0(x),        xERd,

where w = (w,,... , u  ), m > 2 , f: Rm —» Em are given smooth functions,

/ = 1, ... , úf, and w0 G [.£.2(R )]'" *s a given initial function with compact

support. Carrying out the differentiation in (2.1a), the system takes the form

d

(2.2a) ut + ^2Aiux =0'        ?>0, xeRd,
i=i

(2.2b) u(0, x) = u0(x),       xERd,

where A, = A.(u) - f' = the Jacobian of /' are m x m matrices. We

shall assume that (2.1) is equipped with a strictly convex entropy n(u) with

associated entropy flux q(u) = (q'(u)) satisfying the compatibility relation

(2.3) nX = q'u,        i=\,...,m,

where nu denotes the gradient of n(u). This assumption is satisfied by the

usual systems of gas dynamics [4, 6]. The entropy condition for (2.1) then

reads

d

(2.4) r,(M), + ^^(W)A.<0.

/=1

Introducing now the (invertible) change of variables [4, 6, 19] 17= r\u(u), the

system (2.2) takes the form

d

(2.5a) A~0ül + '^21iüx =0,        t>0,xEM.d,
i=i

(2.5b) û(0,x) =ïï0(x),        xeRd,

where AQ = Ou/dû and A¡ - A^q . Using the convexity of r¡ and the com-

patibility (2.3), it follows that the A¡ are symmetric, with A0 positive defi-

nite. Note that if the Ai are already symmetric, then r¡ may be taken to be

t](u) = j\u\ , in which case ü = u and (2.1) and (2.5) coincide; but in general,

r\ is not quadratic and r\u is nonlinear.

The shock-capturing SD method for (2.1) will be based on the formulation

(2.5) using the entropy variables ü. The advantage of using (2.5) as the starting

point for a (Petrov-)Galerkin method may be explained as follows (cf. [5]). We
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first note that integrating the entropy inequality (2.4) in x and t gives control

of the entropy,

(2.6) /  n(u(t,-))dx< f r¡(u0)dx .
Jmd JRd

Secondly, we recall that (2.4) results from (2.1a) by multiplying with r\u (for

smooth solutions, (2.1a) implies (2.4) with equality, and for nonsmooth (en-

tropy) solutions, (2.4) follows through a viscous regularization of (2.1), adding,

e.g., a term -eáu and letting e —► 0). Alternatively, (2.6) follows from (2.5a)

by multiplication by ïï, since TiA0ül = r¡uu¡ - r¡¡. Thus, to obtain the entropy

control (2.6), we multiply with r\u in (viscous regularizations of) (2.1a) and

with ü in (2.5a). Now, in a Galerkin method for an equation A(w) - f, we

typically may multiply by w itself but not easily by nonlinear functions of w

(cf. Remarks 2.4 and 4.1 below). Thus, (2.5) may be viewed as a better starting

point for a Galerkin method than (2.1), since the entropy control (2.6) is au-

tomatically built in, using (2.5). However, to use a standard Galerkin method

on (2.5) is not enough; to be able to prove that limits of finite element solu-

tions of (2.5) satisfy the entropy inequality (2.4) locally and not just globally as

stated in (2.6), we also need a streamline diffusion modification (cf. the proof

of Theorem 3.1 below).

We are now ready to introduce the finite element space to be used in the SD

method for (2.1).   Let 0 = t0 < tx </-,<•• ■   be a sequence of time levels,

set In = (tn, tn+x) and introduce the 'slabs' Sn = Ed x In. For h > 0 and

n = 0, 1, 2, ... , let Tnh be a, for simplicity quasi-uniform, triangulation of Sn

into triangles K of diameter hK ~ h with smallest angle uniformly bounded

away from zero, and define for a given k > 1,

Vhn = {vE[Hl(Sn)]m: v\KEPk(K),  KET"h),

where Pk(K) denotes the set of polynomials on K of degree at most k. In

other words, V consists of continuous piecewise polynomials on the slab Sn .

Typically, tn+x-tn ~ h , with the slab Sn one element wide. Note that since u0

has compact support, it follows that also the solution u has compact support

in R x [0, /] for any /. This means that we may restrict the functions in v£

to be zero for \x\ large.

We seek an approximate solution U — Uh in the space Vh = Yln>o ̂ h > ue-'

for n = 0, 1, 2, ... , we will have

V\sm e K ■

Note that the functions in Vh are continuous in x and possibly discontinuous in

I at the discrete time levels tn. The shock-capturing SD method for (2.1), based
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/

on (2.5), can now be formulated: Find U E Vh such that for n = 0, 1,2,.

■Iv+S \ÄQ(V)vt + J2At(ü)Vx¡))dxdt

(2.7) -f  \AomUl + E,Al(V)Vx\
+ ô /   -=-'-VU-Vvdxdt

JS. E + WU

+ Ô /   \U\VrU-Vrvdxdt
's,

+ [   (un+-U"_)-v"dx = 0,    WEVh",

where dot denotes the usual scalar product in Rm, R or I +l with corre-

sponding norm |-|. Further, U and U are related through U = flu(U) (note

that the original variable U occurs in the last term in (2.7)). We also use the

notation

v",(t,x)= lim v(tn +s, x),        U   =wn,
* s^o±     " u

V v = (v     ... ,v   ),        Vv = (v    v     ... , v   ),

d

VXv-Vxw = y^ vx •wx ,        Vv-Vw = vtwt + VXv-Vxw,

;'= 1

and for all KeT"h:

fj\   = [ (L+ - U-^n(u^{,„})     lf Wx{/„}) dx > °'

[ 0, otherwise .

Finally, e, ô and ô are parameters tending to zero as h —> 0, and S — ô(U) is

a positive definite mxm matrix, the choice of which we specify in Remark 2.1.

Concerning the choice of e, ô and ó, we normally expect to have s, ô, S =

cf(hn), with a ~ 1 (cf. §4 below). The streamline diffusion modification of

the test functions is given by the ¿-term, while the shock-capturing is related to

Ô- and ¿-terms, which clearly correspond to artificial viscosity terms, with the

viscosity coefficients depending on the two components of the residual, namely

Wt + Y,tf{U)x¡i and \U\.

Remark 2.1. The choice of S . The simplest choice of ó is given by ô - Chi

with / the identity matrix. As pointed out in [7], this choice is not adequate

in some situations. To see this, consider a constant-coefficient variant of (2.5)

in the case of one space dimension:

(2.8) A0w, + Awx = 0,
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where thus A0 and A are symmetric, with AQ positive definite. Let now

E = (A0)~~ ' P, where P is an orthogonal matrix consisting of eigenvectors of

A = (A0)~l/2A(AQ)~l/2. Then E diagonalizes A0 and A,

(2.9) ErA0E = /,        ETAE = A = diag(A;),

with E1 denoting the transpose of E and A a diagonal matrix with elements

A. = the eigenvalues of A . Introducing the new variable w by w = Ew , we

have, using (2.9),

(A0w, + Awx)-(v + S(A0v, + Avx))

= (A0Ewt + AEwx)-(Ev + â(A0Evl + AEwx))
_ _       _ _ 1        _7 _ _

= (wt + Awx)-(v + E   ÔE    (vt + Avr)).

Since Tvl + Awx - 0 is an uncoupled system of m scalar equations, we are led,

in analogy with the scalar case [6, 10], to choose in an SD method for (2.8)

E~X6E~T = h(I + A2)"1/2 = h diag(//,.),        pi = (1 + A2)"'/2,

i.e.,

(2.10) S = hE(I + A2)~l/2ET = hA~l/2(I + A~)~XI2(A0)~X'2 .

If now the p vary considerably in size, then diag(/i() is not close to any

multiple of / and thus, if we choose S = Chi, then some of the components

in the corresponding SD method for (2.8) would not get the correct streamline

modification. Note that A and Ax in (2.2) have the same eigenvalues, i.e., k¡

are the eigenvalues of Ax .

In the case d > 1, with (2.8) replaced by AQwl + Y,Aiwx = 0, it is not in

general possible to diagonalize all the matrices Ai with the same transformation.

A natural generalization of (2.10) to the case d > 1 is given by

(2.11) ô = h(A0)-l,2li+j2^j    M0r'/2>

where ¿( = (A^A^)-1'2 .

In (2.7) we now choose S = S(t, x) according to (2.11 ), with the Ai replaced

by I,(Ü(/,x)).

Remark 2.2. It is possible to generalize the shock-capturing terms by replacing

VÍ7-VF by M(jUlvl + YliMjUxvx , where M¡, i = 0, ... , d, are positive

definite m x m matrices. Various choices of M¡ have been proposed in [8].

In the case of one space dimension, a diagonalization as in Remark 2.1 may

be used to find suitable M¡. In several dimensions, the choice is less clear. It

may be natural to choose MI. = A0, i = 0, ... , d , corresponding to adding

diffusion close to shocks in the form -hAu in the conservation variables. So

far, we have used M = Identity in the computations.   □
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Remark 2.3. Note that (2.7), although expressed in entropy variables, may be

considered to have "conservation form", since on each slab

v,+E/(^ s Muw,+YAi<üjüx¡.
i i

In particular, this means that the correct Rankine-Hugoniot conditions are sat-

isfied by limits of solutions of (2.7), see Theorem 3.1 below,   o

Remark 2.4. In the recent work [18] it is proved that the shock-capturing SD

method may be applied also in conservation variables with the entropy control

and entropy consistency maintained. This is related to the fact that with the

shock-capturing term present, in a Galerkin method in conservation variables

it is possible to multiply by r\u, even with r\u nonlinear (cf. Remark 4.1).

A formulation in conservation variables seems to require less computational

work, but more computational experience is needed to evaluate the merits using

entropy or conservation variables.   G

3. Convergence towards entropy solutions

In this section we prove that limits of finite element solutions given by the

SD method (2.7) are entropy solutions of the conservation law (2.1). We recall

that u €[¿^(0)]'", ü = (0, co)x Rd , is an entropy solution of (2.1) if for all

<p E [C0°°(Q)f ,   Q = [0, oo) x Rd , we have

(3.1) J lu-g>t + ̂ 2f{u)-(px) dtdx+ I u0-<p(0, ■) dx = 0,

and for all tp E C^°(Q) with q> > 0,

(3.2) jintp^^q'tpAdtdx^Q.

We assume that the entropy n is strictly convex, i.e., that there is a compact

set D c R"! and positive constants a, ax and a2 such that for all v , w e D c

R"1 with ô = â(V) =S(nu(U))

2
(3.3) r¡(v) - n(w) - nu(w)-(v - w) > a\v - w\  ,

(3.4) axh<x-âx,     \x-ôy\<a2h       Vx, y E Rm ,  |x| = \y\ = 1 .

We have the following result, where n~ denotes the inverse of r\u : D —> r¡u(D)

and ïï = fju(u). For definiteness we assume here that e = S - ô = h .

Theorem 3.1. Suppose that a sequence of finite element solutions {Uh} of (2.1)

with Range (Uh) c r¡u(D) converges boundedly a.e. in Q to a function û as h

tends to zero. Then u = r¡~ (ïï) satisfies (3.1) and (3.2), and thus u is an

entropy solution of (2.1).

The proof is based on the following stability estimate where a and ax are

given in (3.3) and (3.4), respectively.
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Lemma 3.1. For N = 1, 2, ... , we have

,n       rr«ii2
N-\

/   n(UN_)dx + aY: \\U"+ - U"_||2, + a,h £
JR n=0 «=0

^ + E/'(c/).v,

+ c5
^! /■ l^ + E/Zii/^llvt/run=0

N-\

h + \VU\
dtdx

+ ÔE / \U\ \VxU\2dtdx
n=0

)¿x

Proof. Taking v = U = 1u(U) in (2.7), we get

fs U(U) + 'El'(V)x) dtdx

+ ¡s (rç+£/w*J-*(rç+E/(^dtdx

^SM + T.f'^^dtdx+llsm\vxv\2 dtdx

+jju:-u:);„(v:)äX=o,

so that, since U(t, x) = 0 for |x| large,

o=e7>K^KK(<h^ <))<<*
n=0 JR

+ E/S (^ + E/'(c/),,)^(^+E/'([/),,) ^
n=0

N -\

n=0 JSn I /

|\777l2 =N~l
,'      L dtdx + ôY /   |L>| |Vví7|2o?/í/x
Ä-r|VC/| s/,

>  /  n(UN_)dx- [  n(u0)dx + axhY^ [   ty + ^fW),
Jr" J«.ä 7~oJs- i

dtdx

yv-i   r/v-i

«=o ̂
_/V-l

n=0

/V-l

rç+£/(*')*|vt/|^_
A + IVÍ/I

dtdx

.U\2dtdxE / i^i iyv'

-e7r,^(^)-"(^-^(^-(^-^))^
The lemma now follows from (3.3).   □
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We also need the following interpolation estimate and "superapproxima-

tion" result, where nhw e Vh  is a standard interpolate of a function w E

n„>0[# (S„) n <£'(Sn)]m , &(Sn) is the space of continuous functions on Sn

and \\-\\k w denotes the norm in the Sobolev space [H (to)]"1. A proof of the

superapproximation result is given in [18].

Lemma 3.2. There are constants C such that for w e [Hl(Sn) n &(Sn)]m , <p E

Hl(Sn)n&(Sn), vEVh, n = 0, I, 2,..., and k = 0, 1,

hk\\w - nhw\\kSn + \fh\\w"+ - (nhw)"+\\R, < Ch2\\w\\2 ^ ,

hk\\v<p - nh(vq>)\\kSn + \Œ\\(v<p)"+ - (nh(v<p))"+ ||B„

< Ch\\v\\L^(Sß\<p\\x ̂  + h\\<p\\2SJ .

Remark 3.1. Note that the superapproximation (2.4) and interpolation esti-

mates (2.3) in [ 12] are not stated correctly, but should be replaced by Lemma 3.2

above or the following variant thereof: For Q = R x (0, oo), tp E C^°(Q.), v e

(3.5a) P<p-nh(v<p)\\s n < Chl~s\\v\\L   s \\tp\\x a,        5 = 0,1,

(3.5b)        EAIKÜ< - (V^))"È < c^H^IHIÎ.q.
n=0

together with the corresponding estimates for v = 1. Here, ip = tp * coh is a

mollification of tp , where coh is defined by

coh(x, t) = oj°h(x)œ°h(t),        oj°h(s) = h~]to°(s/h),

0 < co e CT(R),     / to (s)ds = 1,    suppw  = [-1, 1] .
Jr

The estimates (3.5) are proved in the appendix. The proofs of Theorems 3.1
and 4.1 in [12] should then be modified by replacing tp by tp .    D

We can now give the proof.
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Proof of Theorem 3.1. To prove that u satisfies (3.1), we take v = nh<p in

(2.7) where tp e [C0°°(Q)]m to get

¡s (u, + T,fiW)x\ ■ <pdtdx + J^ [Un+ - U"_) ■ tp\dx

= ¡s (ut+T,fiWx)-((i>-nh(p)dtdx

+fJu:-u-)-(<-(w)+)dx

- js  (u, + E/' iV)x) ■ o (a0 (V) (nhtp)t + YÄi (V) (nh<p)\ dtdx

-s[lU' + ̂ flU^VV.VMdtdx
Jsn       h + \VU\ v hV>

-Ï f \Ü\VXÜ-Vx(nh<p)dtdx
Js„

17-545= E +E +E +E +E  .
n n n n n

Integrating by parts and summing over n , gives

-/ (^•^+E/'^)-fv,Vi^-/,"o-/+^ = EE£^E^-
JÇl \ i ) JR j=\ «>0 j=\

By Lemmas 3.1 and 3.2 and using the assumption that \\U\\,   ,n) is uniformly

bounded in h , we easily find that \RJ\ < C\fh, j = \, ... , 5, and (3.1) follows
by letting h tend to zero, using Lebesgue's dominated convergence theorem.

Next, taking v = nh(Uq>) in (2.7) with tp E C™(Q.),  tp > 0, we get by
integrating by parts and summing over n > 0,

- J U(V)9, + T,q' {U)9x] dtdx

+Ejj«(v")-*(v:)-*u(u:)iun--u:))?dx
n>0   K

+ jQ (Ut + Ef'(Uh) -3 (U< + Ef'Wx) Vdtdx

+ */ ut + Zf¡(U)Xi
Ja.

\vu\2
tpdtdx

h + \VU\

8 8

+^E/ i£iivyfiWx = ee^Eg;>
n>0' j=\ n>0 j=\
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where

F" = Is  V' + E/'^).v,) • (U<P - nh(Utp))dtdx,

Fn =  [  (Un+-U"_)-((Vtp)n+-7l(V<p)"+)dx,
jRd

ï = js(v, + 2ZAui) \W)((Vf),-(Kh(v<t)),)

K

+Yiai(V)((v<p)Xi -(*t(Vr)\)
i

l lut+T,fi(u'x) ■s h.mvtp^^Â^vtp] dtdx,

dtdx,

S       -   f    \U. + ¿Z¡f(V)r\     -        - -
F  =ô x> VU-V(Utp-nh(U(p))dtdx,

Js        h + \VU\

i".6 = -S fs^fm*\Ui'Uft+y$u*' U(px)dtdx'

F¡=! í \Ü\VxV-Vx(Ü<p-nn(U<p))dtdx,
Js„

Fn=-^ls  fil (EF-VF^,)  dtdX-

Arguing as above, we see that \GJ\ < C\fh, j = 1, ... , 8, and (3.2) follows
letting h tend to zero, using the convexity of n .    u

4. Convergence for Burgers' equation

As an example of the theoretical use of the shock-capturing terms we shall

in this section prove uniform boundedness of the finite element solutions of a

shock-capturing SD method with k = 1 (piecewise linears) applied to Burgers'

equation

(4.1a) ut + uux = 0,      in Q = Rx (0, oo),

(4.1b) u(x, 0) = u0(x),        xeR,

where u0 is a given bounded function with compact support. In [12] we proved

that a subsequence of solutions Uh of an SD method for Burgers' equation

without shock-capturing terms converges a.e. to an entropy solution u of (4.1)

corresponding to the entropy n = u'/2 . In the proof we explicitly assumed that

llalli (Q) rema'ns bounded as h tends to zero. As indicated, we shall now

prove, by using the shock-capturing terms, that ||c7A||L .Q. in fact is uniformly

bounded.   In this way we thus obtain a complete convergence proof for the
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shock-capturing SD method applied to Burgers' equation; cf. [16], where also

uniqueness is proved by proving that the limit function u satisfies all entropy

inequalities related to convex entropies, and thus is the solution in the Kruzhkov

sense.

Using the notation of §3 with m = k = 1, we now consider the SD method

(2.7) applied to (4.1) (with U = U corresponding to n(u) - \u) : Find U =
U, E V.  such that for n = 0, 1,2,...

/ (Ut + UUx)(v+ô(vt + Uvx))dxdt
Js..

(4.2) + S

+ 1

u, + c/c/
(l + \U\)VU-Vvdxdt[ B

Jsn   £ + \VU\

[ \LJ\Uxvxdxdt+ [ (Un - UnJv"dx = 0   \fv e Vh",
Js„ Jr

where U
o

u0 and

{{U.-U)\KnR if K n R  is an edge of*,i      +       -nKnR„ n 6 MKeT"

K     \ 0 otherwise h

Rn = Rx{tn},        « = 0,1,2,....

Further, ô, S and ô are positive parameters satisfying 6 = Ch, S - Ch"'

and ô = Ch"2, where the a. are constants with 0 < a,, a2 < 1 . We also

assume that the triangles K E Tnh have right angles with two sides parallel to

the x- and /-axis, so that the space-time triangulation has the following form

(note that the meshes on adjacent slabs do not have to match).

>- x
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Our main result is now the following, choosing e = 0 for simplicity:

Theorem 4.1. Suppose that uQ E L^R) has compact support.  Then there is a

constant C such that the solutions U = Uh of (4.2) satisfy

(4.3) H^IIl (O) <C'        h>0-

To prove this result, we first state the basic stability estimate for (4.2) ob-

tained by taking v - U :

1   M
°\Wt + uuxt^ + -2Y,\\K-vX

n=0

(4-4) +>:w+1É+¿/n l^^(i + \u\)\vu\2dxdt

+ Ó [   \Ü\(Ux)2dxdt<\\\u0\\2R,        Af = 0,1,2,...,
Ja.. L

where QM = |Jn=0 Sn. Note that the integrals over Q,M are to be interpreted

as a sum of integrals over the Sn with n < M. We shall further need the

following two preliminary results.

Lemma 4.1. There is a positive constant c independent of p such that for p

2m, m = 1,2, ...  and n — 0, 1,2,...,

c*E /   K-^-\K)l\K\GK,Rn)dx
(4.5a) K^  R"nK

< f  \U\Ux(nh(Up-[))xdxdt.

Proof. Considering one triangle  K E  T^   with vertices   (xx,tn),   (x2,tn)

(x,, tn+x), where x, < x2, we note that

stant and \U\ depends only on x . Hence,

(x,, tn+x), where x, < x2, we note that UX\K and (nh(Up   ))X\K are con-

[ \Û\Ux(7th(Up-%dxdt
Jk

= tf1Z^L rWl-Un_\Ux(nh(Up-\(x-xx)dx,
2 I    Jx,
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and further, by simple computations,

Ux{nh(Up-\

=-^(^2. tn) - U(xx, tn))(U"-\x2, tn) - Up-\xx, tn))
(x2-xx)

=       _'      2{U(x2, tn) - U(xx, tn))2(max(\U(x2, tn)\, \U(xx, tn)\))p-2
(X2      X|J

P-2

■Y^^(U(x2,tn)U(xx,tn))
(=0

■mm(\U(x2,tn)\,\U(xl, tn)\)/max(\U(x2, tn)\, \U(xx, tn)\)]'

¿ 2(X2-x/UiX2 ' 'J " U{Xl ' i«))2||C/"lC(^„,

= -(Un)2\\U"\\p~2
2[U+>x"U+UL00(KnR„)>

where sign(x) = x/|x| if |x| > 0 and sign(0) = 0.

Now let f:Sl^R,Sl={xER2:\x\= 1}, be defined by

_ ¡j\yx(l-x)+y2x\xdx

j{yi,y2)-   ri •Jo M1 -x) + y2x\dx

For |C/| == 0 we then have

f^\Un+-U"_\(x-xx)dx
-±—¿—-„-=—--> Ch inf f(y) > Ch,

lx'\Un+-U"_\dx        -      yes'   K>-

since / is continuous and strictly positive on Sl . This proves the lemma, since

(4.5) is trivially true when \U\ = 0.   D

Lemma 4.2. There is a constant c > 0 independent of p such that for p =

2m,  m= 1,2,3,...,  « = 0,1,2,...,

I  W'^x\\ + \U\)VU.Vnh(Up-')dxdt

>-j2 E / ^^(i + i^ivi/ñit/ii^rfxrf/.
P     K&TnJK I I

The proof of Lemma 4.2 is analogous to that of Lemma 4.1 (see [16, 18] for

details).
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Proof of Theorem 4.1. Taking v - nh(Up~ ) in (4.2), we get with p an even

number > 4,

0=  f (Ul + UUx)Up~ldxdt+ [ (U"+- U"_)(U"+)p~l dx
Js„ Jr

- [ (U, + UUx)(Up-l-nh(Up~[))dxdt

- I\u:-UnJ((Un+r[ -(nh(Up-%)dx
JR

+ Ô js(ut + uux)((up-l)l + u(up-x)x)dxdt

-Ô f (Ut+ UUx)((Up~l), - (nhUp-1), + U((Up-X)x - (nhU"-l)x))dxdt

+ 'ISnl^V[^{l + mVU-V^UP~ldxdt

+ Ô      \ÍJ\Ux(nh(Up-[))xdxdt = Y,E'n.
JSn (=1

Using now a standard interpolation estimate, we have

\eI\ + \eI\ <cp(h+ô) Y,JK |t7,|v^'(1 + \mvu\2\\u\\pLi2,K)dxdt.
K€Th

Further, using again an interpolation estimate, we get

\<\<cp2h2Y: f  \K-u:\(u:)2x\\uxi]K)dx

Í \jj" -TJn\(iJn\2\\rin\\p-'-<Cp2h2J2  f \U"+-U"_\(U:)2x\\UX-2{K)dx
KeTJRnn{\U\>V

„2.2/"
+ Cp2h2 [ \U"+- U"_\(U"+)2xdx = III,, + IV„ .

JR nA'n{|(.'|<n

EIV« ^ cP2h [ \Ù\U2dxdt < Cp2~

i{|i/|<i}

By Lemma 4.1 with p - 2, and (4.4), we have

<h

n>0 Ó

Combining these estimates with Lemmas 4.1 and 4.2, we get by summation over

n = 0, 1, 2, ... , N, for p3 < C min(S/h ,1/h),

J2[((u:+i)p-(u:)p-(u:-u:)P(u:rl)dx
n=0

+ ôp(p-\)[   (U. + UUx)2Up 2dxdt<Cp*=.
Jav S
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Using now the convexity of the function U —► Up as in (3.3), we have

lltf-+1Hi ,r, + ¿p(p -1) / (u, + uux)2up~2dxdt
JaN

<H\\PLpiR) + cp3i>     N>°-

The next step is to obtain L -estimates for all t E (0, oo). For tn < t < tn+x

we have

\\u(-, t)\\pLp{R) = \\u:+x,w -/'"+' £im-. s<tp(R)ds

<\\U'l+lfLp{R)+p([  (U, + UUx)2Up-2dxdt ['" ' f Updxdt\

^ \\u-+1\\Pl(R) + ôP(P- 1) [ (Ul + UUx)2Up~2dxdt

+wh)t'm-•<"'"'■
Thus, by using Gronwall's lemma, we obtain for tN < t < tN+x

(4.6) iic/(-,/)irL(/?)<qi«0irMR)+c/73i.

This proves the existence of positive constants C and q0 , independent of p

and h , such that

sup||<7(-,/)||        <C    if 4 <p<C/T"V
/>0 "x   '

Finally, using an inverse estimate, we have

llalli  m<C(ph-l)i,Psnp\\U(-,t)\\    R
°°^   ' í>0 '*

< CeiH+<>0)h"°\nl/h < c

for h < C. It remains to estimate \\U\\,   ,a) for « > C By combining (4.4),
oo *     '

(4.6) (with p = 2) and an inverse estimate, we get

||L/||Lœ(ni<C«-,/2||Wo||,2(A)<C,       h>C.   a

Remark 4.1. We note that the proof of Theorem 4.1 is based on choosing

the test functions v = nh(Up~ ) with p large and controlling the difference

Up~ - 7th(Up~ ) using the shock-capturing terms. Thus the shock-capturing

terms make it possible to use test functions other than the usual choice v = U,

giving the stability estimate (4.4); cf. the discussion in §2. Note, however, that

the coerciveness of the shock-capturing terms with v = nh(Up~ ) is established

directly in Lemmas 4.1 and 4.2, using the fact that k - 1 . In the case k > 1 ,

the shock-capturing terms are still defined using piecewise linears on finer tri-

angulations, which makes it possible to extend the L^ bound and convergence

proof to methods of arbitrary accuracy, see [17, 18].   D
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5. Numerical results

In this section we give some numerical results obtained by applying the shock-

capturing SD method (2.7) with k = 1 in the case of the time-dependent

compressible Euler equations for polytropic gas with adiabatic exponent y = 1.4

in a two-dimensional channel flow with a step-up at Mach 3. Our entropy

variable formulation (2.5) is based on the physical entropy for the compressible

Euler equations given in [4, 6]. A more detailed account of various aspects of

the implementation will be presented in [3].

In (2.7) no boundary conditions are needed because the initial function u0

has compact support and the spatial domain is the whole of R .In the present

case, the computational domain Q (see Figure 5.1) is bounded, and then (2.7)

was modified as follows so as to include relevant boundary conditions. On the

inlet AB (see Figure 5.1) all components of U were prescribed with the free

stream values given by

pressure =1.0, density =1.4,

horizontal velocity = 3.0, vertical velocity = 0.0,

and along the solid walls BCDE and AF the normal velocity was set to zero.

Accordingly, the variational formulation (2.7) was then modified in the usual

way by restricting the components of the test functions v to be zero where

corresponding components of U are prescribed. In particular, at the outlet

boundary EF, both U and the test functions v were varying freely. Thus the

boundary conditions can easily be handled in the present method (which is one
of the advantages of variational techniques).

The initial function uQ was set equal to the free stream value, in particular

with normal velocity different from zero on the step-up CD. The evolution was

then abruptly started by forcing the normal velocity to be zero on CD for / > 0.

In the implementation, an automatic adaptive procedure was used to con-

struct the finite element mesh Th on each slab Sn. The mesh Th was of the

form Th = {t x /„} with Z„ = {t} a triangulation of the underlying spatial

domain Q. The mesh Z was constructed from Z , by local mesh refine-

ment, or coarsening, according to the size of the second partial derivatives of

the exact solution estimated through the computed solution Un_ (for details see

[3] and [1]). The time step tn+x - tn , i.e., the thickness of the slab, was chosen

to be of the order of the smallest diameter of the triangles in Z„.

The method (2.7) gives a nonlinear system of equations to be solved on

each time step. This system was solved iteratively using Gaussian elimination

or relaxation methods on linearized forms of the equations (2.7), with U" -

U"_  replaced by A0(U)(V"+ -TJ"_), and with the 'frozen' coefficients 3¥f.(Z7)

successively updated using the last available approximation of U .
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A

D

B C
0.2

0.6 2.4
-*+«-

Figure 5.1

Computational domain ABC DEFA .

Figure 5.2a
Mesh at time 1.95.

Figure 5.2b
Density at time 1.95 with mesh as in Figure 5.2a.

Figure 5.2c

Isodensity lines at time 1.95 with mesh as in Figure 5.2a.
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Figure 5.3a
Mesh at time 4.

Figure 5.3b
Density at time 4 with mesh as in Figure 5.3a.

Figure 5.3c
Isodensity lines at time 4 with mesh as in Figure 5.3a.

e = 1.7,   u, = 2.6185,  u2 = -0.5063,  e = 5.806

u2 = 0.0

Figure 5.4
The computational domain and boundary conditions.
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0 12 3 4 5

X-COOROINRTE

Figure 5.5
Mesh, contour lines for density and density profile at

x2 = 0.5 , with shock-capturing.

-^^_

i
0
E
N
S
I

! -

D

0 12 3 4 9'

X-COORDINPTE

Figure 5.6
Mesh, contour lines for density and density profile at

x2 = 0.5, without shock-capturing.

In Figures 5.2-5.3 we give the computed velocity, density and mesh at time

1.95 and 4.0 obtained using the following parameter values: à according to

(2.11), S = h/20, ô = 0, where h is the local element size.
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We also present in Figure 5.5 the results obtained with the same SD method

for the Euler equations applied to a stationary shock reflection problem (cf.

[15]) with geometry and boundary conditions according to Figure 5.4. The

numerical solution is obtained after 150 time steps with k = hmin/2. We

further give in_ Figure 5.6 the corresponding results with no shock-capturing,

i.e., with 6 = 0 = 0. We note that in both cases the shock is captured within a

couple of elements and that the slight over- and under-shoots in Figure 5.6 are

eliminated when shock-capturing is added.

Appendix

Proof of'(3.5). It follows by the definition of tp that for sufficiently small h ,

(Al) M,,n<IN,,n>

(A2) \\<P\\2,a^ Ch~l\\(p\\xcl,

(A3) \\<p-(p\\Cl<sj2h\\<p\\xçl.

Thus,

\\vtp - nh(v$)\\a < \\v(<p - ip)\\a + \\v<p - nh(vip)\\a = I + II ,

where by (A3),

I < \\v\\LX\\(p - (p\\u< ^h\\v\\L^\\tp\\x r^,

and by Lemma 3.2, (Al) and (A2),

II < CA||u||L,x>(||0||lin-r-A||0||2in) < C/,||u||¿oo|H|ua .

This proves (3.5a) for 5 = 0. The case s = 1 follows similarly by noting that

P(V-9)\\i,q< ll«IU-'.-lk-^lln + llí;ll/.»ll9'-^lli,Q^cllí;llL-llíí'lli,n'

where in the last inequality we used the inverse estimate ||t>||H.i.«. < Ch~ ||u||Loo.

Finally, one can prove, see [18], that for f E H (Sn)

h/;ii2k<4(«-'ii/ii2 +«ii/,h2),
n n

and thus

00

E AIKÜP)+ ~ (nh(vV))l\\R ̂ 4(WV(P - xh{v9)\\a + h2WV(P - *A(u0)HÎ,n) »
«=o

which by (3.5a) proves (3.5b).   □
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