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LATTICE RULES FOR MULTIPLE INTEGRATION
AND DISCREPANCY

HARALD NIEDERREITER AND IAN H. SLOAN

Abstract. Upper and lower bounds for the discrepancy of nodes in lattice

rules for multidimensional numerical integration are established. In this way

the applicability of lattice rules is extended to nonperiodic integrands.

1. Introduction

Lattice rules for numerical integration over the s-dimensional unit cube

[0, if were introduced by Sloan [11] and Sloan and Kachoyan [13], and the

theory of lattice rules was developed further by Sloan and Walsh [12], Sloan

and Kachoyan [14], and Sloan and Lyness [15]. An N-point lattice rule approx-

imates the integral of a function / over [0, if by

1 A'"1

(1) A/£/W>
N=0

with distinct nodes x0, ... , xjV_, e Us = [0, 1 )s for which the corresponding

residue classes \0 + Zs, ... , *N_¡ + Z5 form a subgroup L of the torus group

R!/Zs. Geometrically, this means that L = U„Jo (x« + ^) > considered as a

subset of Rs, is a lattice in Rs, whence the name "lattice rule". The special

case where L is a finite cyclic subgroup of Is /Zs yields the number-theoretic

method of good lattice points due to Korobov [5] and Hlawka [3] (see also [4,

8] for expository accounts of this method and the recent survey in [10]).

Lattice rules were originally conceived for the numerical integration of peri-

odic functions having [0, if as their period interval, but the approximation ( 1 )

can of course also be used for nonperiodic integrands /. An upper bound for

the integratiop error is obtained from the classical Koksma-Hlawka inequality

[2] whenever the total variation V(f) of / over [0, if in the sense of Hardy

and Krause is finite (compare also with [6, Chapter 2]). The resulting error

bound is V(f)DN , where DN is the discrepancy of the nodes xQ, ... , xAr_, .

We recall that the discrepancy of any points t0, ... , tN_, 6 Us is defined by

dn = dn%> ••• >t/v-|) = sup
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where J runs through all half-open subintervals of Us of the form J =

Oy= i[w,. vj) > A(J ; N) is the number of integers n , 0 < n < N - 1 , with

tn e J , and Vol( J) denotes the volume of J .

In the present paper we study the discrepancy of the nodes in a lattice rule.

We will establish upper and lower bounds for the discrepancy, which provide

links with the figure of merit p(L) introduced by Zaremba [16] for the method

of good lattice points and extended to general lattice rules by Sloan and Ka-

choyan [14]. We will also point out some useful properties of p(L). To define

p(L), we consider the dual lattice

L1 = {h 6 R* : h • x e Z for all x e L},

where h • x denotes the standard inner product of h and x. Since L contains

Is as a sublattice, it follows that Lx ç Is. For h e Z put r(h) = max(l, \h\),

and for h = (A,, ... , hs) € if put

r(h) = !!'■(*>) ■
7 = 1

Then the figure of merit is defined by

p(L) = min r(h).
hez/

2. Upper bounds for the discrepancy

Let Xq, ... , xA,_! e Us be the nodes in an AZ-point lattice rule with N > 2,

and let L be the corresponding lattice in M's. We assume from now on that

í > 2, since the case 5 = 1 is trivial (the nodes then form a set of equidistant

points in [0, 1)). Let C(N) be the set of all nonzero h = (A,, ... , hs) € if

with -N/2 < hj < /V/2 for I <j <s. For integers h e (-N/2, N/2] we put

1   '    '    \ 1 if A = 0.

For h = (A,, ... , hs) € C(N) we write

s

r(h,N) = î[r(hj,N).

7=1

Then we define

(3) R(L)=      Yl r(h, N)
heci.vjn/. -

It is an easy result (see Proposition 3 in the next section) that C(N) n L    is

nonempty for s >2 .
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Theorem 1. The discrepancy DN of the nodes x0, ... , xN_i G Us in an N-point

lattice rule satisfies

DN <^ + R(L).

Proof. By [ 14, Lemma 1 ] we have Nxn eZs for 0 < n < N - 1 . Thus we can

apply [7, Lemma 2.2], which yields

■x - N+   ^   r(h, N)

/V-l
2n;h*x„

n=0

For he Is it was shown in [14, Theorem 1] that

1   y»    27r/h-x„ _ J   1     if h S L    ,

Ñ^oe "{o   ifhtL\

and so the desired result follows.   D

We show now that R(L) can be bounded from above in terms of the figure

of merit p(L) defined in (2).

Theorem 2. We have

RiL)<W)(ikT'{{[otN), + l{[otNr')-
Proof. We have r(h, N) > 2r(h) for 0 < |A| < N/2, since sin?ix > 2x
for 0 < x < 1/2, and also r(0, N) = r(0). Thus, r(h, N) > 2r(h) for all
heC(A/),andso

(4) R(L)<¡     U     i=:ii,(7).
heC(A')ni.-L

To bound Rt(L), we split up C(N) into 2s "quadrants" as follows. Put

/„ = (-N/2, 0], /, = (0, N/2], and for d = (</,, ... , ds) with dJ = 0 or 1 ,
define

0(d) = {h = (A,, ... , hs) G Is : hj e Id for 1 < j < s and h / 0}.

Then we can write

P,(L) = £S(d),        with 5(d) =      £      ^.
d he()(d)ni.x

We consider now 5(d) for fixed d. Let to be the smallest integer with 2M >

N/2, and let p. be the largest integer with 2'' < p(L) ; we can assume p. > 0,

since the case p(L) = 1 is easily dealt with by [7, Lemma 2.3]. To allow us to

further decompose the sum 5(d), we now define, for each q = (q2, ... , q ) e

with  1 < q  < (o , 2 < j < s ,

M(q) = {(A2, ... , AJ G Zi_1 : 2"'~' < r(Ay) < 2"' for 2 < j < s).

,5-1
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Then it is clear that we may write 5(d) as the sum, over all permissible vectors

q,of

heQWnz.-1-
(A2,...,AJ)€A/(q)

Case 1:  q2-\-\-qs</u + s-l. Put

A(q) = 2-*--^-l/>(X)>l,

i(q, ¿) = {A G Z : ¿A(q) < r(A) < (i + l)A(q)}    for¿7eZ,  0 < b < [N/2].

We claim that if q — (q2, ... , qs) belonging to Case 1 and bel, 0 < b <

[N/2], are given, then there exists at most one h = (hx,..., hs) G Q(á) n

L such that A, G A^q, A) and (A2, ... , hs) G M(q). For suppose h' =

(h\, ... , h's) t¿ h" = (A", ... , A") are two points satisfying all these conditions.

Then AA(q) < r(h\), r(h") <(b+ l)A(q) and Aj, A" G /d , hence r(h\ -A") <

A(q). For 2 < j < í we have 2q>~x < r(h'j), r(h") < 2"' and h'j, h" e Id ,

hence r(A' - A") < 2^~  . Therefore,

r(h' - h") = f[ ^ - *J) < A(q)2?2+"+^+1 = *L).
7=1

On the other hand, h' - h" G L , since L is an additive subgroup of Rs,

and also h' - h" ^ 0, thus r(Yi - h") > p(L) by (2). This contradiction proves

the claim.
Consider the contribution to 5(d, q) arising from those h = (A,,..., hs) G

ß(d) n Lx with (A2, ... , hs) € M(q) for which A, G A"(q, b). For A = 0 we

have, trivially, r(h) > p(L), and for b > 1

r(h) > AA(q)2Í2+"+?í~í+1 = A/j(L) .

Summing over b , we obtain

1     (      IJV£!rlll 1
(5) 5(i,^<_^l+   g   ¿J<^Z)(l+log^)>

where we used [7, Lemma 3.7].

Case 2:  <?, H-h q > // + 5 - 1 . Choose integers v1, ... , ¡7   with 0 < v. < q.
¿ S L S J J

c_1

for 2 < j < s and v2 + ■ ■■ + vs = p.. For every a = (a2, ... , as) G Z with

0<a- <29'"^"' for 2<j<s let

M(q, a) = {(A2, ... , hs) G t~[ : 2*'_1 +a^ < r(A,.)

< 2*'_1 + (ay + 1)2"J for 2 < j < s}.

Then M(q) defined above is the disjoint union of the sets M(q, a). Put

K(b) = {AgZ: 2b<r(h) <2b+l)   for b G Z,  0< A<[/V/4].
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We claim that if q = (q2, ... , qs) belonging to Case 2, * = (a2, ... , as) satis-

fying the restrictions above, and bel, 0 < b < [N/4], are given, then there

exists at most one h = (A,, ... , hs) e 0(d) n L such that A, G K(b) and

(A2, ... , hs) G Af(q, a). For suppose tí = (h[, ... , h's) ¿ h" = (A", ... , A")

are two points satisfying all these conditions. Then h[, h" e K(b) n Id , hence

r(h\ - A") = 1 , and for 2 < j < s we have r(h'¡ - h") < 2V> . Therefore,

r(tí - h") = n r(h'j - tí]) < 2^+-+"' = 2" < p(L).
7=1

On the other hand, h' - h" g LL and h' - h" ^ 0, thus r(tí - h") > p{L) by
(2). This contradiction proves the claim.

Since there are T\sj=2 2q~"~x = 2"2+"'+<l~ft~s+l  choices for a, it follows

that if b is given as above, then there are at most 2?2+ +<?s_,"~i+ points h =

(A,, ... , hs) G ß(d) n L1 such that A, g K(b) and (h2,...,hs) e M(q).
Therefore,

/ [AV4]    ,
5(d, q) < 2?2+"■+«,-íi-*+i2-ft--íJ+*-i    1 + ¿ ¿

V 6=1    '

where we used 2M+   > p(L) in the last step.  Applying [7, Lemma 3.7] with

m = [N/2] + 2, we get

^ä<iohW+2)'
6=1 \L      J /

and so for N > 19,
[N/4]1^/4]

6=1

The last inequality is shown by inspection for 2<A/< 18, N j= 4. Thus for
A/^4,

By (5) this bound can also be used in Case 1. Since there are af~   choices

for q, we get

There are 2s possibilities for d, hence

R^L)<pjL){l0))S   '(3 + 21°gyV)-
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Since the definition of to implies 2"1 < N, we obtain

i-i

A'(L)<¡¿)(toh)~ ^"^(log*)'-'),

and together with (4) this completes the proof for N ^ 4. For N = 4 we

trivially have

"1)? £ rah)< (t 7uh>) <2*'
h€C(4)    v ' \h=-\ J

and since p(L) < 4 by Proposition 2 below, the inequality of Theorem 2 is

checked immediately for s > 3. In the remaining case N = 4 and s = 2,

we note that r(h) = 1,2,4 for he C(4), and so by Proposition 1 below,

p(L) can only attain the values 1,2,4. If p(L) < 2, then R(L) < 4 shows

that the inequality of Theorem 2 holds. If p(L) = 4, then C(4) n L consists
only of the point (2,2), which is impossible, since it contradicts Proposition

3 below.   □

By combining Theorems 1 and 2 we obtain the discrepancy bound

(6) DN <- + -—(-—)       ( (log Nf + -(log N)

Since p(L)< N by Proposition 2 below, it follows that DN = 0{p{L) '(log A)')
with an implied constant depending only on the dimension s .

Remark 1. A similar discrepancy bound can also be obtained in the more general

case of a displaced lattice rule. According to [14, p. 119], if x0, ... , xN_x

are the nodes in a lattice rule, then the nodes in a corresponding displaced
lattice rule are given by {x0 + y}, ... , {\N_] + y} with y G Us, where the

fractional part {t} G Us is obtained by reducing all coordinates of t e Rs

modulo 1. We can write y = y' + z, where A/y' e Is and z G [0, l/Nf . The

method in the proof of Theorem 1 shows that the discrepancy D'K of the points

{x0 + y'}, ... , {xA,_,+y'} satisfies

D'N<±+R(L),

where L is the lattice U„Jo (xn + ^) • Since {x^ + y} = {xn + y'}+z for U < n <

N - 1, it is easily seen (compare with the argument in the proof of [6, p. 132,

Theorem 4.1]) that the discrepancy DN of the points {x0 + y}, ... , {xyv_]+y}

satisfies
S r,'     ^   2S

Together with Theorem 2 we get a discrepancy bound analogous to (6).

DN<- + DN<- + R(L).

3. Properties of the figure of merit

We prove simple properties of the figure of merit p(L), already used in §2,

and also of general interest in the theory of lattice rules.
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Proposition 1. The figure of merit p(L) is also given by

p(L)=     min     r(h).
heC(Y)nz.x

Proof. By [14, Lemma 1] the nodes xQ, ... , xN_}  of the lattice rule satisfy

Nxn eZ   for 0 < « < A - 1 , hence L    contains (NT)'  as a subgroup. Since

LL has determinant N by [14, pp. 119-120], and the cube [-Nl/s, A1/sf

has volume 2sN, it follows from Minkowski's convex body theorem [1, p. 71]

that this cube contains an element h0 ^ 0 of L   . Clearly, r(h0) < N. Since

h0 G If and [Nl/s] < N/2 for N > 2 and s > 2, we have hQ g [-N/2, N/2f .
By replacing, if necessary, every coordinate of hQ equal to -N/2 by N/2, we

get an h, g C(N) n L with r(h,) < N. To prove the proposition, it suffices

to show that for any h e L± , h / 0, there exists an h2 g C{N) n Lx with

Kh2) < '"(h). If all coordinates of h are multiples of N, then r(h) > V, and
so we can take h, = h, . Otherwise, we obtain a suitable h-, by reducing each

coordinate of h modulo N to get numbers in (-A//2, N/2].   o

Proposition 2. We always have p(L) < N.

Proof. Since L1 contains (Nlf, we have h = (N, 0, ... , 0) e Lx , hence

p(L)<r(h) = N.   □

Proposition 3. The set C(N)nL    contains exactly Ns~  -1 elements.

Proof. Let z e Is, and consider the translate Nz + C*(N), where C*{N) =

C{N) u {0}. Since Lx contains (Nlf , it is clear that (Az + C*(A)) n^ =

Az + (C*(N) n Lx), so that (Az + C*(N)) n L"1 contains the same number

of elements as C*(N) ni , say 17(A). Since L is the union of disjoint

subsets (Nz+ C*(N))C\L , each containing v(N) elements, that number is

obtained by dividing the volume of the cube (-A/2, N/2f , namely Ns, by

the determinant of L , which by [14, pp. 119-120] has the value A. Thus

v(N) = /Vs_1 . Finally, C(N) n Lx contains v(N) - 1 elements, because it

does not contain zero.   D

4. Lower bounds for the discrepancy

Let DN again be the discrepancy of the nodes x0, ... , xJV_, G Us in an Ap-

point lattice rule. A simple lower bound for DN is obtained as follows. Since

Ax„ G If for 0 < n < N- 1, we have x„ G [0, 1 - l/Nf for 0 < n < N - 1 .

For 0 < £ < 1/A let Jr = [0, 1 - l/N + ef . Then the definition of DN implies

-0-H'-
Letting e -» 0+ , we obtain

DN>
AU ; N)
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In first approximation this lower bound is equal to s/N, which happens to be

the first term in the upper bound (6).

A more important result is the lower bound for DN in terms of the figure of

merit p(L) to be shown in Theorem 3. We need an auxiliary result which is a

variant of [9, Lemma 5.4].

Lemma. For any points t0, ... , tN_, G Us, any nonzero heZs, and any real

6 we have

N-\

-X>s2K(h.t„-0)
«=o

<-((n+lf-l)r(\i)DN(^, t/v-i)

Proof. By [9, p. 64] we have

j   N-\

-£cos2;r(h.t„-0)
A

n=0

<-((n+l)s-\)\hl---hs\DN(t0,...,t N-\>

provided that all coordinates A,, ... , hs of h are / 0. Since then r(h) —

|A,-AJ, the lemma holds in this case. Now we take an arbitrary h =

(A. , ... , A ) t¿ 0 and we assume without loss of generality that A, / 0 for
I J J

1 < j < k and A. = 0 for k + 1 < j < s.  Let h' = (A,,..., hk), and if

tn = (t{ni], ... , t{*]), we put t'n = (t{nl), ... , t{nk)). By what we have already

shown, we get

N-\

-J2cos2n(h-tn-d)
N

«=o

N-\

^^cos2^h'.t'„-c?)

«=o

Since r(h') = r(h) and

ö„(tVV'O ■

<^((n+l)k-l)r(tí)DN(t'0,

<l((n+l)s-l)r(h')DN(t'0,.

tN_x)<DN(tQ,...,tN_

• C-.)

' */v-i<

we have proved the lemma in the general case.   D

Theorem 3. The discrepancy DN of the nodes x0, ... , xA,_] G C/5 i»a« N-point

lattice rule satisfies

with C2 = 4, C3 = 27, and Cs = j¡((n + if - I) for s>4.

Proof. Choose h G L1 , h¿0, with /-(h) = /j(L) . Then h • xn G Z for 0 <
n < N - 1 , and so an application of the lemma with tn — xn for 0 < n < N - 1

and 0 = 0 yields

l<l((n+lf-l)p(L)DN.

This is the desired result for s > 4. For s - 2 and s = 3 we use a different

method to get a smaller value of C . Choose h = (A, , ... , A ) as before and
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assume first that Yf¡=\ 1^,1 ̂  2. Then an application of [9, Lemma 5.5] with

tn = xn for 0 < n < N - 1 and 6 = 0 yields

<7> o^-TJÍLV

If Yffj=\ I A,-1 = 1 , then for some i, 1 < i < s, we have A( = ±1 and hj - 0
for all j ^ i. From h ■ xn e Z it follows then that the z'th coordinate of each

xn is 0. This yields DN = 1 , and so (7) holds trivially. From (7) we get the

desired value of Cs for 5 = 2 and 5 = 3.   D

Remark 2. The lower bound in Theorem 3 holds also for the nodes yn = {xn +

y}, 0<«<A-l,ina displaced lattice rule (compare with Remark 1). In the

first part of the proof of Theorem 3 one applies the lemma with tn = yn for

0 < n < N - 1 and 6 = h • y. In the second part (cases s = 2 and 5 = 3) one

applies [9, Lemma 5.5] with tn = y„ for 0 < n < N - 1 and 0 = {h • y} , and

this yields (7) provided that £*._, |A I > 2. If YffJ=i |A | = 1, then for some i,

1 < i < s, each yn has the same ¿th coordinate, and this implies DN > j , so

that (7) holds again.

5. Conclusions

It follows from the upper bound in (6) and the lower bound in Theorem 3

that these two results are best possible up to factors of the order (log Nf . Fur-

thermore, these two results show that the order of magnitude of the discrepancy

of nodes in a lattice rule is essentially given by l/p(L) (compare also with the

information on p(L) given in the next paragraph). This suggests that the figure

of merit p(L) of the lattice L should be large if one wants to obtain an efficient

numerical integration method, agreeing with the conclusion reached by Sloan

and Kachoyan [14] in their analysis of lattice rules with periodic integrands.

Similar comments apply to displaced lattice rules because of Remarks 1 and 2.

The simple upper bound for p(L) in Proposition 2 is nearly best possible.

In fact, in the special case of the method of good lattice points one can already

find, for each s > 2 and all sufficiently large A, a suitable lattice L such that

p(L) is at least of the order of magnitude N/(log Nf~ , and in the case s = 2

there exist infinitely many A and corresponding lattices L such that p(L) is

of the order of magnitude A (see [8, §4]). Therefore, A-point lattice rules are

capable of producing error bounds of the form 0(A_1(logA) ) when applied

to integrands of bounded variation in the sense of Hardy and Krause, where the

constant c(s) > 0 depends only on 5. An important task that remains to be

carried out is to find many concrete examples of lattice rules that improve on

the method of good lattice points, e.g., in the sense of a larger figure of merit.
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