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WEIGHTED INF-SUP CONDITION AND POINTWISE ERROR
ESTIMATES FOR THE STOKES PROBLEM

RICARDO G. DURAN AND RICARDO H. NOCHETTO

Abstract. Convergence of mixed finite element approximations to the Stokes

problem in the primitive variables is examined in maximum norm. Quasi-

optimal pointwise error estimates are derived for discrete spaces satisfying a

weighted inf-sup condition similar to the Babuska -Brezzi condition. The usual

techniques employed to prove the inf-sup condition in energy norm can be

easily extended to the present situation, thus providing several examples to

our abstract framework. The popular Taylor-Hood finite element is the most

relevant one.

1. INTRODUCTION

The Stokes problem, which describes the flow of a viscous incompressible

fluid, consists of finding u and p so that

-Au + Vp = /   in fl,

(1.1) div u = 0    in Q,

u - 0   on <9fi,

where u indicates the velocity and p the pressure, / denotes a given external

force and Q is a bounded domain contained in R . This is the formulation

in the primitive variables u and p , also called velocity-pressure formulation.

A weak form of ( 1.1 ) suitable for finite element approximations is the problem

of seeking u e V: = [//0'(iî)]2 and p e P: = L20(Çl) such that

(Vu,Vv)-{divv,p) = {f,v),       VîieV,

(1.2) '   ~     ~ ~ ~   ~ ~    ~
(divM,tf) = 0, v?eP,

2 2
where (•, •) denotes the inner product in L (Q), and L0(Q) is the space of

2
L -functions having mean value zero.
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We assume that fi is a convex polygon and {^h}h is a regular and quasi-

uniform family of decompositions of fi [15, pp. 132, 140]; h stands for the

mesh size.  Let Yh c V and PA c P denote finite element spaces associated

with J~h. The discrete problem then reads as follows: find uh e \h and ph e Ph

such that

(Vuh, Vv) - {divv , ph) = {f, v),       VweVj,
(1.3) ~ ~ ~   ~ ~    ~

(divuh,q) = 0, V?ePr

The discrete spaces \h and Ph must satisfy a compatibility condition for

(1.3) to be stable. This constraint is expressed by the celebrated discrete inf-sup

condition

(div v, q)

(1'4) ™lm^rßM*v   V«6P»-

where ß is independent of h [3, 7, 15]. This leads to optimal-order energy

error estimates as well [3, 7, 15].

The continuous inf-sup condition is equivalent to having a bounded right

inverse for the divergence operator subject to homogeneous Dirichlet boundary

conditions; this issue is discussed in [2] for polygonal domains. Here we show

that there exists a right inverse for the divergence operator which is almost

bounded in weighted Sobolev spaces; this is the only two-dimensional result

of this paper. This crucial property enables us to introduce a proper notion

of discrete weighted inf-sup condition and, in addition, to demonstrate that

usual techniques employed to prove (1.4) can be generalized so as to lead to our
weighted inf-sup condition. Several examples such as the popular Taylor-Hood

finite element illustrate the theory.

We then derive quasi-optimal maximum norm error estimates for spaces sat-

isfying the weighted inf-sup condition; the error analysis is «-dimensional. The

main tool is, as usual, the method of weighted Sobolev norms introduced by

Natterer [17] and Nitsche [18]. Our present results contain those in [11], which

rely on locally constructing the so-called Fortin's operator.

An outline of the paper is as follows. In §2 we prove several a priori esti-

mates in weighted norms. In §3 we introduce the weighted inf-sup condition

and extend standard techniques in energy norm to this new situation; several

examples illustrate our results. We conclude in §4 with the error analysis in

maximum norm.

2. Weighted a priori estimates

We start this section by recalling the definition of the usual weight function

along with some of its fundamental properties.

The weight function o is defined by

(2.1) a(x): = (\x-x0\2 + 62)l/2   forx,x0efi,
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where 6 > h is a small parameter to be determined later on. It is well known

that a satisfies the following properties [8, 18]:

(2.2) max maxCT(x)/minfj(j¡:'
x€T x€T

<c.

(2.3) \DJa (x)\<C(j,a)a   J(x),       Vxefi,

where a e M and DJ f denotes the tensor of jth derivatives of /. Hereafter,

the letter C will indicate a positive constant independent of h and x0 , but not

necessarily the same at each occurrence. Moreover, a simple calculation shows

that

(2.4) .    f o(x)-{2+")dx<iCe~a>        a>°'
Ja 'X C\\ogd\,    a = 0,

for 9 sufficiently small. For a e R and j e N, the weighted Sobolev seminorms

are defined by

llalli-— E /VtfllV,       V*€tf;'(ß);
\ß\-JJa

the same notation will be used for vector-valued functions.

We assume that for some k > 1,

\h\TD[Pk(T)]2,     ph\T^pk_,(T),     vre^,

where Pk ( T) stands for the space of polynomials of total degree not greater than

k restricted to T. Given q e L2(Q) (or v e V ), the symbol q = Ihq e Ph ©R

(or v = Ihv € VA ) indicates either its local average interpolant [15, p. 109] for

continuous elements or its local L2-projection for discontinuous ones. In view

of its local character, Ih is an optimal-order interpolation operator in LP(Q)
( 1 < p < oo ) as well as in weighted Sobolev norms. Moreover, the following

superapproximation properties hold:

(2.5) \W~2q-Ih(^2^)V<C^\\q\\a-2,

(2.6) \\V[a~2q - /„(a"2,?)]^ < C^{\\q\\a-, + ||Vflr||„-2),

for all q ePh®R; similar bounds are valid for all v eYh. These estimates

come from applying the Bramble-Hilbert lemma.

We now turn our attention to a priori estimates in weighted norms. Our first

result is restricted to two dimensions and will play a relevant role afterwards.

Lemma 2.1.   ||p||ff-2 < C| logÖ|I/2J|c?||//i(S1),    Vpe//'(fi).

Proof. By the Sobolev imbedding theorem in two dimensions [19], we have

IHIz/(o.) <Csl/2\\v\\Hi{a),        V2<5<oo.
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Making now use of Holder's inequality together with (2.4) yields

The desired result then follows from taking p = \ log ö|.   D

To proceed further, we need some well-known energy a priori estimates for
_19 2

the Stokes problem. Let b e [H (fi)] and g e Z.0(fi). Then there exists a

unique solution (v , q) eY xP to the generalized Stokes problem [15, 21]

-Av + Vq = b    infi,

div v = g   in fi,

which satisfies

(2.7) \\v\\Hx(Q) + \\q\\ûm < C(\\b\\H-iIQ) + \\g\\L2{Cl)) ■

In addition, if b e [L2(Q)]2 and g e /Y0'(fi), then [16]

(2.8) \\v\\#(Q) + \\q\\Hi{a) < C(\\b\\L2{a) + \\Vg\\L2(a)).

We are now in a position to prove a crucial result. It roughly says that the di-

vergence operator possesses a right inverse which is almost bounded (uniformly

in h ) in weighted Sobolev spaces.

Lemma 2.2. Given g e L (fi), set m : = |fi|-1 fa S ■ Then there exists v G V

such that

(2.9) div v = g - m   in fi

and, moreover,

(2.10) HVt;||ff2<C|log0|1/2|^|^.

Proof. In order to construct v € V, we resort to the generalized Stokes problem.

Let v E V be the solution to

-Av + Vq = 0 ,

(2.11) ~
div v = g - m.

Here, q denotes a function in L (fi) having a mean value to be determined

later on. To prove (2.10), it suffices to deal with the components p. = x¡ -x°

(j = 1, 2) of x -x0 rather than a [8, p. 148]. Since no confusion is possible,
we remove the subscript j . We now observe that (pv , pq) satisfies the pair of

equations

-A(pv) + V(pq) = -2V/Z • Vv + qVp,

div (pv) = p(g - m) + v ■ Vp.
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Hence (2.7), in conjunction with the fact that p is linear, yields

(2.12) l|V(/iu)||L2(n) < C(||«||lJ(0) + \\q\\H-Ha) + MS - m)\\ûm).

Our next task is to evaluate the right-hand side of this expression. To bound

WiWh"'(í2) ' we need t0 introduce an auxiliary function n g C£°(fi) so that

/n w = 1. Since q is defined up to a constant, we can choose it so that Jn qn =

0. Given <p e H{Q (fi), let (tp, X) G V x P be the solution to the auxiliary

problem

-A\p + VX = 0,

div ip = tp - nr,

where r: = ¡n(p . Since the compatibility condition fQ tp - nr = 0 holds, the

previous problem admits a unique solution. Thus

(q, tp) = (q, tp - nr) = (q, div tp) = (Vü , Vip) = -(v , Ay/),

because tp-rjr G H^(Q.) yields tp G [H (fi)] . Moreover, from (2.8) we deduce

that

\(Q,<P)\< C\\v\\L2,a)y - r,r\\H>{Q) < C\\v\\L2{Q)\\ip\\Hi(a) ;

therefore,

k\\H-^a)<c\\v\\L2iay

To estimate |M|,2,n,, we employ a duality argument. Let (tp, X) G V x P be

the solution to the auxiliary problem

-Axp + VX = v ,

div ip = 0.

In view of (2.11) we can write

IMlí2(n) = (VH ' V^ ~ (divH ' ^ = v? ' div V) - (S - m, X)

=-0M> < II^PII,-

Using Lemma 2.1, in conjunction with (2.8), yields

NI¿2(n)<qiogo|1/2||^||a2.

It only remains to estimate the rightmost term in (2.12). It follows that

\\ß(g - m)\\2L2{a) < I a2\g-m\2 <cij a2\g\2 + m2 j a2

<C\\o%e\\\g\tai,
2

where we have used (2.4) and the Cauchy-Schwarz inequality to bound m

Replacing the above estimates in (2.12), we find that

llv^n^Q^qiogöi172«^.
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This, combined with the equality

j=i

and (2.7), implies the asserted estimate.   D

Remark 2.1. The previous argument is essentially two-dimensional. The natural

«-dimensional analogue of (2.10) would be

||VH||ct„ < C|log(9|,/2||^||CT„.

If this estimate were available, then the remainder of this paper could be easily

extended to higher dimensions.
We conclude this section with an a priori estimate which extends (2.8) to

weighted Sobolev spaces.

Lemma 2.3. Let b G [L2(fi)]2, g G //0'(fi) and <p e C0°°(fi) be given, with

Jrj (f> — 1. Let (v , q) G V x P be the solution to

-Av + Vq = b in il,

diw = g - mtp   in fi,

where m: = Jng ■ Then there exists a constant C > 0 such that

(2.13) \\D2v\\al + \\Vq\\a2 < C(\ logöl"2^^ + \\Vg\\a2 + \\g\\ûm).

Proof. As in the previous lemma, we deal with the components u of x - x0

instead of a , and we remove the subscript j . A simple calculation leads to

-A(pv) + V(pq) = pb - 2Vp ■ Vv + qVp ,

div(pv) = p(g - mcp) + Vp • v .

Using the fact that p is linear, and (2.8), we easily obtain

\\D2(pv)\\L2(ri) + \\V{pq)\\L2IQ) < C(\\pb\\L2{Q) + \\g - m<p\\L2W

+ \\pV(g - m<p)\\L2{Q) + \\Vv\\L2{a) + \\q\\L2{a)).

We start examining the last two terms. In view of (2.7), we have to bound

ll^ll//_1(iî) and H# _ W(^IIl2(í2) • Given tp e V, we can make use of Lemma 2.1

to arrive at

\(b,<?)\ < II^IHI^ < C\logd\l/2\\bl2MHl{n);

hence,

llèll^-t^^Cllogol172^^.

At the same time, as m - Jng < C\\g\\L2{il), we also have \\g - w0||L2(£2) <

C||g||L2(i2). We finally argue as in the end of the proof to Lemma 2.2 to obtain

the desired result.   D
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Remark 2.2. It is not too difficult to generalize Lemma 2.3 to higher dimensions.

In fact, assuming that fi is sufficiently smooth, thus having precise pointwise

bounds for the Green's function of the Stokes problem, one might proceed as
in [14, Lemma 3.2] to end up with

\\D2v\\a„ + \\Vq\\a» < C^P—{\\b\\a.+2 + UVsll^ + 11*11,,.).

It turns out that this estimate suffices for later purposes.

3. Weighted inf-sup condition

In this section we introduce a proper notion of discrete weighted inf-sup con-

dition, which is based on a crucial property fulfilled by the divergence operator.

This will be our main hypothesis in the subsequent error analysis. We also

demonstrate that standard techniques used to prove the inf-sup condition in

energy norm can be suitably extended to the present situation, thus providing

several examples.

Lemma 3.1. There exists a constant C > 0 such that

{divv,q) _

(3-1) SUP    „rr.:.. >C\\Oëer/2\\q\\-2, VtfGP.
uev IVul

Proof. Given # G P, set g: = a 2q and let v G V indicate the function in

(2.9). Hence,

livuii^ < c|iog0|1/2||<r2c = qiog0|1/2||9||ff-2,

which, in turn, implies (3.1).   o

Remark 3.1. It would be of interest to know whether or not the inf-sup constant

/?0 = C| log 6>n1/2 is optimal.

In view of (3.1) we say that a pair (Yh , Ph) satisfies the discrete weighted

inf-sup condition if there exists C > 0 independent of « such that

(divv,q) _

(3.2) SUP    ||T7~||       >Q^g9\    ' \\q\\a-2,        V?€PA.
irE\j    \\vv\\a2

The generalization to higher dimensions consists of simply replacing a and

a~   by a" and a~" , respectively.

Remark 3.2. The subsequent error analysis relies mainly on the structure of

(3.2) rather than on the particular expression of ßg .

Our next goal is to develop two techniques for the effective verification of

(3.2) and to illustrate their application to well-known finite element spaces. The

first one is based on the fact that condition (1.4) is equivalent to the existence

of a global operator n^ : V -+ V^ so that [12]

(3.3) (dvv(v-nhv),q) = 0,       Vi/ePj,

(3-4) llvn^||L2(i2)<c||vH||L2(i2).
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In many practical situations Ylh can be constructed locally. In this case, quasi-

optimal pointwise error estimates have been derived in two dimensions using

a different approach; see [11] where also several examples were reported. The

following lemma, which resembles the so-called Fortin's trick [13], shows that

(3.2) is valid as soon as we have

(3.5) iivn^ii^ciiv^,     V^gV.

This property is an easy consequence of (2.2) provided n^ is a local operator

or, equivalently, whenever (3.4) is valid locally. Note that Uh is not required to

be defined elementwise for (3.5) to hold. Indeed, the definition of Uh on one

element may also involve the adjacent ones, as customary when dealing with

the local average interpolant [15, p. 109; 1].

Lemma 3.2. Let Ylh satisfy (3.3) and (3.5). Then (3.2) holds.

Proof. Let q G Ph c P. By virtue of Lemma 3.1, there exists v G V such that

(divv,<?) _,/2
—¿-->C|logö|   1/2||,||ff-2.

Next, set vh : = Ylhv G VA and use (3.3) and (3.5) to get (3.2).   G

We now consider some examples for which Lemma 3.2 applies. Let ¡Th

be made of triangles T and let Xy, X2, X3 denote the barycentric coordinates
of T.

Example 3.1. Mini Element. It was introduced by Arnold, Brezzi and Fortin [1]

as a remedy for the unstable P{ - P, element. The discrete spaces are defined
by

Y^^i^moX^X^T)]2,        Ph\T:=Px(T),        VTg^,

and Ph c C°(fi) ; thus k = 1 . The local operator Uh was explicitly built in
[1] as a means to demonstrate stability (see also [15, p. 175]).

Example 3.2. Bernardi-Raugel Element. The discrete spaces are defined by [5;
15, p. 134]

VA|r : = [/>, (F)]2 espan{£,,£2, £3},       Ph\T: = P0{T),       VTg^,

where p{ : = X2XJvl , p2 : = XlXiv2 and p3 : = XiX2f3, v (. being the unit vector

normal to the opposite side to vertex / ; thus k = 1 . This element may be

viewed as a simplification of the classical P2 - P0 element which turns out to

fit in our theory as well.

In many circumstances the operator n^ is not known to be local, as happens
for the Taylor-Hood finite element [15, 20]; so (3.5) might fail to hold. Our
next goal is thus to generalize a method due to Boland and Nicolaides [6], which

reduces the proof of ( 1.4) to the verification of a local inf-sup condition. To this

end, we need some extra notation. Let Qh c L (fi) be so that P^ = Q^ n P,
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and assume that Qh contains the piecewise constant functions. Let fi be

decomposed into a finite number of disjoint, connected and open macroelements
fir which, in turn, are unions of a number of finite elements bounded uniformly

in « ; hence diam(fir) < Ch for all 1 < r < R . Set

Q,

= {veYh: v = 0 in fi\fir},

= {Q\a ■ <?eQ„},      P,: = Qfn L2(fir),

(16) supW^T->yll<7llL2(n)>        ViePr,     l<r<Ä,
v€\    ||Vl>|L2,r. >

{qGP:q\n is constant,   1 < r < R}.

Lemma 3.3. Let the pairs (Yr, Pr) satisfy the local inf-sup condition

(div v, q)

L\ar)

where y > 0 is independent of h . If there exists a subspace Yk of Yh such that

the pair (Yh, Ph) satisfies (3.2), then (Yh, Ph) also satisfies (3.2).

Proof. The proof is similar to the original one without weights [6; 15, p. 130].

Given q g Ph , we split it as follows:

q = q* + Q,

where

qePh,        <7|n = |firf' /   q       and   ?*|0 ePr.
JQr

This is an orthogonal decomposition in L (fir) for all 1 < r < R . Hence,

il  il2        - il  *n2        x il -il2

The fact that diam(fir) < Ch , in conjunction with (2.2), yields

(3-7) C-l\\q\\2a-2 a < Hi'lfi-,^ + |k"||2-2 ̂  < C\\q\\2a-2 ̂ ,

where ||<7||CT-2 Q : = ¡n q a~  . Moreover, by (3.6) and (2.2), there exists v* e

V. such that

2

o~2,Slr(3.8) [ q*dv/v*r = \\q'\
Jar

(3-9) W^X\ar<c\^l-\nr

similarly, since (Yh, Ph) satisfies (3.2), there exists v G Yh such that

(3.10) / idivt; = ||^|l2-2,
Ja

(3.11) livoiu^qiogöi^iic-^
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Let v* G Yh be defined by v*\n = v* for all 1 < r < R. Next set

v : = v* + av ,

where a = K\log6\~ and K > 0 is to be selected later on. From (3.11) it

follows that

(divv, q*) < C\log6\l/2\\q\\a-2\\q*\\o-2.

Therefore, by (3.8) and (3.10), we have

(divv,q) > ||i*||2-2 +q||^||2-2 -aC|logö|1/2||^||(7-2||i*||(7-2

>(l-a||logö|)|k*||2-2+a(l-Ce)||^||2-2.

A proper choice of e > 0 and K implies

(diví;,í)>C(||^||2-2 + |logor1||í||2-2).

On the other hand, (3.9) and (3.11) together with the definition of a yield

iiv^ii^^cdi^ii^ + iiogör'^ii^-ii^),

which concludes the proof of the lemma.   □

We now end this section with some applications of Lemma 3.3 to well-known

finite element spaces. First, let fi be partitioned into triangles.

Example 3.3. Taylor-Hood Element. This popular finite element is defined by

[15,20]

Vh\T- = [P2(T)]2,    Ph\T: = Px(T),    Vie^       and       P,cC°(fi);

thus k = 2. The local condition (3.6) is valid [15, p. 178], whereas the global

link is provided by Yh\T = [P2(T)]   and Ph\T - P0(T) which verify (3.2) (see

Example 3.2). A direct proof of (3.2) can be readily carried out by repeating

the original one by Bercovier and Pironneau [4] and Verfürth [22], this time

with weights.

Example 3.4. Crouzeix-Raviart Element. Let P¡(T) be the space of homoge-

neous polynomials of degree / restricted to T. Let k > 2 and set [9, 15]

Zh\T: = [Pk{T)®X{X2X,Pk_2(T)]2,        Ph\T: = Pk_,(T),        VTg^.

The local condition (3.6) follows easily from taking single elements to be macro-

elements fir [15, p. 141]. The spaces V^ and Ph are as in Example 3.3.

We finally conclude with an example of quadrilateral elements which also

satisfy (3.2). Let fi be decomposed into convex quadrilaterals.
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Example 3.5. Let k > 2 and set

lh\T- = [Qk(T)]2       and       Ph\T: = Pk_{(T),        VTg^,

where Qk stands for the space of polynomials of degree not greater than k in

each single variable. The inf-sup condition (3.2) is verified in a similar fashion

to that above [15, p. 156].

4. Error analysis

The present goal is to prove that under the sole assumption (3.2), quasi-

optimal error estimates in the maximum norm follow for both velocity and

pressure. This may be regarded as a natural extension of the standard theory in

energy norm [7, 15]. Our main tool is the method of weighted Sobolev norms

introduced by Natterer [17] and Nitsche [18].
An outline of the analysis is as follows. We first obtain an error estimate for

the velocity gradient Vu in terms of errors for the velocity u and pressure p .

We next derive an error bound for u depending on the errors for Vu and p .

The weighted inf-sup condition finally provides an error estimate for p asa

function of the error bound for Vu, and allows the successful assembly of all

partial results to produce rates of convergence for both physical variables. A

similar strategy was previously used in [10].

Before we get started, we need some further notation, namely,

iu = »-}th>        ep=p-ph;        iu = û-uh,        êp=p-ph,

where u and p stand for local interpolants of u and p , respectively. We also

set

Eh: = \\V(u-û)\\2a-2 + \\u-û\\2a-, + \\p-p\\l-2-,

6:=Kh\\oëh\,    n: = (K\logh\)~l,

where K > 0 is a large parameter to be selected. The error equations read as

follows:

(4.1) (Veu,Vv)-(divv,ep) = 0,        V«eV4,

(4.2) (div£u,<7> = 0,        V?€Pr

The quasi-optimal pointwise error estimates are summarized in the following

theorem.

Theorem 4.1. There exists a constant C > 0 independent of h such that

(A|logA|)"'||£j|Lcc(n) + ||V£j|L-(0) + |logAr1/2||eJLoö(0)

(4.3) /
< C\ logAI      inf ||V(w - u)||L~(n) + mf \\p - q\\L~{Q)

for all pairs (Yh , Ph) satisfying the weighted inf-sup condition (3.2).

The proof of (4.3) will be split into three steps. Our first task is to demon-

strate the following (partial) error estimate for the velocity gradient.
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Lemma 4.1. There exist constants K0, C > 0 such that

2 \

(4.4) We. <C \íuW<,-* +
h
-¿i + 1\ \\ep\\a-2 + n   Eh

for ail 6>K0h.

Proof. Note first that the following equality holds:

,2

(4.5)

= (V£„ , er    V(u - Ü)) - (Veu , £H.Vcr"

+ (Ve„, V(cT"2êJ)=:I + II + III.

The first two terms can be easily handled in view of (2.3), namely,

i,ii<£||V£j|;-: + c£-|||£j|2-, + ce-1£/!.

Hereafter, £ > 0 will indicate a small parameter to be specified later on. Next

set ip : = o~~eu and use (4.1) to rewrite the remaining term as follows:

III = (V£M ,V(tp-tp)) + (div(g - tp), ep) + (div ip, ep) = : IV + V + VI.

The first two terms are again easy to bound, now by virtue of (2.6). Indeed, we

have

IV + V < c\ (||V£X-2 + ||e,||^) (\\êJl-< + \\VeJl-i)

<(e + K-])\\Ve\\l-2

+ C
-i A   „     „2 „     „2 / .        -lA   \ „

Making use of the definition of tp , we obtain

VI = (div£M, a~2ep) - {(u- u)-Vo~2, ep) + (e¡rVcr~2, ep) =: VII + VIII + IX.

A simple calculation based on (4.2) and (2.5) gives

VII = (div£u, o~2êp-Ih(o~2ëp))-(div(u-û), a~2ep) + (div£M, a~2(p-p))

< e\\VeJ\2a-2 + C^1 K + «j ||ep||2-2 + Ce~l (^ + rj~l j Eh .

At the same time, (2.3) implies

VIII < C||« - û\\a-4ep\\a-2 < Cn\\ep\\l-: + CrfxEh.

Term IX will be handled by means of a duality argument. Set g : — eu • Vo~~ G

//n (fi) and let (v , q) g V x P be the solution to the auxiliary problem

(4.6)

-Av + Vq = 0 ,

div?; = g - mc,
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which, by Lemma 2.3 and (2.1), satisfies

(4.7)

Hence,

(4.7) U^t;^ + \\Vq\\a2 < Cß-l(\\VeJa-2 + \\eu\\a-<).

IX = (div(£ - v), ep) + (div£, ep) + m(cb, ep) = : X + XI + XII,

and we now examine these three terms separately. By (4.7), we easily get

X < Ch\\ep\\a-2\\D2v\\a2 < B\\Vejt-2 + ||£J2-4 + CV' j2\\ept-2.

Making use of (4.1),(4.2) and (4.6), we further split XI as follows:

XI = (V£u, V(v - v)) + (div eu,q-q);

thus

XI < CA||V£j|CT-: (\\D2v\\a2 + \\Vq\\a2) < c\ (||V£J2-2 + ||£j|2-,) .

By virtue of (4.2), (2.3) and (2.4), we deduce that

m = (eu, Vct"2} = (div£H, Ih(o~2) - o~2)

< CAIIVf II -2||Vct"2|| ,<ch\Ve II -:,

and, as a result, that

h h1
XIKC^IIWJI -:11e- Il -2 < e||Ve„||2-2 + Ce"%||eJ2-.

—        A"     ^»M"      "   P"0       ~     "      ^,U"B ni"   Pu"

Collecting all above estimates and inserting them in (4.5), we realize that a

suitable choice of e and KQ allows the term ||Vé,m||(7-2 appearing in the right-

hand side of the resulting expression to be absorbed into its left side, thus

yielding the desired estimate (4.4).   □

Remark 4.1. Instead of the duality argument (4.6), we may have applied the

obvious inequality

IX<CW|kp|¿-2+CW-'||£j|2-4.

This would have led, however, to higher powers of logarithmic factors in the

final estimates.

Remark 4.2. Let U = l\hu , where Ylh satisfies (3.3) and is defined locally; thus

n/; is an optimal interpolation operator in weighted norms. Then we split term

VI above as follows:

VI = (div eu , a~2ep) + (£„ • Vct"2 ,ep)=:A + B.

In evaluating term A we make use of the required properties on n/;, together

with (2.5) and (4.2), to arrive at

A = (div£M, cr"2^-//!((T~2^)) + (div£i(, a~2(p-p))

<E\\VeJ\l-2 + Ce-l^\\ep\\l-2 + Ce-lEh.
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The analysis of term B is similar to that of term IX above. In fact, we exploit

the local character of n^ to replace êu by eu in (4.7) and next deal with m

as follows:

m = (div£u, Ih(cj-2) - a"2) < C-||V£Jff-2.

These estimates lead to the following slight improvement of (4.4):

The second step in our error analysis consists of deriving a (partial) error

bound for the velocity.

Lemma 4.2. There exists a constant C > 0 such that

(4-8) ||£j2-< < C^| logö| (||V£j2-2 + \\ep\\2a-2) .

Proof. We employ a duality argument. Let (v , q) eY xP be the solution to

the auxiliary problem

-Av + Vq = a" e„,

(4.9)
div v - 0,

which, in view of (2.13), satisfies

(4.10) \\D2v\\a2 + \\Vq\\a2 < Cd-l\\og6\l/2\\eJ\a-<.

Consequently, making use of (4.1), (4.2) and (4.9), we can express lkJI^-4 as

follows:

ll£»É-4 = <v£« ' v(£ - £)> + <div(£ - £) - eP) + (div£« ' « -1) ■

By (4.10), we thus have

||£j2-< < Ch (\\VeJ\a-2 + \\ep\\a-2) (\\D2v\\a2 + \\Vq\\a2)

<c5|toitf|l/2(||V£j|,-i + |k,B.-a)ll£.ll^.

which clearly implies the assertion (4.8).   D

Remark 4.3. Let v = Uhv , where Ylh is a local interpolation operator which

verifies (3.3). Then, the middle term in the above expression of \\eu\\a-< can

be also handled as follows:

(div(£ - v), ep) = (div(£ -v),p-p)< C-^\ log0|1/2||£ Ja-4\\p - p\\a-2.

This results in the following substitute for (4.8):

ll£jl^<C^|logo|(||V£j¿-2+^).

The final step entails the use of the weighted inf-sup condition to produce a

(partial) error bound for the pressure.
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Lemma 4.3. There exists a constant C > 0 such that

(4.11) ||^|¿-2<C|logo|(||V£j|2-2 + ^).

Proof. Set q: = p - ph- |fi|-1 ¡np G Ph . Then, for all v G V¿ , we have

(div v , q) = (div v , e) - (div v , p - p) - ( div v , |fi|~   / p \

= (Vv,Veu)-(divv,p-p)

^llv£ll^(llv£X- + ̂ )'

as a consequence of (4.1) and the fact that the rightmost term in the first line

vanishes. Using now the weighted inf-sup condition (3.2) yields

1/2 <dÍVW>4> m, v
IIC-2<qiogö|1/2sup^r<qiogö|1/2(||V£j|a-2 + ^).

Finally, since p has mean value zero, we arrive at

\ep\\a-2< \\p -p\\a-2 + \\q\\a-2 + I"!"' f{p-P)
JO.

<C\\o%d\Xll(\\VeJ\a-2 + Eh),

concluding the proof of the lemma.   D

What remains to be done is to assemble the partial results (4.4), (4.8) and
(4.11) to end up with global error estimates in weighted Sobolev norms. We

first obtain

^£j^<c(^|log0|2-r7|log0|)(||V£J2-2+£A)+C»,-

< CK~{||V£J2-2 +C(K    + K\ \ogh\)Eh,

where we have used the definitions of both 6 and «. Then, taking K suffi-

ciently large leads to the following bound for Veu :

||V£j2-2 < C\ \ogh\Eh = C\ logAI (||V(m - ¿)||2-2 + ||m - £||2-4 + \\p-pt-2) .

In order to derive error bounds for velocity and pressure, we just have to replace

the latter estimate in (4.8) and (4.11), respectively. We then find

ll£j^<C^|log0|X       |kp[|2-2<qiogö|2£A.

We are now in a position to prove Theorem 4.1.   Let x0 in (2.1) be chosen

so that \Vêu(x0)\ = \\Vêu\\Lo°ia). The fact that Vêu is piecewise polynomial,
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coupled with (2.4), yields

Hv£Jz~(fi) ̂ Hv£Jz~(Q) + llv(íí - Û)Hl-(Q)

^cfllv£jl«T-J + Hv(îi-û)lli:-(Q)

<C^\loëh\i/2El/2 + \\V(u-û)\\L~(Cl]

< Q log«|2 (||V(M - M)||Loo(û) + \\p -P\\L™{ÇI)) •

A similar calculation, now with a different choice of x0, leads to the remaining

estimates for velocity and pressure. The theorem is thus proved.   D

Remark 4.4. The quasi-optimal pointwise error estimates in (4.3) contain log-

arithmic factors which are probably not sharp. The main reason why they

are worse than those for the Poisson's equation, produced by the method of

weighted Sobolev norms, is the logarithm appearing in the weighted inf-sup

condition (3.2). However, we may improve upon (4.3) whenever the operator

Uh in (3.3), (3.4) can be constructed locally. In fact, combining Remarks 4.2

and 4.3 with Lemma 4.3, and choosing Ö = AT«| log«|'/2, we find

ä_1||£JIl-(Q) + I log"|1/2Hv£jz~(íV) + lk,ll¿-(0)

< C| logA|3/2    mf ||V(k - £)||Loo(n) + mf \\p - î||l»(Q)

This result is similar to that in [10] but is still a bit worse than the one in [11].

Remark 4.5. It would be of interest to know whether the logarithms could be
completely removed for k (degree of interpolation polynomials) > 1 , as hap-

pens for the Poisson's equation.
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