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THE COLLOCATION METHOD FOR FIRST-KIND
BOUNDARY INTEGRAL EQUATIONS

ON POLYGONAL REGIONS

YI YAN

Abstract. In this paper the collocation method for first-kind boundary inte-

gral equations, by using piecewise constant trial functions with uniform mesh, is

shown to be equivalent to a projection method for second-kind Fredholm equa-

tions. In a certain sense this projection is an interpolation projection. By intro-

ducing this technique of analysis, we particularly consider the case of polygonal

boundaries. We give asymptotic error estimates in L2 norm on the boundaries,

and some superconvergence results for the single layer potential.

1. Introduction

The collocation method is a frequently used numerical technique in practi-

cal engineering problems because of its easy implementation, particularly for

boundary integral equations for two-dimensional boundary value problems.

One of the applications is to boundary integral equations of the first kind with

logarithmic kernel (Symm's integral equation) on a closed boundary Y,

(1) -j\og[x-y[g(y)dy = f(x),        x&TcR2,

where dy denotes the element of arc length at a point y e T. For the collo-

cation method for this equation, the trial space is usually chosen as a 5-spline

space, and the collocation points are chosen appropriately according to the de-

gree of the spline.

The asymptotic behavior of the collocation solution of boundary integral
equations on a smooth boundary has been analyzed theoretically and experi-

mentally by many authors. Particularly, the recent results of Arnold, Wendland,

Saranen and Schmidt in [2, 3, 13, 15, 16, 14] cover the first-kind boundary
integral equation of potential problems. In their work, basically two general

techniques of analysis have been introduced. One is based on an equivalence

of some collocation methods with a certain Petrov-Galerkin method, and the

other is based on simple Fourier analysis. Both of these two approaches rely on

the strong ellipticity of the boundary integral operator. However, the theoret-

ical analysis of the collocation method has not yet been sufficiently developed
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to cover the case of a polygonal boundary Y, which occurs more frequently

in practical engineering problems. The reason is that in such cases the integral

operator is no longer a pseudodifferential operator with a logarithmic principal

part, so that the two techniques of analysis in the papers cited above are not

directly applicable. There are only a few works which analyze the collocation

method on a polygonal boundary T [8, 9]. In these, Costabel and Stephan intro-

duce local Mellin transforms and a weighted norm, and obtain error estimates

for collocation with piecewise linear trial functions.

In the present paper, we introduce a different approach to the analysis of

convergence of midpoint collocation with piecewise constant trial functions,

and give asymptotic error estimates in the L2 norm on the boundary, and

some superconvergence results for the single layer potential.

The approach is to view the collocation method for the first-kind integral

equation as equivalent to a projection method for a second-kind Fredholm equa-

tion with a particular projection operator. This particular projection is derived

from the collocation method for equation ( 1 ) on a circle. In §2 we present in

detail an analysis of the projection operator by employing the spectral method.

Although this analysis here is only for the piecewise constant function space, we

believe that similar results are possible for spline function spaces of arbitrary

degree if the mesh is uniform. Thus, this approach may be available for any

spline function spaces with uniform mesh.

Let T be a polygon with corner points v., y = 1, ... , y . On the poly-

gon r let A = {z0,..., zn_{) c T be an equally spaced mesh, and An be

the corresponding midpoint mesh. Then we adopt An as the break points of

trial functions, and An as the collocation points. The trial function space is a

piecewise constant space S (Y) with break points An, where h - 2n/n . The

collocation method approximates the solution g by g  e S (Y), such that

(2) - j\og\x-y[gh(y)dy = f(x)   for x g An .

For convenience of our analysis, we represent equations (1) and (2) as follows.

We parametrize the polygon T by a 27r-periodic function v(s):R/2nZ —> Y,

with the parameter 5 proportional to the arc length; that is, \v'(s)\ = d(Y)/2n ,

where d(Y) is the length of Y. Suppose that the corner points are at v{ =

v(s¡), ... , v = v(s„), with -n = sQ < s{ < ■ •• < s < s , - n , vQ - v(s0) =

v   ! = v(s■   ,). Then v(s) can be described as

s — s
v(s) = vj + -—ZT(Vi " v?   for sj-s-Y+\> J = 0> • •• ' y-

sj+\   Y

Thus, a transformed form of equation ( 1 ) is obtained,

1   fn -
— /    \og\v(s)-v(a)\w(a)do = f(s),        se[-n,n],

n J-n

with w(s) = \v'(s)\g(v(s)) and f(s) = j¡f(v(s)). This equation can also be

written in the form of an operator equation

(1)* Kw=J.
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Correspondingly, we have a transformed collocation equation. Let er =

-n + hj for y = 0, 1, ... , n , and o-J+l/2 = a. + ±h for j = 0, 1, ... ,n - 1.

Further assume that the function v(s) satisfies z¡ = v(a¡), j = 0, ... , n - 1.

Set n = {a¡:j = 0, 1, ... , n), and let S (Yl) be a piecewise constant function

space on [-7t, n] with break points n. Suppose that Q is an interpolation

projection from C[-n, n] to S (Yl) defined by

n-1

Qhv(s) = J2v(o-J+i/2)Xj(s),
7=0

where

il,       s & (o;, a,,.),
Xds) = { J     J+{

1 10,       otherwise.

Then the transformed form of the collocation equation (2), in operator form,

is

(2)* QhKwh = ß*7,

with wh eSh(Yl).

What we treat here is the collocation method based on the piecewise con-

stant trial function space S (Y) with an equally spaced mesh on the whole

polygon T ; or, in other words, with a uniform mesh. The corner points v,,

j = I, ... , y, then may not belong to the uniform mesh An. In practical com-

putation one often chooses the corner points as a part of the mesh points to

obtain an easier integration around the corners. In this sense the treatment here

is not completely satisfactory. However, the corner points v., j = I, ... , y,

can be put into a uniform mesh Ah without difficulty for many practical cases

such as squares, or polygons of equal sides. We also know that the singularities

of the solution g(v(s)) at corners often degrade the rate of convergence in prac-

tical computation (see [17, 18]). But as shown in [19] for the Galerkin method,

the mesh grading method can be exploited to restore the rate of convergence.

Hence, we can hope to adopt the mesh grading technique to restore the rate of

convergence for the collocation method as well. However, up to now, its theory

has not been developed.

In order to give a more precise analysis, we now introduce some notation. We

shall consider equation (1) and its collocation approximation (2)* in a family

of 27r-periodic Sobolev spaces. Each 27r-periodic function v has a Fourier

expansion

v(s) = -= >   v(m)e     ,

where the Fourier coefficients are given by the formula

v(m) = —f= /   v(s)e~"m ds.
In J-n
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Let Z* = Z\{0} . For t G R define the inner product

(u, v)t - it(0)v(0) + ^2 \m\  û(m)v(m).
mez'

The Sobolev space Hl(2n) consists of all 2^-periodic and complex functions v

for which the norm \u\t - s/(u, u)t is finite. A useful fact is that H° = L2(2n),

and (u, v)0 - ¡^n u(a)v(o)da = (u, v), which implies that the L2(2n) norm

is just the H norm. Below we shall adopt the notation | • |0 for the L2 norm

without any remark.

2. Collocation on a circle

Since the simplest case of the first-kind integral equation ( 1 ) is for a circle,

a detailed analysis of its collocation method is carried out in this section by

employing the spectral analysis technique. Earlier convergence results have been

obtained in [3, 13, 14] by use of the Fourier analysis method.

In the case of a circular contour, equation (1)* may be written as (see [20]),

Aw = f,

where Aw(s) — j^n A(s - a)w(a)da with

A(s - o) — — log
7T

The collocation solution wh satisfies

QhAwh = Qhf=QhAw.

Letting Ah denote the restriction of A on S (Yl), Q Ah is invertible on S (Yl)

from Theorem 1 below. Let B = (Q Ah)~ Q A . Then wh can be represented
as

wh = B w .

In the following we shall show that B is a bounded operator. For this pur-

pose we consider a complex piecewise constant function space S (Yl) = {v, +

iv2:v¡, v2 G S (Yl)}, and introduce the following basis of the space S (Yl).

We assume for convenience that n is an odd number throughout this section.

Let us define Ah = {p G Z: \p\ < (n - l)/2}, A¡ = AA\{0}. Then orthogonal

basis functions for S (Yl) are defined by

<{s)~Ee,kJpXj(s),       ^At,
7=0

with (eph , e"h ) = 2nd > for p, p' g Ah . The definition of the functions e%(s),

when they appear later, is extended to p G Z without any remark. One of the

-   -1/2    .    S-2e       sin —
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advantages of introducing the basis functions e%(s) is that for any fnE S (Yl),

in terms of its corresponding discrete Fourier coefficients

Fhfh(p) = JL f fh{a)e-hp(a)da,        peAh,
\l111 J-n

the function fh can be represented as

(3) Aw^iEA^w-
pe\h

This representation looks like the discrete Fourier expansion of the function

fh(s). Another advantage is that the basis functions ep(s) are the eigenfunc-

tions of the collocation operator Q Ah .

Theorem 1.  Q Ah in S (Yl) has the eigenvalues {Xp:peAh} given by

(4)   K

r i,    p = o,
n   .   n\p\^.      a/         1                        1           \ A*
-sin-^>    -1       -j +-2) , peA,,
71        n  fro          \(kn + \p\)2     (kn + n-\p[)2J h

and the corresponding eigenfunctions are ep(s).

This theorem implies that A0 is a simple eigenvalue, whereas for p e A*h

the eigenvalues A and A are degenerate, so that there are two independent

eigenfunctions. (If n were an even integer, the expression for the eigenvalues

would remain the same, but there would then be second simple eigenvalue,

namely A„/2.)

Theorem 1 also implies that Q Ah is invertible on S (Yl), because all the

eigenvalues A   are greater than 0.

The eigenvalues Xp have been discussed in the work of F. R. de Hoog [ 10]

and S. Christiansen [7]. However, the eigenvalues A given in (4) are more

explicit.

Proof of Theorem 1. If Q Ahep(s) = A peph(s) with A   real, by conjugating we

obtain Q Aheh~p(s) = Ape^p(s) = A_ e^p(s). Thus we only need a proof for

p > 0. As in [20],

Aw(s) - —-=     ^2 \m\    w(m)e"ns + w(0)

iineZ"
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By a simple calculation,

^•K+,/2) - 2
-imo  j      tma,

e       doe    ,+l/2 + h1   ( ^ i   r1 f
- \   )    \m\     /

l- ( 2 £ m-'Re ÍT+' «T""0 dae"™"'^ + /A

(5)
2tt

2 y^ w    Re
m=\

oo     n

2sixi(mh/2)  ¡m{r-j)h

m
+ h

J
— Í2 V Y" 2sin((rc» + /)/?/2)Rc   i(fcH+/)(r-y)*,    ^

"2*vèow    (kn+if

=   1   / g A 2(-l)tsin(/A/2)        „(r-y)/,       \

Meier   (^+/)2 ;
/v^.,.     /«D   ,   il(r-j)h..«r^     (-1)

27r Vér     2 ¿5(*" +/r
+ /!      .

n-1

Thus,

^(ffr+l/2)

,      /n— 1 ii   n— 1 oo        ,     ., A

= _L K- 2 sin l4 y e'pjh2Re(e'llr-j)h) V -^^-y + A V
27T 1 ¿-' 2 ^ ^(kn + l) ^

However, for /? + / > 0,

I = p ox I = n - p,

Jpj"

7=0

It follows that

¿Ä(ff...,,)=<

¡Pjh-H)   i   H(r-j)h,        I   «£

o,
2>,wA2Re(//('-',A) =

otherwise.

'i^r+l/2

1,       P = 0,
oo

n _._ np^^,

A=0

-sin — >   (-1)      -z- +
1

^2   ) e/î(CTr+l/2)'

1 <P <
n- 1

The proof is completed.   D

From (5) we find that AXAar+lf2) = AXr(a.+|,,).   This implies a useful

symmetry property: for cb, i// G S (n),

and therefore

(6)

{QhAh<l>,vt) = (<p,QhAhY),

((QhAhY[<P,V) = ((f>,(QhAhY[v).
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Figure 1. The function oj(s)

Now for 5 G (0, 1 ) let

oj(s) =
Er=o(i/(*+*)2+i/(fr+1-*)2)

Er=0(-if(i/(^í)2+i/(Hi-í)2)'

0.50

Since œ(s) is symmetric about j , its maximum on the interval (0,1) can be

expressed as

co -    sup    ü)(s).
s€(0,l/2]

As shown in Figure 1, a>(s) is a monotonie increasing function on the interval

(0, {-]. Thus co = co(\) « 1.34688525 .

In the following it is shown that co is an upper bound for \B |0, and that

this bound becomes increasingly sharp as n —> co.

Theorem 2. (i) When n is sufficiently large, \B |0 < ct> ;

(")   l™^ocl^lo = ^-
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Proof. For convenience we let

\¡[m\,       m G Z*,
a(m)

1, m = 0.

Now

Klo= EKW2= E E^/^ + ̂ l2
mez peAAAez

Since we have, by a simple calculation,

'h

it follows that

w.(kn+p)(kn+p) = (-l)ke ' "a>/2w,(p)p,

[w,(kn+p)\2a 2(kn+p) = \wh(p)\2a 2(p).

Thus,

\w
2        v-   \wh(P)\    V-    2.,       ,      .

peNh   " W>   kez

Further, for P E Ah and with wh - B w , we have

(QhAw,(QhAh)  [Pheips)    (see (6))
2tt

1 (ß%,/>V'ps)r',
2?r

where P is the orthogonal projection operator to S (II) under the inner prod-

uct (•, •) (or (•, -)0). In the last step above we have used Theorem 1 and the

fact that
nh   ims m,  .     r _ rj
P e     =ameh (s)   fox me Z,

with am - 2(mh)~ sin(mh/2)e'mai'2. Another useful fact is

Ôh   ims       0      m,  .     c „
e     =ßmeh(s)   ^ormeZ,

,ima

without comment. Now

Qf Aw , Phe'ps) = 4= E E a(J" + WUn + l)(QhelUn+l)s, Phe'ps)
\f ATI ^^
v^' jezie\

= 7T E E °U" + Dw(jn + l)ßjn+läp(eJhn+l(s), ep(s))
vzn jezie\

with ß   = e"""'12. Both of these facts will be used in the following argument»i

lnap E Pjn+Pa(Jn + P)WU* + P) ■
jez
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Thus,

i**(p)i2=n;VE ßjn+pa(Jn + P)WU" + P)

1      ,2\^    2- \kP api Ea c^+^E^'""^! '
AeZ 7'€Z

and therefore

^o<EEN^)i2^ÍE«2(
Pe\ jez a yP>    \kez

However, by a direct calculation we find that

i*:1«/ /V 2,,    V  í i+//2/i2,   p = o,P_21 ^a (kn+p)
a2(P)    \kez )       l^2(W"). PeAj,

Since <y(s) > 1 for s G (0, ¿], we therefore have, when n is sufficiently large,

i2 ^     2 r-«i v*i «/ • \i2 2,    ,2< <y E E ^0"+ p)I = ̂  1^1
pe\ jez

This completes the proof of (i).

In order to show that limn_(

a function w G H   with the following Fourier coefficients: for j g Z, /? G Ah,

In order to show that limn_too \B \0 — to, for each 0 </<(«- l)/2 define

^ 0« + /?) = {
[ 0, otherwise,

and follow the same procedure as in the proof of (i) above. We then obtain

,,     f (l+h2/l2)\w'\¡,    / = 0,

\co-(l/n)\w'\-Q, I < / < (« - l)/2.

This shows that in fact

|5A|n =      max      < w ( - ) , \/l + -¡-z
i</<(«-i)/2 I     \n J

and hence lim        \B \0 = to. The proof is now complete.   D

>Ai
Theorem 2 tells us that <y can be viewed essentially as the value of \B

when n is sufficiently large.

It is clear that (Bhf = Bh, so t3a  is a projection operator onto S (II).

Moreover, the projection operator  B    has the following property, because

(/ - Bh)w = (I - Bh)(w - Phw), and \Bh\Q is uniformly bounded.
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Proposition 1. We have [(I - B )w\0 < c\(I - P )w\Q, where c is a constant

independent of n .

This proposition shows that the collocation method for the circle is conver-

gent, and the error is within a constant multiple of the best L2 approximation.

The first proof of this proposition was given in [13].

Next to the collocation method on the circle, we briefly consider the Galerkin

method on the circle,

P Awh - P Aw ,

or equivalently,

(AwGh ,vh)0 = (Aw,vh)0   ioxvheSh(Yl).

Since this equation is equivalent to (see [20])

(7) {w°,vh)_l/2 = (w, V-i/2   for vh G Sh(U),

wh is exactly the orthogonal projection of w to S (Yl) under the particular

inner product (•, •)_t/2-  To distinguish this particular orthogonal projection

from P , we write wh = P_X,2W ■ Then (7) implies \P_\n\-\n — 1 > and we

obtain that Ph_x¡2 = (PhAh)~lPhA .

A similar explanation can be given for the collocation method on the circle.

Indeed, let St (Yl) : = span{á(s - tr-+I/2): j = 0, 1, ... , n - 1}, where ô(s) is

the delta function. It is obvious that the interpolation projection Q w of a

function w e C(2n) (or G // "* ' with e > 0) onto S (Yl) is the unique

solution of a Petrov-Galerkin approximation equation:

(8) (wk,vk)0 = (w,vh)0   ioxvheSht(Yl).

Hence, the interpolation projection Q w of w to S (Yl) can be defined as the

solution of equation (8). This definition holds for the particular inner product

(•, -)0, but it obviously can be extended to the more general inner product

(•, •),, with / a nonpositive real number.

Definition. For t < 0, and w G //2'+1/2+£ with e > 0, if wh G Sh(YY) satisfies

(9) {wh,vk)t = (w,vk),   forvkeSÏ(Il),

then wh is called the interpolation projection of w to S (Yl) under the inner

product (-,-),• It is denoted by wh = Qtw .

In this definition, the condition / < 0 is required so that the left-hand side

of equation (9) makes sense. The assumption w G H l+ '~+c with e > 0 makes

the right-hand side of (9) finite.

It is obvious that the collocation equation

Q Awh = Q Aw
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is equivalent to

(Awh>vYo = (Aw'vh)o   forvkeSht(Tl),

and that this equation is equivalent to (see [20])

(Wh . V-l/2 = (W . Vh)-l/2     f0r Vh e St(U) •

Thus the collocation solution B w is the unique solution of equation (9) with

t = -j . That is to say, B is just the interpolation projection to S (Yl) under

the particular inner product (•, •)_i,2- Thus, we may write B  = Q_l,2-

3. Convergence of collocation on the polygon

In this section we consider the convergence of the collocation method (2)*

on a polygonal boundary. For this purpose we employ the results of the last

section and show an equivalence of the collocation equation (2)* to a particular

projection approximation of a second-kind Fredholm equation. We then prove

the convergence of the collocation method on the polygonal boundary under a

certain restriction on the angles of the corners.

As in the analysis on a polygonal boundary in [20], the operator K in (1)*

can be decomposed as

K = A(I + L + E)

with / an identity, E compact on L2(2n), and L bounded on L2(2n) by

|L|0 < max1<r<.,{l - cos(/r7t/2)}. The number xr S (-1, 1) is defined by

requiring (I - xr)n to be the interior angle 'v^Y^YTl at tne corner point

vr. The operator K:H—>H is invertible when the transfinite diameter (or

capacity) Cr is not 1. Because of this decomposition, the collocation equation

(2)* can be rewritten as

(10) QhAwk + QhA(L + E)wk = Qhf.

Let / = Af*. Then (10) is equivalent to

(10)* wh + Bh(L + E)wh = Bhf.

This has the form of a projection method for a standard second-kind Fredholm

equation (see [1, 12, 4, 6]) with the particular projection operator B onto

S (Yl). Since E is compact, L is bounded by

|L|0 < max {1 - cos(xr?r/2)},

h h
and B is bounded by \B |0 < to, the standard theory yields the following

convergence theorem on the polygonal boundary.

Theorem 3. Assume Cr / 1. If

(11) co max (l -cos^} < 1
\<r<y I 2    J
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when n is sufficiently large, the collocation equation (2)* is uniquely solvable

on S (II) for any continuous function f. Furthermore, if w G L2(2n) is the

solution of equation (1)*, then

\wh-w\0 <c\(I-Ph)w\0,

where c is a constant independent of n .

Proof. Since |L|0 < 1 and |£*L|0 < co\L\0 < 1, both (I+L)~x and (I+BhL)~l

exist, and

\(I + BkL)-lL<
1 - to\L[0

Now

(12) I + Bh(L + E) = (I + BhL)(I + (I + BhL)~lBhE),

and

/ + (/ + BhL)~XBhE = I + (I + LY[E-(I + BhL)~\l - Bh)(I + L)~lE.

Because  |(7 - B )v\0 —> 0 as n —> oo, for v G L7(2n), and because E is

compact on H° , so that (/ + L)~XE is also compact, we have

,»,,-1,,       „*WT       ,,-!„,     „ _,,,       „Ax,,       M-l

V
(I + B-L)   \I-B")(I + L)   'E\0< \(I-B")(I + L)   ' E\0 - 0

u     1 — a» \L \,

as « —» oo. However, from the analysis in [20], the assumption Cr / 1 ensures

that (I + L + £■)"' exists, so that (/ + (/ + L)~ E) is invertible. Therefore,

when n is sufficiently large, there is a constant c   independent of n such that

\(I + (I + BhLYlBhEY]\0<cY

It follows from (12) that when n is sufficiently large, equation (10)* is uniquely

solvable, and so is the collocation equation (2)* . Moreover,

i

(13) \(I + Bh(L + E)Y]\0< ,Cf.n   •

Further, from (I + L + E)w = f* there follows

w + Bh(L + E)w = Bhf + (I - Bh)w .

Thus,
( 1 _i_  Í?   / /  _i_ T7\\(fif\ _ i/i

and because of (13),

(/ + Bh(L + E))(w - w.) = (I- Bh)w ,

i

^-^lo^i^jzrK'-^Mo-
10

Applying Proposition 1, we obtain

\w-wh\0<c\(I-Ph)w\0,

with c independent of n . The proof is now complete,   o
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From the proof above we find that the restriction ( 11 ) on the angles at the

corners derives from the estimate \B L\Q < \B |0|L|0, and \B |0 « co. The

restriction may not be necessary, since \B L\Q could be less than 1 even if

(11) is not satisfied. However, because the operators B and L axe quite

complicated, a direct estimate of \B L\Q is difficult. A similar restriction occurs

for the second-kind boundary integral equation methods (see for example [5]).

As shown in [5], the restriction may be more severe than necessary, or may not

be needed at all.
The restriction (11) is equivalent to

max |y | < 4tt"' arcsin(2w)"1/2 « 0.83417205.
1 <r<y

From this, we see more clearly that convergence holds when each of the interior

angles of the polygon is within the interval (29.84903087°, 330.15096913°).

4. Superconvergence

In practice, one is usually more interested in quantities such as the 'flux'

through the boundary Y,

g(y)dy=       w(tr)do = (w,l),

and the potential at x & Y,

- / log |t - y\g(y) dy = -       log |t - v(o)\w(o) da = (kz, w),

rather than in the value of w . That is to say, one is often more interested in

the linear functional

/
w(a)v(a)da = (w , v),

where v is well behaved. The error in the approximation of (w , v) by (wk , v)

is given by

Theorem 4. Under the conditions of Theorem 3,

IO, v) - (wk, v)\ < ch\w -wh\0\v\x   forv G 77',

where c is a constant independent of n .

Proof. Since K:H
that Ku -v and
Proof. Since K:H  —► 77' is invertible, for v G 77' there exists a m G 77   such

Mo = |* 'vIo^H
with c a constant. Thus,

(w, v) - (wh ,v) = (w -wh,Ku) = (K(w -wh),u)

= ((I-Qh)K(w-wh),u),

and so

\{w,v)-(wh,v)\<\(I - Q')K\0\w-wh\0c\v\l    foxw,veH .
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However, it is well known that there is a constant c independent of n such

that

Therefore,

\(I-Qh)vL<ch[v\

\(I-Qh)K\0<ch,

because K: 77  —> 77' is bounded. Thus the theorem follows.   D

Set w G 77 ' . From Theorem 4 we obtain

(w, v) - (wh , v)\ < ch \w\x\v\

While Saranen [ 14] has shown that the optimal order of convergence on a suf-

ficiently smooth boundary is

\(w, v)-(wh, v)\ <ch3\w\2\v\2,

0 2
the assumption in that paper is: the operator K-A.H —> 77 is at least

bounded. This assumption fails in the case of polygons. The reason is that even

when the function f(s) on the right-hand side is well behaved, the solution w(s)

is still singular at the corner points. That is to say, there exists a w e 77 and

£ 771 such that Kw is a smooth function, and then (K-A)w = Kw-Aw e 771

and g 772.

Applications. It is known that near the corner v ■ the function g(v(s)) can

generally be expected to have a singularity of the form  \s - s,\ ' , where ß

usually has the value  -|^-|/(1 + |^-|) > -0.5, but could be larger in some

situations (see [19]). Using the results of Graham [11], we obtain

(14) \Phg(v(s))-g(v(s))\0 = O(hß+1/2),

where ß = min,«, .< /? .

(1) Rate of convergence for the capacity Cr.     Here we calculate the quantity

Cr = exp|-Í / Arj     j=exp(-(/    wx(o)do)

by the approximation Cr = exp(-(f* wx(o)do) ), where Ar is the solu-

tion of equation ( 1 ) with the right-hand side / = 1, wx is the solution of

equation (1)* with the right-hand side f = £ , and w¿ is the solution of the

corresponding collocation equation (2)*. Theorem 4 and (14) give

/Jt rK

-7t J —n

»',

Therefore,

= \(wk - whx , 1)| < ch[wk - w\ = 0(hß+y2)

Cr-C{ = 0(hß+V2).
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(2) Rate of convergence for the potential.     Here we approximate the exact po-
tential at x £ Y,

by

u(x) = - / log \x - y\g(y) dy = -      log |t - v(o)[w(o) do,

w (t) = - /    \og\x-v(o)\w (o)do,
J -n

where w   is the solution of equation (2)*. Since kx(s) = -lo%\x-v(s)[ G 77 ,

Theorem 4 and (14) give

\u(x) - u(x)\ = \(kr, w - wh)\ < ch[w -wh\0 = 0(hß+i/2).

The estimate 0(h ) for the rate of convergence of the capacity and the

potential may be capable of improvement. A numerical experiment shows that

the practical rate is more like the one for the Galerkin method, i.e., 0(h (^+1))

rather than 0(h ). However, a theoretical analysis yielding this order is

not yet known.
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