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ON THE STABILITY OF RELAXED

INCOMPLETE LU FACTORIZATIONS

A. M. BRUASET, A. TVEITO, AND R. WINTHER

Abstract. When solving large linear systems of equations arising from the

discretization of elliptic boundary value problems, a combination of iterative

methods and preconditioners based on incomplete LU factorizations is fre-

quently used. Given a model problem with variable coefficients, we investigate

a class of incomplete LU factorizations depending on a relaxation parameter.

We show that the associated preconditioner and the factorization itself both

are numerically stable. The theoretical results are complemented by numerical

experiments.

1. Introduction

Using a finite element method or a finite difference method to discretize a

selfadjoint linear elliptic boundary value problem of second order, one obtains

a system of linear equations. In this paper we concentrate on a system arising

from discretizing a variable-coefficient elliptic equation,

-V • (K(x, y)Vu(x, y)) = f(x, y),

defined on the unit square Q with Dirichlet boundary conditions u(x, y) —

g(x, y) on dii. We require K(x, y) to be a bounded and sufficiently smooth

function taking on strictly positive values. The associated discrete system is of

the form

(1.1) Ax = b,

where A 6 R" ' " and x, b e R". The sparse matrix A is symmetric and

positive definite.

Systems like ( 1.1 ) are often solved by a preconditioned iterative method such

as the Preconditioned Conjugate Gradient method (PCG), cf. Axelsson and

Barker [1]. That is, instead of solving (1.1) explicitly, we solve the equivalent

system

(1.2) M_1Ax = M~'b,
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where M e R" ' ' is symmetric and positive definite. Here the coefficient ma-

trix M- A is symmetric and positive definite with respect to the inner product

(\,y)M given by x My. If M is a suitable approximation to A, it will be con-

siderably more efficient to solve (1.2) than solving (1.1). In fact, PCG converges

to a relative error e in energy norm ||x|| 4 = (x Ax) '   in at most

k = int i{/c(M-'A)}1/2ln- + l
2 e

iterations, where k(M~ A) is the spectral condition number of M~ A. This

implies that PCG needs fewer iterations than the ordinary conjugate gradient

method if k(M~ A) is sufficiently less than k(A) .

When deciding on which M to use, several issues must be considered, of

which the most important are resemblance between M and A, cost of com-

puting M, cost of storing M and cost of solving systems of the form My = w.

The last requirement is justified by observing that My = w has to be solved

once for each conjugate gradient iteration. It is therefore reasonable to demand

that these systems can be solved in /f(n) arithmetic operations, a requirement

that is met by the class of preconditioners described below.

There exists a large collection of different preconditioners. However, we will

concentrate on preconditioners based on incomplete LU factorizations of A.

This concept was introduced by Meijerink and van der Vorst [11] in 1977. They

suggested a method called Incomplete Cholesky (IC) factorization. Their idea

is to use M = LU as a preconditioner, where LU is an approximate LU fac-

torization of A. Put another way, A = LÜ - R, where L and U are lower and

upper triangular matrices, respectively, and diag(L) = I. The factors L and U

are computed by naive Gaussian elimination, except that fill-in generated during

the elimination process is left out. Just like a complete LU factorization de-

fined by Gaussian elimination, an incomplete factorization exists if the entries

of the main diagonal are nonzero after every step of the elimination process,

i.e., U has nonzero diagonal entries. Meijerink and van der Vorst [11] prove

that the IC factorization exists if A is an M -matrix. This type of matrix is

often generated, e.g. by discretization of linear elliptic and parabolic differen-

tial equations. In 1978 Gustafsson [8, 9, 10] suggested a generalization of the

factorization presented by Dupont et al. [6]. Gustafsson's method can also be

considered as a modification to the IC factorization. Instead of omitting the

fill-in, these values are added to the entries of the main diagonal. This factoriza-

tion, called a Modified Incomplete Cholesky (MIC) factorization, exists if A is

strictly diagonally dominant. When constructing a preconditioner based on an

incomplete factorization, only little knowledge of the original boundary value

problem is required. This leads to simple algorithms, at least when compared to

more complex methods like, for instance, domain decomposition, cf. Bjorstad

and Widlund [4] and Bramble et al. [5]. However, in some cases such complex

preconditioners have proved to be more efficient.
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Both IC and MIC factorizations lead to quite effective preconditioners. Dis-

cretization of an elliptic partial differential equation of second order on a uni-

form q x q grid will give a coefficient matrix A whose condition number is

cf(q ). It is known that MIC preconditioners reduce the condition number to

cf(q). For a proof we refer to Axelsson and Barker [1, pp. 337ff].

In 1986 Axelsson and Lindskog [2, 3] presented a new class of modified

incomplete factorizations called Relaxed Incomplete Cholesky (RIC) factoriza-

tions. They pursue the idea of adding the errors that are accruing when fill-in

is not permitted to the diagonal entries, but they multiply these values by a re-

laxation parameter co e [0, 1 ]. Choosing co = 0 reduces the method to the IC

factorization, while the choice œ = 1 leads to the MIC factorization. Accord-

ing to Axelsson and Lindskog, the RIC factorization exists for co < 1 if A is

an iVZ-matrix. In the case of co = 1, a sufficient condition for existence is given

by Gustafsson's analysis of MIC factorizations, i.e., that A be strictly diago-

nally dominant. We refer to the article by Axelsson and Lindskog [2] regarding

details of the general RIC algorithm.

Numerical experiments indicate that preconditioners obtained from incom-

plete LU factorizations combined with iterative methods usually constitute an

effective class of methods for solving systems like (1.1). However, stability anal-

ysis of these preconditioners is needed in order to decide when to apply such

methods. Under these circumstances the term "stability" refers to two distinct

topics: First, whether the factorization, i.e., the preconditioner M, can be com-

puted without introducing large errors. Second, whether the computed solution

of the system My = w is close to the exact solution and has not been corrupted

by numerical errors. These problems have been investigated by Elman [7], who

focuses on IC and MIC preconditioners for a nonsymmetric linear system de-

rived from an elliptic model problem with constant coefficients. He concludes

that "the performance of incomplete factorizations is sensitive to both the val-

ues of the coefficients of the elliptic operator and the choice of difference scheme

used to discretize the problem". However, his analysis apparently shows that

the IC and MIC factorizations are stable and can be used as preconditioners if

the mesh size is sufficiently small. In practice, the choice of mesh size will be

affected by accuracy considerations and by the sizes of the constant coefficients.

The purpose of this paper is to continue the stability analysis of the RIC fac-

torization. The properties of the condition number /c(M_1A) will not be dis-

cussed. Inspired by Elman's work [7], we analyze a model problem with variable

coefficients. Applying a particular difference scheme, the corresponding system

of equations will be symmetric. We show that the RIC factorization exists ac-

cording to a definition involving stricter requirements than the one mentioned

earlier. This result assures a trouble-free computation of the factorization. Us-

ing M = LU as a preconditioner, we show in fact that «^(M) = cf(q2), where

^(M) is the condition number with respect to the /°° norm; i.e., the condi-

tion number of M behaves like the condition number of the elliptic difference
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operator A. Since the model problem studied by Elman can be converted to a

symmetric form, our analysis shows that preconditioners based on incomplete

factorizations can be used even for this problem if a sufficiently small mesh size

is applied. This result seems to be in agreement with Elman's analysis as well.

2. The model problem

As mentioned earlier, we consider an elliptic boundary value problem

-V-(K(x,y)Vu(x,y)) = f(x,y),        (x,y)ed,

u(x,y) = g(x,y),        (x,y)edQ..

where Q, = QudQ = [0, 1] x [0, 1]. Throughout this paper we require K(x, y)

to have continuous first derivatives and to satisfy the inequalities

(2.1)

0<K<K(x,y)<KM   V(x,y)GQ,

(2.2)

dx
K(x,y) +

d_
K(x,y) <K    V(x,y)efi,

where Km, KM and K' are finite constants.

We shall use a finite difference method to discretize (2.1) on a uniform q x q

grid as illustrated by Figure 1.
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Figure 1. The grid for q = 3. We want to compute

the numerical solution to (2.1) for all nodes inside the

dashed box. The remaining nodes lie on the boundary

d£l.

A node denoted by (/.', ;') has coordinates (ih, jh), where h = \/(q + 1)

is the mesh size. Denoting the finite difference approximation to u(ih, jh) by

ui j and letting K( , = K(ih, jh) and f .: = f(ih, jh), we use the following

second-order differences:

dx V   dx

dy\   dy

K
i+l/2,j(Ui+l,j-Uij)-Ki-l/2j(Ui,J V-l .7)

1,7

1 .J

K
1,7+1/2 'Mij+i - "¡j) - Ki,j-l/2(Ui.j ~Ui.j-\)
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These approximations give rise to a sparse linear system of equations of the

form Ax = b of order n - q , where the vector x contains the unknowns

u¡ -, and where b contains contributions from the functions / and g in

(2.1). The coefficient matrix is symmetric and has the form

(2.3)   A =

01,1 ?2.1     02,1

o 02,.  y3,.

: '••    03..

0

Qi,i "'•

0 a i. i 0

ß3, 1

V o 0       a   n   ,      0
9,9-1

«

o

9,9-1

0

0
o   £_

9-1 ,9

9-1 -9

We observe that only five diagonals have nonzero entries.   After scaling the

matrix and right-hand side by h  , the matrix entries are given by

ai,j = -Ki.j+l/2:

(2.4) 0 = {-J'•J      10,
*i+l/2.y>     i**'

i = q,

y¡,j - Ki-l/2,j + ^i+1/2,7 + ^«,7-1/2 + Ki.j + \/2 '

The indices ï and j vary from 1 to q. It is easily shown that A is an M-

matrix. As explained in § 1, this property guarantees the existence of a RIC

factorization for all ae[0, 1 ).

Computing the RIC factorization of A, we allow fill-in generated by the elim-

ination process only in the positions corresponding to the five nonzero diagonals

of A. That is, the matrices L and U appearing in the incomplete factorization

A = LU - R maintain the sparsity structure of A. Utilizing this property, we

adapt the general RIC algorithm described by Axelsson and Lindskog [2] to our

model problem.

Algorithm 2.1. (RIC factorization of the model problem). Given a matrix A 6

R" ' " as in (2.3), and letting co e [0, 1], the RIC factorization is defined by the

following algorithm:

ci,i := ^í, i

for i := 1 to q do

Pi,i:=Vi,i
for 7 := 1 to q - 1 do

begin

for / := 1 to q - 1 do
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begin

b     := ß   .le-
t,j     Hi.j' i,j

Ci+l,J:=PM,j-blM.j + a)ai,j)
ai,j:=ai,j/Ci,j

piJ+i:=yiJ+l-ai j(ai j + œfi, J
end

^,7:=09,7'/C9,7

clJ+i:=plJ+l-bgJ(ßq j + (aagJ)

aa,j :=aa,jI'Cq,j

Pa,j + X-=ya,J+X-%,ji%,j + ^ßa,j)

end

for i := 1 to q - 1 do

begin

b.    := ß    /ci ,q "i ,ql   i ,q

Ci+\.q -~ Pi + \,q ~ "i,qPi,q
end

For our model problem, the factors L and U computed by Algorithm 2.1

have the form

f   \        0       ...

0    b2A     1

(2.5) L =

0\

'••    b3. 1

0

'l.l

0

(2.6) U =

0

V   0       ...

/cl,l 01,1

2,1      ^2,1

3,1      ^3,1

0 %,q-X        0       • 0    b
9-1,9

0
1 /

0     a i, i

0      c, ,    ß2

03

0    ...       0    \

0

a

V o

9,9-1

0

0
'••      09-1,9

0 C«,,
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The subdiagonal entries of L not equal to zero are defined by

ai,j = ai,jlcij = -K>
1,7+1/2

(2.7)
b-   = ß   le   = í ~K,+

i,l       »i,i'   1,7       \o,

1/2

i = q

for i, j = 1, 2, ... , q . The nonzero superdiagonal entries of Ü, q( and

ßi j, are still given by (2.4), while the diagonal entries, ci , are defined by the

following recurrences developed from (2.4) and Algorithm 2.1:

(2.8)

where

c   ■ — y
1.7       '■

Kj     Vu
1,7

'1-1,7 '1,7-1
i,j =1,2, ,q,

6.  .=■yi,j

(2.9)

0,

K

i=i; ; = i,2, a,

t-\/2,j(Ki-l/2,j + CüKi-l,j+l ),

Vij

0,        / = 1,2,..

i = 2, 3,..., q ; 7 = 1,2,

:2,3,...,?; 7 = í,

. 9 ; 7 = i.

,q-\

Ki,j-l/2(Ki,j-l/2 + 0iKi+\/2,j-l)'

!)2,

i'= 1,2,... ,0-1; j = 2,3,

q; j = 2,3,...,q.

,Q:

(Ki,j-\I2>

We know that the performance of a RIC factorization depends on the size

of ci■ j for i, j = 1, 2, ... , q . Consequently, analyzing the factorization is a

matter of examining these recurrences, a problem we will pursue in the following

sections.

3. Stability of the RIC factorization

Algorithm 2.1 describes how to calculate the RIC factorization of the system

matrix A given by (2.3). We observe that the only critical points in this process

are when we calculate the fractions a; /c( and ßi Jci . Since A is an M-

matrix, we are assured that ci , ^ 0 when œ < 1, cf. Axelsson and Lindskog

[2]. This implies that the factorization exists in a mathematical sense for such

choices of œ. However, from a numerical point of view this is not sufficient to

obtain a stable algorithm. If c. assumes a very small or very large value, the

algorithm may break down due to overflow or underflow. These observations

lead to the following definition of a stable factorization.

Definition 3.1. The RIC factorization of the model problem described by Al-

gorithm 2.1 is called a stable factorization if there exist two constants cm , cM ,

0 < cm < cM < oo, independent of the mesh size h such that

Ci,j£lCm>CMh i,J=U2, , q.   D
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In the next section we will prove that the stability of the RIC factorization

implies a suitable bound on the /°° condition number of the preconditioner

M given by M = LU. In the rest of this section we are concerned with the

stability of the RIC factorization.

We are now able to show the following result.

Theorem 3.2. Given a sufficiently small value of the mesh size h, there exists e e

[0, 1), where e = cf(h), such that the RIC factorization described by Algorithm

2.1 is stable for co e[0, 1 - e].

This theorem does not tell whether the factorization is stable when co > 1 - e.

Since e = cf(h), the upper limit of [0, 1 - e] will approach the value 1 as

the number of nodes increases. We have failed to find a function K(x, y)

which makes the algorithm break down for an œ > 1 - e. On the contrary,

numerical experiments presented in §5 indicate that the factorization is stable

for all oí E [0, 1]. As far as we know, there have not been reported any

problems when applying co = 1, i.e., MIC factorization.

In order to prove Theorem 3.2, we first show two intermediate results. First

we consider a system of difference equations which are closely related to the

formulas (2.8). The sequence generated by the new difference equations belong

to a closed positive interval. By means of a simple substitution we transform

the recurrences (2.8) and use the result of Lemma 3.3 to prove that ci    belongs
is

to another closed positive interval I£ . Choosing suitable values for cm and

cM will prove Theorem 3.2.

It is difficult to tell what values ci can assume by analyzing the recurrences

(2.8) directly, mainly because of the variable coefficients <t>¡ y and y/i j. This

motivates the introduction of another system of difference equations,

(3.1) z- = 4-z
kj ¡.j

+ e,
1,7

i, j =1,2, ... ,q,
'1-1,7       "1,7-1

where |e(   | < 1. The coefficients Ç,     and ai     are given by

= 1 ; 7 = 1, 2,..., q,

= 2,3, ...,q; j = 1, 2, ... , q - 1,

= 2,3, ... ,q; j = q,

= 1,2, ... ,q; 7 = 1,

= 1,2,... ,0-1; j = 2,3, ... ,q,

i = q; j = 2,3, ... ,q.

Lemma 3.3. Suppose ¿( , = maxr s \er J for r = 1, 2, , i and 5=1,2,...,

j, s = e     , coe[0, 1 - e], and let {Z;. .}j . , be given by the difference equa-

tions (3.1). Then

Z¡ jGl¡ j = [2-ëi J,4 + ëi j],        i,j=\,2,...,q.
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I  ♦

::□ • Zk,l 6 h

O Zi,,i to be computed

i- 1     i

Figure 2. This figure shows how the next value to be

computed depends on earlier values.

Proof. The equations differ depending on the node (1,7) for which we calculate

Z; ,. Consequently, it is natural to organize the proof accordingly.

We observe that

Zj , = 4 + e, ,€[4-¿, ,, 4 + ëx x].

Thus, Z, , e 7. , . Choosing 7 = 1, we make the following hypothesis:

\ 1 e h 1    for A: = 1, 2,...,/- 1 < 0.

This leads to

t a      1+w ^ ,.        1+W        „ .     „
z'.' =4"zTTT + e'-1 -4~4T1— - + ei,i <4 + ei,i'

1-1,1

1 +w
Z;. , > 4 -   ,

'•' 2-e

'¡-1,1

.     .   .     1 + (1 - e)     . .     .
e/,i^4-yzi—    -«/.1 >3-«/.i-

ji-i,i *■    "1-1,1

By induction, Z(. , e f , for 1 = 1, 2 ,...,#. Similarly, we can show that

ZXJeIXJ, j = i, 2,..., 0.

We want to show that Z, ,. e 7, , for 1, / = 1, 2, ... , q.  The values of
l i J I » J

Zl j are computed along the horizontal grid lines. Suppose Zk ¡ e Ik ¡ for k =

\ ,2, ... ,q when I = \ ,2, ... , j-\ < q , and also for k = 1, 2,..., i-l < q
when / = 7 (cf. Figure 2). Using our hypothesis, we get that

1 1

^i-1,7     ^1,7-1

and furthermore that

+ e; ¡<4--.—-
•'J 4 + e

1

1-1,7        4 + ¿i,7->
+ él,7<4 + ¿i,7'

„     ^ .      l + co      1 +co
zj-*~z-z—+eu-^7-1,7     ^',7-1

Utilizing the definitions of ëi    and e, we find the lower bound to be

_    .   .     l + (l-e)     l + (l-e)     .     ^ .    .  2-e       . .
Z, , > 4 - -—^-'- - —\-'- - e. . > 4 - 2-—:-6, . > 2 - e, ,

'1-1,7 '1.7-1
1,7

By induction we conclude that Z ••€/,• ■ for /, 7 = 1, 2,... , q, thus proving

the lemma.   D
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Knowing the range of values that Z; can take on, we are able to decide

which interval c( , belongs to. In order to complete this analysis, we rewrite the

recurrences in a way that encourages the use of Lemma 3.3. This transformation

consists of two parts. First, we find Taylor series expansions for the function

K, and then we introduce a substitution which converts the recurrences to the

form (3.1).

By expanding the coefficient K in Taylor series about suitable nodes and

using (2.9), we find that

0, i=l,

(\ + to)Ki_lJKiJ + (t>iJ,       j±q,

#,_,,,*,,,+*,,,, 7 = 0,

0, 7 = 1,

(l+cu)^..,^.+ ¥,.,.,        M0,

a. .=

(3.2)

Vi,J =

Kij-iKij + ^ij, i = «>

?i,7=4*,,7+ri,7'

where <P( , *F; and T(. have magnitude cf(h) (cf. the assumptions (2.2)

onTC).

Lemma 3.4. Let {ci •}* ._, be given by the recurrences (2.8). For a sufficiently

small value of the mesh size h there exists e G [0, 1), where e = cf(h), such

that

c, , e7f = [(2-e)Km,(4 + e)KM],        i, j = 1, 2, ... , q,

for co e [0, 1 - e], where Km , KM > 0 are given by (2.2).

Proof. We organize the proof in the same way we organized the proof of Lemma

3.3. We shall use the substitution

(3.3) X. , = C
i,j

,J~Ku

Since 0 < Km < K(    < KM, this substitution is well defined.  By means of

induction we are able to transform the recurrences (2.8) to the form (3.1). If
A'

X, j € 7, j = [2- e~,. JtA + ¿,. j], itJ = cf(h) for all i,j, then etJ e 1^ =

K2 - *tj)Km ' (4 + ëiJKM^ because

(2 - è,,,)7vm < XtjKm < etJ < Xt]KM <(4 + e(J)KM.

We observe that by expanding K into a Taylor series about the node (1,1)

one obtains

ci,i =4^i,i +ei, i^i,i'

where e. . = T. X/Kx , = cf(h). Using the substitution (3.3), we get that

*.,i=4 + e.,i-

This expression can be recognized as being the first term of a sequence of the

form (3.1). As in Lemma 3.3, we define ¿; • = maxr s |er s\ for r — 1, 2,..., i
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and 5 = 1,2,..., j, where ef s = cf(h) denotes the variable coefficients aris-

ing from the substitution (3.3). It follows from Lemma 3.3 that Xx x €. Ix ,,

which implies cx , G I{ { .

We want to show that c, , G 7, , when i = 1 or / = 1. We choose j = 1
1 ■> J I * J

and make the following hypothesis:

ck , G Ik ,   for fc = 1, 2,..., / - 1 < 0.

From (2.8) we get

ci,i=Vi,i-
C<-1,1

Expanding the function K in Taylor series about the nodes (i - 1, 1) and

(/, 1) gives

where

(l+co)Kt     .Kl ,

i-1, i

.   --Mr   -Íl

Since c(_, !€/,•_! [, e, , has magnitude <f(/z). Introducing a local substitu-

tion like (3.3), we get that

V A 1   +  W
*,,i=4- j?-+ ei,r

•*i-l,l

By induction and Lemma 3.3 it follows that X¡ , G I¡ ,, which implies c¡ , G

lf{  for i =
1,2, ... ,q.
if,  for i = \ ,2, ... , q.  We can analogously prove that cl , 6 /, •, j =

is

We now want to show that ci, ¡ € /,- • for i, j = 1, 2,..., q — 1. The values

of c, are computed along the horizontal grid lines. Assume that ck ¡ G Ik ¡

for k = \ ,2, ... , q - \ when I = 1,2,... , j — I < q — 1, and also for

fc = l, 2, ...,/— 1<0-1 when / = j (cf. Figure 2). This leads to

(\ + co)Ki  . ,7V. ,     (\+co)Ki .  .K, ,.

ci.j - 4Ki.j-c-c-+ BiJKi.J '
S-1.7 '.7-1

where
i     / <D V     \

e,: . = J-   T -^-     -^ »
Ai,7    \ Ci-1,7        t',7-l//

From our hypothesis we get that e,    = cf(h), and a local substitution like (3.3)

gives
_, .      1 +co       1 +OJ

From Lemma 3.3 we have that X¡    e f ¡, which implies c; . G /,- •  for

i, j =1,2, ... ,q-\.
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Using induction we can show in a manner analogous to the preceding argu-
is

ments that c, , G L , also when i - q or j = q .

Defining e = è , we conclude from the preceding results that ci G if for

i, j =1,2,... , q, which proves the lemma.   D

According to the proof of Lemma 3.4 all numbers in the sequence {X. .}? . ,

defined by the substitution (3.3) belong to the interval [2 - e, 4 + e]. This re-

sult is needed when analyzing the RIC preconditioner. For easy reference we

formulate it as a corollary.

Corollary 3.5. Define the sequence {X¡ .}? =1 by the substitution (3.3). Let

e = max( |e; |, where e; = tf (h) is as described in the proof of Lemma 3.4,

and let coe[0, 1 - e]. Then

Xi j e [2 -e, 4 + e],       i, j = 1,2,... , q.

We are now able to prove Theorem 3.2.

Proof of Theorem 3.2. From Lemma 3.4 we have that c¡ ¡ G [(2 - ¿)Km ,

(4 + e)KM] for co e [0, 1 - e]. Choosing cm = Km and cM = 5KM, we

get c¡j G [cm,cM] C (0,oo) for i,j = \,2,...,q, where cm and cM

are constants independent of h. This assures that the RIC factorization de-

scribed in Algorithm 2.1 is stable according to Definition 3.1, and Theorem 3.2

is proved.   D

The following result is a special case of Theorem 3.2.

Corollary 3.6. Assume the coefficient function K(x,y) to be constant, K(x,y) =

K > 0. Then the RIC factorization described in Algorithm 2.1 is stable for all

cog[0, 1].

Proof. Since K(x, y) is a constant function, we get that e( . = 0 in Lemma

3.4 for i, j = 1, 2, ... , q . Then e = max, |e( | = 0. This implies that the

valid range for co in Lemmas 3.3 and 3.4 and Theorem 3.2 is œ G [0, 1].   D

4. Analysis of the RIC preconditioner

In the previous section we proved that the RIC factorization of the matrix

A is stable in the sense of Definition 3.1 for all co G [0, 1 - cf(h)]. Based

on this strong stability result, we will in this section discuss the stability of the

application of the RIC preconditioner. In order to utilize the results from §3,

we will throughout this section assume that the parameter co is chosen from

the interval [0, 1 - e], where e = cf(h) is as defined in the proof of Lemma

3.4.
We want to apply the PCG method to the linear system

(4.1) Ax = h2b,

where A is defined by (2.3), and where the right-hand side and the boundary

conditions of the differential equation (2.1) are incorporated in the vector b.
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Within each iteration of the PCG method, linear systems of the form

(4.2) My = r(i),

where r(,) denotes the /" th residual vector, have to be solved. The RIC pre-

conditioning matrix M = LU is nonsingular since det(M) = det(L) det(U) =

Ulj=\ c~ij > 0- Let x<0) = 0 be the initial guess of the PCG method; then

r( ' = h2b. Assuming convergence of the PCG method, it is reasonable to ex-

pect that Hr^'ll^j =cf(h2) for all /'. Consequently, we are concerned with linear

systems of the form

(4.3) My = A Vo,

where \\^i)\\<x>=cf{l).
— 1 —1

For the matrix A, it is well known that ||A H^ = cf (h ), so that by (4.1)
we have

INI« £ ciNco
for a mesh-independent constant C In a similar way, it is desirable to have

IIM-1!!^ = cf(h~2), since then by (4.3), we have HyH^ = cf(\).  This will
assure the stability of the process of solving (4.3).

We have the following theorem.

Theorem 4.1. For a sufficiently small value of the mesh size h there exists e G

[0, 1), where e = cf(h), such that the RIC preconditioner based on Algorithm

2.1, using we[0, 1 - e], satisfies

IIM-'l^ <C/T2,

where the constant C is independent of h .

In §5 we will present an example which shows that the bound given by the

theorem is sharp in general.

We observe that Theorems 3.2 and 4.1 imply that «^(M) = cf(h~2). This

follows since Theorem 3.2 implies that HMH^ < HLII^HUH^ < C, where C
is independent of h . Hence the l°° condition number of M is of the same

order of magnitude as the l°° condition number of A.

Proof of Theorem 4.1. Solving a system My = LÜy = w is equivalent to

solving two triangular systems

(4.4) Lv = w   and   Uy = v,

where L and Ü are given by (2.5) and (2.6). These systems are easily solved

by forward and backward substitution, respectively.

Letting v=(vli,v2l,... , vgq)T, w = (wii, w2l,..., wqq)T and y =

(^i i ' y2 i ' • • • ' yq 9) ' we rewrite the triangular systems as two inhomoge-

neous linear difference equations

(4-5) ai,7-1 Vi ,7-1 + bi-1, jvi- l,J + Vi,J = wi,7 >
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(4.6) ci,jy,,j + ßtjyM ,7+ aijyij+i= v¡j •

where i, j = 1, 2,..., q and w/>0 = t;0>y = y¡q+x = yq+lj = 0. Instead of

analyzing the systems (4.4) directly, we concentrate on these equations.

First, we examine equation (4.5), i.e., the lower triangular system. Applying

the triangle inequality to (4.5), we find that

\vtJ = \wiJ-a¡J_]vi y_, -&,._,-«,._, J

^\wiJ + \aij-i\\vij-i\ + \bi-lj\\vi-lJ-

Expressing the coefficients ai ,_, and bj_l     in terms of (2.7), we get

K K
i i ^ I ,        1,7-1/2, i   ,   "-Í-1/2J , i
KJ<KJ +   '     K,7-il+ c      K-1,7-1-

Cl,7-1 tl-l,7

We expand the function K into Taylor series about the nodes (i, j - 1) and

(/' - 1, 7), which gives

^1,7-1/2    |   ^i-1/2,7  = ^1,7-1    !   *«-!,7    ,   5

'1,7-1 -'-1,7
+

c/,7-l       ci-l,7
1,7

where

h ({dK/dx)t_tJ    (dK/dy)itj_;
c,

1-1,7
'',7-1

' 2' l

Let a = max(    \S¡   | and £ = e + ô = £h . The size e = cf(h) is as described

in the proof of Lemma 3.4, and b\ is a nonnegative constant. We formulate the

following hypothesis:

\vkJ\<(\+cV)k+l(k + l)\\y,\\oo

for A: = 0, I, ... , q when / = 0,1,...,7-1 < q, and also for k =

0, 1,...,/'- 1 < q when I = j (cf. Figure 2). It is evident that this hypothesis

is valid when k = 0 or / = 0 since vk 0 = v0 ¡ = 0 for k, I = 0, 1, ... , q .

Assuming that the hypothesis holds, we examine the next entry to be computed,

|„   |<|N|   +(5LIzlIl + 5izlIld
I  i,)\ - H   Moo      \   c       , c

(l+Qi+J-\i + j-l)W\

1 +

"i.7-1

^,,7-1    ,   ^1-1,7

,c/,7-l       Ci-1,7

1-1,7

+ aiJ){l+Z)i+J-\i + j-l) W

Using the substitution (3.3) from the proof of Lemma 3.4, we find that

K.7-1 * - + ̂ i -+siJ)(i+çfj-i(i+j-i)
x¡j-\   xi-\,j

w
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From Corollary 3.5 we know that Xj    G [2 - e, 4 + e], which gives the inequal-

ities

2
KJ *

<

1 +
2-e +ô)(i+^i+J-\i+j-i: w

2-e
+ £ +        f_i_+j)(l+{)'+y"1(l+J- w

<(l+£)'+;[(l+£)'   '  J + (i + j-l] w

\'+7,<(i+<^r(/+7)H
.1-1-7

The last inequality holds because ( 1 + £) ~ ~ < 1 for all i, j = 0, I,..., q

except 1 = 7 = 0. However, we have already verified that the hypothesis

is valid initially. By induction we have \v¡ .| < (1 +c¡)l+J(i + »Hw^ for

1, 7 = 0, I, ... , q , and then

\vlJ<ei{'+J\i + j)\H\x = ei{'+m^\i + j)Moo

<e2i2q\Hoo<2e2ih-]\H\oo

for i, j = 0, 1, ... , q . Hence, we have established the inequality

(4.7) „<2e2ih  '||w|l   .IOO   — M       MOO

where the constant £ > 0 is independent of the mesh size h, and v is any

solution of equation (4.5).

We turn to examining equation (4.6), i.e., the upper triangular system. Using

the same strategy as above, except that the indices must be counted backwards,

we find that

I    <2f2V,||v|l.
loo  — 11   1100(4.8)

The constant fj > 0 is independent of h , and y is any solution of (4.6).

Combining the preceding results, we draw the following conclusion. Assum-

ing co g [0, 1 -e], we know from (4.7) and (4.8) that HvH^ < Cvh~ HwH^ and

llylloo < ¿"„T'iMloo , where Cv = 2e2i and Cy = 2e2ñ. Thus,

\\y\\00<cyh-l(Cvh-l\Hj = ch-2M00.

This assures that the RIC preconditioner has the desired property, ||M~ H^ <

Ch~ , and Theorem 4.1 is proved,   ü

We remark that the result of Theorem 4.1 totally relies on the lower bound

for c¡ j shown in §3, c¡, > (2 - e)Km .

5. Numerical experiments

In §3 we showed that the RIC factorization given by Algorithm 2.1 is stable

for co G [0, 1 - e], where e = cf(h).  This result follows from Lemma 3.4,

which says that the diagonal entries of Ü, ci    , belong to the interval 7£   =
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[(2 - e)Km , (4 + e)KM] for co G [0, 1 - e], where Km = min{x y)eñK(x, y)

and KM = max, )g^ K(x, y). Despite the fact that we are unable to show this

property for co > 1 - e, experiments indicate that such parameter values can

be used. Choosing co = 1, the RIC and MIC factorizations are identical. This

type of incomplete factorization has been in practical use for several years and,

as far as we know, no problems have been reported when applying this method

with sufficiently small mesh size to systems similar to our model system.

We will now factorize the matrix A given by (2.3) using five different func-

tions K(x, y). They are

(a) K(x,y)=\+x2+y2,

(b) K(x, y) = e-x~y ,

(c) K(x,y) = sin(W(x + y)) + 2,

(d) K(x,y) = tan(xy) + l,

f 1000,       {x,y)eCL = Ü,i]x[l,l],
(e) K(x, y) = \ °    1   3       3   3

1.1, (x,y)GQ1=n\Q0.

The functions labeled (a), (b), (c), and (d) satisfy the requirements on K formu-

lated in §2 (cf. (2.2)). However, the fifth function labeled (e), is discontinuous.

We still use it in this experiment in order to show the importance of some

smoothness condition on K.

Applying the substitution from the proof of Lemma 3.4,

c,
X.  . =

1,7

'J        Ki,J

IS

we can decide whether c, . G L   even for co = 1. This substitution shows that
I , J €

(5-2) XltJKM<etJ<XtJKM.

We compute Xm = min( . X¡ . and XM = max. ¡ X¡ ¡, and check if these

values belong to I£ = [2 - e, 4 + e]. If they do, the inequality (5.2) shows that
is

ci i: € h ' which implies a stable factorization. Table 1 lists the values of Xm

and XM for the five functions (5.1) using co = 1 and q = 10, 50, 80, 100.

From this table we see that 2 - e < Xm < XM < 4 + e for the first four

functions. In case (a), (b) and (d), Xm is greater than 2, while 2 - e < Xm < 2

in case (c). This effect can probably be ascribed to K(x, y) oscillating rapidly.

We also observe that Xm « 0.003 «c 2 - e in case (e), which is due to the

discontinuity of this function. The experiments indicate that the factorization

is stable in terms of Definition 3.1, even for this choice of K, though the bound

cm seems to be different from the bound obtained in the smooth case.

In order to test the efficiency of the RIC preconditioner, we choose K(x, y) =

e~x~y , f(x, y) = 1 and g(x, y) = 0 in (2.1). This gives the following problem

-V-(e~x-yVu(x,y))=l,        (xj)efi,

u(x,y) = 0,        (x,y)eda.
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Values of Xm and XM

Table 1

for the five functions (5.1), co = 1

Function

q= 10, A = 0.0909

\\i

i = 50, Ä = 0.0196

X.. XM

a

b

c

d
e

2.1606
2.1672
1.7278

2.1740
0.0034

4.0081
4.0041

3.8753
4.0000

4.0000

2.0256
2.0283
1.9208
2.0332
0.0032

4.0004
4.0002
3.9969
4.0000
4.0000

Function

4 = 80, Ä = 0.0123

l,w

0= 100, A = 0.0099

lA/

a

b
c

d
e

2.0156
2.0173
1.9493
2.0205

0.0031

4.0002
4.0001
3.9992
4.0000

4.0000

2.0123
2.0138
1.9591
2.0163
0.0031

4.0001
4.0000
3.9996
4.0000
4.0000

We discretize (5.3) for q = 15, 20, 25, 30 and get four corresponding systems

of equations of the form Ax = b. These systems of order n = q are solved

by the RIC preconditioned conjugate gradient method for different choices of

to. We use the relative tolerance e = 10~ and the starting vector x =

( 1, 1, ... , 1 ) . The number of iterations used in each case is shown in Table

2. In the rightmost column we show the number of iterations needed when the

systems are solved directly without any preconditioning.

Table 2

The number of iterations used by the RIC preconditioned conjugate

gradient method when solving the test problem (5.3).

co

n

0.0

(IC)

0.5 0.9 1.0

(MIC)

Without

precond.

15

20

25

30

225
400

625
900

14

18

21

24

13
15

18

21

11

13
14

16

10
11

12

13

54
73

92
112

First, we observe that the RIC preconditioner indeed improves the rate of

convergence of the conjugate gradient method. As expected, the significance of

preconditioning increases when n gets larger. Another observation is that the

optimal choice of œ seems to be a value close to 1.0. This property has also
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been reported by Axelsson and Lindskog [2]. They suggest that the optimal co

for this type of problem is co = 1 - ôh , where S > 0 is independent of

the order n of the system. For further experiments we refer to their paper.

Table 3

Values of ||x||    , where x solves (5.4), for some values of h

n h
100
400

900
1600
2500

3600
4900

6400

0.0909
0.0476

0.0323
0.0244
0.0196
0.0164

0.0141
0.0123

0.1155
0.1451

0.1613
0.1718
0.1793
0.1851
0.1897

0.1935

Finally, we present an example which shows that the bound  ||M
-ii

") given by Theorem 4.1 is sharp in general. We choose K = 1 and

co = 1 (this example is covered by our theory, cf. Corollary 3.6) and solve

systems of the form

(5.4) Mx
,2
h w

for decreasing values of h . Here, w = (1, ... , 1) . The value of IMI^, for

each h is given in Table 3. We observe that ||x|| increases slightly with h

and seems to converge towards a finite value. Hence this experiment indicates

that the bound of Theorem 4.1 is sharp.
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