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COMPARISON OF BIRKHOFF TYPE

QUADRATURE FORMULAE

BORISLAV BOJANOV AND GENO NIKOLOV

Abstract. The classical approach to the theory of quadrature formulae is based

on the concept of algebraic degree of precision (ADP). A quadrature formula ß,

is considered to be "better" than Q2 if ADP(g, ) > ADP(ß2). However, there

are many quadratures that use the same number of evaluations of the integrand

and have the same ADP. Then, how should one compare such formulae? We

show in this paper that the error of the quadrature depends monotonically on

the type of data used. Roughly speaking, the lower the order of the derivatives

used, the smaller is the error.

As a consequence of the main result we demonstrate the existence of BirkhofF

quadrature formulae of double precision.

1. Introduction

Let E = (e,;)™o j=o be a given incidence matrix, i.e., a matrix containing

only 0 and 1 entries. Denote by \E\ the number of l's in E. Without loss

of generality we assume in this paper that E is normal, which means that \E\

equals the number TV of columns in E.

Any maximal sequence of 1-entries ei, = • ■ ■ = e¡ ,+/_, = 1 in E is called a

block. The block is even (odd) if its length, i.e., the number /, is even (odd).

The first 1-entry of the block defines its "level". Precisely, the level of the

block e¡j = --- = eiJ+¡_x = 1 is y.

We study here quadrature formulae of the form

(i) i(f) ■■= ["mat* Y ai/J)ixi) =-sif)

with nodes \ = (x0, ... , xm+x), a = x0 < xx < ■ ■ ■ < xm < xm+x = b, and real

coefficients {a¡j} . G. D. BirkhofF gave a kernel representation of the error of

(1) in his famous paper [2].

Recall that the algebraic degree of precision (ADP) of (1) is the maximal

integer n such that (1) is exact for all f Gnn(nn denotes the set of all algebraic

polynomials of degree < n).
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Suppose that the matrix E satisfies the Pólya condition

m+\   k

£2>,;>*+l. k = 0,...,N-l.
1=0 y'=0

Then, it is not difficult to verify that

(2) ADP(l)<rj(£)-l,

where a(E) := \E\ + the number of the odd blocks in the interior rows of E .

Indeed, add one additional 1-entry to each odd interior block to obtain a

new matrix E = {ei}) . Clearly, E has only even interior blocks, \E\ = a(E),

and E satisfies the Pólya condition. Then, by the well-known Atkinson-Sharma

theorem [1], there is a polynomial P(t) = f(E) + ■■■ such that PU)(x¡) = 0 if

¥¡j = 1. Since P(t) has a constant sign on [a, b], /fl*P(t)dt ^ 0. Thus the

rule (1) is not exact for f = P and therefore ADP(l) <a(E)-l.

The quadrature formulae defined by an incidence matrix E with odd interior

blocks and which have ADP equal to a(E) - 1 are called Gaussian quadrature

formulae.
We assume henceforth that the matrix E has only even blocks in the interior

rows. Then E = E, and hence a(E) = \E\. Note that E is poised, hence, by

the Atkinson-Sharma theorem [1], we can construct an interpolatory quadrature

formula (1) based on E. By construction, ADP(l) = \E\ — 1. Thus, in view

of (2), for any Pólya matrix E with even interior blocks, the corresponding in-

terpolatory quadrature formula ( 1 ) has maximal ADP. One cannot distinguish

between these quadratures if only their ADP and the number of the evalua-

tions are taken into account. We shall use in this paper the remainder of the

quadratures ( 1 ) to compare formulas of prescribed type.

With every pair (x, E) we associate the polynomial

such that

Cï(t) = Çl(\,E;t) = tN + ■■■ ,        N:=\E\,

au\xt) = 0   ifetJ = 1

Note that Q(0 does not change sign on [a, b], since its zeros are of even

multiplicities.

Let P(f, (x, E); t) be the polynomial of degree N - 1 that interpolates /

at (x, E). Suppose that f is N times continuously differentiable. Then, as in

the classical Hermitian case, one can easily show (see [2 or 11, Theorem 7.5])

that for each t G[a, b] there is a £ g [a, b] such that

AN) ,„

f(t)-P(f, (x, E);t) = ¿-^r2"(x, E; t).

Integrating both sides of this equality, we get the estimation

\I(f)-S(f)\<M Í fi(x, E; t)dt
Ja
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with M := maxa<;<6 \fN)(t)\IN\ . Evidently, the quantity

I  fb
R(x,E):=\ /   Cl(x,E;t)dt

I Ja

is the major term in the estimate of the error of (1).

The relation between the Gaussian quadrature formulae and the extremal

problem infx R(\, E) was discovered by Jacobi [7] and exploited later by many

authors.

This paper is a step towards proving the following:

Conjecture. The quantity inf{i?(x, E) : a < xt < b, i = 1, ... , m) decreases

when the level of the blocks in E falls.

We give here a proof in the special case only when E satisfies the condition

(i) Each interior row of E contains only one block, and it has length 2.

We prove also that the infimum is attained for some points x*, ... , x*m in

(a, b) which are located at the nodes of a Gaussian quadrature formula. This

is a natural generalization of the famous result obtained by Gauss.

2.  AN AUXILIARY RESULT

We give in this section an auxiliary result which is of some independent

interest for BirkhofF interpolation.

Denote by e( = (e¡0, ... ,ex N_x) the rows of E = (e¡ )™0 =~¿ . Given the

points x = (x0, ... , xm+x), a = x0 < ■ ■ ■ < xm+x = b, we say that the function

/ vanishes at (x, E), and write

4^1 = °
if

fU](T,) = 0   for^. = l,

where {t(} are the distinct points in the sequence {jc0, ... , xm+x} and {s; }

are the entries of the coalesced matrix c(E). Recall that c(E) is defined on

the basis of E and x by the so-called method of coalescence (see [10 or 11]).

In other words, if x x < x = • ■ ■ = x < xq+x , then the rows e , ... , e

of E are presented in c(E) as one new row (s0, ... , sN_x), formed by the

procedure:

1 ) Add ep -l-heq to obtain (s0, ... , sN_,).

2) If s¡ > 1, set s, := s¡. - 1, si+i := sM + I (i = 0, ... , N-2).

3) Repeat 2) if necessary.

The determinant

D = D(x,E) = det
{l,t,...,tN~x}

(x,E)

of the system {2^/=o a/t }|(x E) = 0 plays an essential role in our study.
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If the matrix E satisfies the Pólya condition and if it has only even blocks,

then it follows from the Atkinson-Sharma theorem [1] that

(3) D(x,E)¿0

for every x. The next lemma asserts even more. Before formulating it, we

introduce some notations which will be used throughout this paper.

Let a be an arbitrary fixed integer, 1 < a < m. Delete eQ from E and

denote the resulting matrix by Ea .

For any £ g (a, b), denote by x(£) the set of points (x0, ... , xa_x, xa+x,

■ • • > xm+i > £) > ordered in nondecreasing order. Set

E(Z):=EaUea,

where the row eQ is inserted in the position corresponding to the position of £,

in x(i).

Lemma 1. Suppose that the incidence matrix E satisfies the Pólya condition and

contains only even blocks in its interior rows. Then the determinant

ö(x,(e0,e/|,...,e,m,em+1))

has a constant sign for every rearrangement (e, , ... , e, ) of the rows (e,, ... ,
'l 'm '

ej and each x=(x0,..., xm+x), a = x0 < xx < ■ ■ ■ < xm < xm+x = b.

Proof. It is clear that the lemma will be proved if we show that, given any

a € {1, ... , m} , the determinant

Z>(i):=Z>(x({),£({))

has a constant sign for each t, in (a, b). In order to see this, observe that the

function D(<Z) has possible break points only at f = x¡, i = I, ... , a - I,

a+l, ... , m . Therefore, the only thing we need to show is that

sign£>(x; - ó) = úgnD(x¡) = signD(xt + ô)

for sufficiently small ô .

Since any even block can be considered as a coalescence of several blocks of

length 2, we may restrict ourselves in this proof to the case when ea contains

exactly one block, and it has length 2 and level k - 1.

Consider the function

D(£V    \m)   f0r<^*i'- •*-

°[Ç) •" \ lim^ D(r¡)   for £ = X¡, i = 1,..., m.

This is a polynomial function. Then, by Taylor's formula,

d0(c:) = ydo)íxí)íz-xí)j/j--
j

Let e¡ k_l+„   and e¡ k+n   be the first two zeros in the sequence ei k_x,

e¡ k, ... ,e¡ N_x. It is easy to see that D{0j)(xj) = 0 for j = 0, ... , n - I,

where n := n. + n2. In addition,'1 T"2

D{0n)(xi) = MD(xi)
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with some positive integer M. Therefore,

Z>0(i) = MD(Xi)(i - xf/nl + 0(\i - Xl\n+X).

Since e¡ contains only even blocks of l's, the number n2-nx, and consequently

n , is even. Then

signZ)0(x¡±ô) = signZ)(x;)

for sufficiently small ô > 0. The lemma is proved.   D

3. The main comparison result

Most of the propositions we prove in this paper deal with matrices E that

have the following structure:

(ii) For a fixed a G {1, ... , m} , the row ea contains only one block, and it

has length 2. All interior rows of Ea contain only even blocks, and Ea satisfies

the Pólya condition.

Set xa := x\xa. Then, by the Atkinson-Sharma theorem [1], the Birkhoff

interpolation problem, based on (xa, Ea), is poised.

Denote by p(t) — t " + ■ ■ ■ the polynomial which vanishes at (xa, Ea).

Define the polynomial tp(t) = t ~  + ■ ■ ■  by the condition

(4) ¡¿<Pit)dt = 0,

I %„.£„) = °-
It is not difficult to show that the linear system (4) with respect to the coefficients

of tp has always only one solution. Indeed, assume the contrary. Then there

exists a nonzero polynomial tp0 G nN_2 which satisfies (4). But the condition

¡a <Po(t)dt = 0 implies that <p0(t) has a zero of odd multiplicity which is,

evidently, not specified in (xa, Ea). Then, by the Atkinson-Sharma theorem,

<p0(t) = 0, a contradiction.

It follows from Rolle's theorem that tp{ _1)(0 has zeros which are not speci-

fied in (xq , En). Moreover, all zeros of tp ~ (t) that are not postulated in (4)

are produced by Rolle's theorem from (xq , Ea) and C, where C is that zero of

tp whose existence is guaranteed by the first equation in (4). Let us call them

Rolle's zeros. They lie at distinct points tx < ■■ ■ < tr in (a, b), and their num-

ber r can be determined exactly on the basis of the columns 0, I, ... , k -2

of E .
a

Denote by et , and ei k , respectively, the first and the second 0-entry in

the sequence ei k_x , eik, ... , e¡ N_x. Define

J0 :={i:0<i<m+l, /^V,) = 0, /*, = A, = k}.

The set {/;)1 consists of all simple zeros <lx, ... ,t\q of <p( ~X)(t) that are not

specified in (xct, Ea), and all points {xf. i G J) where

/ := {i:i # a, 0 < i < m + 1, tpif'~X)(xi) = 0}\70.
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Clearly,

(<p{k)(^)^0,        i=l,...,q,

1 ^(X,.) =4 0 ïîiGJ.

Otherwise, it would follow that tp = 0.

Let ß«(0 = t   H— be the polynomial which vanishes at (x(£), E(Q). Set,

for simplicity,

R(:=R(x(^),E(0)=   í Q¿t)dt
Ja

Theorem 1. Let the normal incidence matrix E = (e/7)™o 7=0   and the number

a satisfy (ii). Given arbitrary nodes a = x0 < xx < ••• < xn_x < xa+x < ■■■ <

minima <Ç<b} = R(..
xm<xm+x=b,let

Then

(6) a<C<b

and

(1) P(*~V) = 0,

where k - 1 is the level of the block in er(.

Moreover, if £* = x¡ for some i G {1, ... , m}, then

(8) f^-V) = 0,

where ei      , is the first 0 in the sequence ejk_x, eik, ... ,ei N_x.

The proof of this theorem goes through several lemmas.

Lemma 2. The polynomial p satisfies

P{k~l\t,) * 0   fori=l,...,q,

A_1)(x,)^0 /one/.

Proof. Let £ ^ x-,  i G J.   Summing the first N - 1   (and TV) columns of

D(¿¡), multiplied by the coefficients of p (and <p , respectively), we get

zxa-detí^-1^  '(*",}«>V¿

where ., ,
,:=de,("''--£'-!>

V i*a>Ea)

Evidently, by the Atkinson-Sharma theorem, A ^ 0, and A does not depend

on t\ . Moreover, in view of Lemma 1, D(t¡) has a constant sign for each Ç in

(a, b). Let

e := tign[A • £(£)].
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If £ = £;, we get

D(<í/.) = ^./-1)(í,.)./)(í,.).

Hence,

(9) sign p(k~\) = £• sign /»(£,),        / = 1,...,?.

Similarly, in the case i £ J, we get

D(x)-det(P '    W   ' 'W)D(x,)-det( )
p^(x,)       tp^(X¡)

and therefore,

(10) sign/?("'"1)(x;.)-e-sign^')(x;.)   for i e /.

The assertion of the lemma follows from (9) and (10), on the basis of (5).   G

The following lemma shows that the zeros of <p X) and p( ~x) interlace in

a certain sense.

Lemma 3. The derivative /r _    has at least one zero in (t., tj+x ) (j = 1,... ,

r - 1) which is not specified by (xa, Ef).

Proof. Let us first illustrate the proof of this claim in the special case when

tj = ¿v:, tj+x = ¿;/+1, and q>{      (t) has zeros {x¡} of total multiplicity n in

itj,tJ+x).

Note that all these zeros {x7} are specified by (xa, Ea). Thus, />' _1)(0

vanishes also at {x;} .

Since <p( ~X) has n+2 zeros in [t , t +1], tp{ ' will have, by Rolle's theorem,

n + 1 +n0 zeros in (t., tj+x) = (£., ¿¡¡+x). Here, n0 is an even number, in view

of assumption (ii). Thus,

sign?»1 '(£,)• sign/ '(fi+1) = (-l) =(-1)     •

Now the relation (9) implies

(11) sign/-"(c:;.).sign/-1)(c:i.+ 1) = (-l)',+1.

But all zeros {x¡} of p in (r., f,-+1), which are prescribed by (xa, Ea),

have total multiplicity n . Then the relation (11) shows that p  ~    must have

at least one more zero in (/ , tj+x).

Consider another case:

0 = £,- >    t¡., = x,       for some /' e /

and tp  ~    has zeros {x;} of total multiplicity n in (t ■, tj+l).

Since /fc_1) has I+n + (ki-k+l) zeros in [tj,tj+x], tp(k) will have, by

Rolle's theorem, n + Xt,—k + 1 + n0 zeros in (t., tJ+x], with some even number

n0. Then,

sign«?    (Í,. )-sign/''(x,.) = (-1)     '
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Taking into account (9) and (10), we get

(12) sign//     ;(^.)-sign^'

since Xi - pi is even.

x,) = (-l)"^
n+A.-fc+l _ ,    . ,«+,¡¿,-£+1

(fc-1)/Now observe that //     ;(x() ¿ 0 if /i;. = k and p{     '(x¡) = ■■■ = p- ..  - «(^-2>,
*,)

= 0 if p¡> k. Recall, in addition, that all zeros {x7} of p{ ' in (í , í +1),

which are specified in (xq , Ea), have total multiplicity n . Then, in view of

(12), p(        must have at least one more zero in (/. , tj+x).

The verification of the lemma is similar in the remaining cases and is omitted

here,   o

Proof of Theorem 1. Suppose that C is an extremal point, i.e., that

(13) R(.<R(   for each £, G [a, b].

Set, for simplicity, R := R(., Q := fl*..

Consider the interpolation problem

í N
lcx<p(t) + c2p(t) + Ycit
I 1=3

N-i

<x,E)

(n - a()
(x,£)

with respect to {c;}, . Since tp, p, and {t'}0      are linearly independent, there

exists a unique solution {c (£)} to this problem. Then,

£*/«)'
N-i

r=3

= 0.
(*„.£„)

Thus, c;(^) = 0 for i > 3. Therefore,

(14) 0(/) = 0{(/) + c, («*(*)+ c2(i)/>(f).

Note that sign/>(0 = sign £2,(0 and /a (p(t)dt = 0. We assume for con-

venience that Q(0 > 0 on [a, b]. Then the assumption (13) leads to the

inequality

c2(£)<0   for each { e [a, b].

Next, we get from (14)

ß(*-1)(i/)=c2(<S/.)./-1)(i;),        1 = 1,...,?,

n(/»,--!)
(x,) = c2(x,) • //"-  "(x,.),       /e/

Therefore,

(15)
Qlt"1,(i<)^H,K/)<0      for/=!,...,*,

i Í2(//'_1)(x,) • /^'""(x,) < 0   for / G J

Add also the fact that

(16) signf2(¿   X)(a + ô) = signp(k  l\a + S)
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for sufficiently small ô > 0. To establish (16), we note that e0 N_2 = e0 N_x =

0, since Ea is a Pólya matrix. This yields signQ(JV \a) = signpiN"2\a).

Then the equality (16) follows immediately from Lemma 2.2 of Jetter [8], which

asserts that Q( \a) = 0 if and only if eQl = 1 and, equivalently, £2( \a + ô) •

a{l+x)(a + ô)>0 for small ô>0.

The next argument presents the main idea of the proof of the theorem.

Suppose that R < R* for each Ç G {tx, ... , tr) . This leads to strict inequal-

ities in (15). Then the same arguments as in the proof of Lemma 3 show that

£2(/c_1)(0 has at least one Rolle's zero in (tt, ti+x) for i = 1,... , r- 1. Now

observe that the number of Rolle's zeros of Q (0 and p (0 is deter-

mined by xn and columns 0, ... , k -2 of Ea . Since the same part of Ea ,

together with the point Ç, implies r Rolle's zeros of qr _1)(0 , it follows that

Q{k~l)(t) and p{k~l\t) have r-l Rolle's zeros in (a,b). Thus, all Rolle's

zeros of £2        and p        lie in (tx, tr). On the other hand, the inequalities

(15) and (16) imply that Í2( _1) or p        must have at least one Rolle's zero

in (a, tx ), a contradiction.

So, we proved that

min{Ä{: Çe[a,b]} = min{R(: £ e {/,,... , tr}}.

However, the theorem was formulated in a slightly stronger form. It remains

to show that the minimum of R^ on [a, b] cannot be attained at a point £

distinct from the Rolle's zeros tx, ... ,tr of tp1, _1). In order to do this, we

shall apply the same idea just demonstrated above.

Suppose that £* £ {tx, ... , tr) . Then some of the relations (15) turn into

equalities. But this is not a serious difficulty. A careful study of the behavior of

Q(Á:_1)(0 and p( ~X)(t) near the points tx, ... ,tr, based on the inequalities

(15), shows that for sufficiently small ô > 0, there exist points ti 6 (t¡ — S, t¡ +

ô), i = 1, ... , r, such that

(17) Q(i-1)(^)./-,)(í)<0.

The observation (17) is obvious if c2(t¡) < 0. Otherwise, we have to take into

account the fact that Q( _1)(0 and p{ ~x\t) have a zero at ti of different

parity, i.e., of even, odd multiplicity, or vice-versa. (This is the point where we

use the assumption that Ç ±tx, ... ,tr.)

We proceed as before. It follows from Lemma 3 and (17) that Q( ~ (and

// _1)) has at least one Rolle's zero in (ti , ti+l). Then (16) leads to a contra-

diction. Thus ¿l* G {tx, ... , tr} . This implies (6). The theorem is proved.   D

Now we are prepared to prove our first comparison result.

Theorem 2. Let the normal incidence matrix E = (e¡ )™q j~0 and the number

a satisfy (ii). Push down the block in the row ea of E one position (i.e., decrease

the level k - 1 of the block by 1) and denote the resulting matrix by E. Given
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arbitrary nodes a = x0 < x, <

following inequality is true:

< X     ,  < X   , ,  <
a—I a+l <xm<xm+i =b, the

min R(x(Z),E(Z)) < min R{xß), Eß)).
a<i<b a<i<b

Proof. It is known (see [6]) that the Birkhoff interpolating polynomial

P(f, (x, E); t) depends continuously on x. Then fa Si((t)dt is a continu-

ous function of t\, and therefore R( attains its minimal value at some point

Ç* in [a, b]. According to the Characterization Theorem 1, Ç* satisfies (6),

(7), and (8). Denote now by ¿>.(<*) the coefficient of f (£,) in the interpolatory

quadrature formula (1), based on (x(£), E(¿¡)). We claim that

|MO = 0   if {• € «,.Í,},

[ bx (C) = 0   if C = xt for some i G J.

Indeed, by Theorem 1, the extremal point t¡* coincides with some Rolle's zero

of the corresponding polynomial tp ~ (t). Then in both cases the coefficient

b(C) from (18) equals const- fa <p(t)dt. But the integral is equal to zero, in

view of (4). The proof of claim (18) is completed.

Let Q and Q be the polynomials of degree N with leading coefficient 1,

which vanish at (x(<f), £(0) a°d (x(c¡*), £(£*)) > respectively. Since f(t):=

£2(0 - £2(0 is a polynomial of degree < N - 1 and ADP(l) = N - 1, we get

;i8)

/'Ja

f(t)dt = bk(0'/k)iC) = o

in the case {*€{£,,..., {fl}. Thus,

(19) Ä..=Ä(x(0,£(0)> rmnÄ(x(i),£(i)).
a<ç<o

Similarly, one can verify (19) in the case £* e {x(:/ e /}.  The theorem is

proved.   D

Remark 1. The next simple example shows that the error R(x, E) does not

always decrease when we reduce the level of the blocks, keeping the nodes fixed.

Let [a, b]:=[0, 1], m=l,

E =

1 0 0
0 1 1

0   0   0

1 0 0
1 1 0

0   0   0
x = (0,i,l)

Then, £2(0 = f3 - 3¿/2 + 3Ç2t, £2(0 = t(t - Q2, and therefore

^ = 1 Çl(t)dt = \-^ + \cf,

n(0</í = ¿-lí + K

Clearly, R, < R* for any fixed ¿¡ G (0, A)
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Remark 2. The following example shows that it is not possible to prove strict

inequality in the assertion of Theorem 2.

Let [a,b]:=[0, 1], m = 2, a = 2,
"1    10   0   0 0'

0    1    10   0 0
0   0    1    10 0
0   0   0   0   0 0

E =

x = (0,x.,£, 1).

1    10   0   0   0"
0   110   0   0
0    1    10   0   0

.000000.

Observe that the functions <p and p, introduced at the beginning of this section,

are the same for E and È. Clearly, tp' has a unique Rolle's zero n , 0 < n < I,

produced by x0 and Ç. Moreover, r\ depends continuously on xx in [0, 1],

and therefore there exists a situation when t] = xx. We shall assume here that

xx is chosen in that way. Now, by Theorem 1, minÄ(x(<^), Ê(Ç)) is achieved

only at c¡* = xx . Let

(20) / f(t)dt « û0/(0) + axf(0) + bx/(xx) + b2f(xx) + ¿>3/"(x,)
Ja

be the interpolatory quadrature formula based on (x(<ï;*), E(Ç*)). (6=0,

according to Theorem 1.) Since (20) is exact for n5, we get

SJo
p(t)dt = b3 ■ p'"(xx) > 0.

It is easy to verify that p  (x1 ) > 0. Therefore,

(21) ¿3>0.

Note that tp" has exactly two Rolle's zeros (\x and ¿¡2, 0 < £x < xx, ¿|2 = xx.

Thus, by Theorem 1, minjR(x(<!;), £'(<^)) can be achieved at ^, or £2 only. Set

n,(0:=£2(x(£;), £(£,); 0,

Now, applying (20) to £22(0 - £2,(0 > we get

¿=1,2.

Jo
[aM)-aAt)]dt = -b3.n"'{x.).

Since £2',"(x1) > 0, (21) implies

f Q2(t)dt< f Qx(t)dt.
Jo Jo

Therefore,

mm R(x(t), E(^)) = R(x(Z2), E(t2)) = mm R(x(S), £({))
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4. Comparison with respect to the endpoint terms

The previous theorem treats interior blocks only. Next we shall prove a

similar result about the monotone dependence of the error R(x, E) on the

level of the 1-entries in the first and last rows of E.

Our proof is based on the following extension of the classical Budan-Fourier

theorem.

Denote, as usual, by S~ (fx, ... , fn) the number of the strong sign changes in

the sequence of numbers fx, ... , fn. Let S+(fx, ... , fn) denote the maximal

number of sign changes in fx, ■■■ , fn, where the zeros are interpreted as -1

or +1. Let Int£" be the interior of E (i.e., the matrix obtained from E by

deletion of the first and last row).

Lemma 4. Suppose that the incidence matrix E = (e¡■ .)™o  ¡=o   satisfies the

Pólya condition and all non-Hermitian blocks of Int E are even.

Then

| Int£ | < S-(f(a),..., /N)(a)) - S+(f(b),..., fN)(b))

for each polynomial f of exact degree N which vanishes at (x, E) for some

points a = x0<---<xm< xm+x = b.

The lemma is an immediate consequence of Theorem 2.5 in [11]. The proof

is given there.

Suppose that the incidence vectors e = (e,, ... , eN_,) and ê = (êx,... ,

êN_x) have the same number of 1-entries. Let

ej = 1    if and only if   i — Xx, ... , Xn,

êj = 1    if and only if   i = XX, ... ,Xn.

We write here, for the sake of simplicity, e < ê if X¡ < X¡ for i = I, ... , n .

Theorem 3. Let the incidence matrices E = (£,-,-)™o   .J0   and E = (ér;.)™q   ,Jjj

have only even blocks of 1 's in the interior rows and satisfy the Pólya condition.

Suppose that e, = e( for i = 1, ... , m and ê0 < e0, êm+1 < em+1.

Then

R(x,Ê)<R(x, E)

for each x=(x0, ... , xm+x), a = x0 < x¡ < • • ■ < xm+x = b.

Moreover, equality holds if and only if E = Ê.

Proof. We use here an idea employed in [4, Theorem 3.5].

Suppose that

e0j = l    if and only if   j = Xx, ... , Xn ,

em+i,j = l   if and only if   i = px, ... , pn¡.

Similarly, the 1-entries of e0 and em+1 are prescribed by {Â(}" and {fi}x' .
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Evidently, the assertion will follow by pairwise comparisons and symmetry,

if we prove that

(22) R(x,Ê)<R(x,E)

in the case

p¡= £,,        i=l,...,nx,

Xi = Â; for all i±k,

Xk=Xk-l   where Xk-I i{Xx, ... , Xn) .

In order to do this, we study the polynomials £2 and £2 defined by (x, E) and

(x, E), respectively. Without loss of generality, we may assume that they are

nonnegative on [a, b]. Suppose that £2(t) > £2(t) > 0 for some t g (a, b).

Consider the polynomial

g(t):=a(t)-ß-a(t),
where ß := £2(t)/£2(t) . Clearly, 0 < ß < 1. Then g(t) is of degree N and

has a leading coefficient of the same sign as that of £2. In addition,

i*(T) = 0,

\ gO)(x,) = 0   ife/y = l, i=l,...,m,

and all these zeros are prescribed by an incidence matrix Ex which satisfies the

requirements of Lemma 4. Note that | Int/s, | = | Int £"| + 1 = N - n- nx + I.

Therefore, by Lemma 4,

(23) N-n-nx + l< S~(g(a),..., g{N)(a)) - S+(g(b),..., g{N)(b)).

It then follows from the obvious estimations

S-(g(a),...,g{N)(a))<N-n + l,

S+(g(b),...,giN)(b))>nx

that (23) is actually an equality. Thus,

S-(g(a),...,g(N\a)) = N-n+l.

On the other hand, since

(N),    > r\(N),   ssigng' '(a) = sign£2v '(a),

signg(Xk)(a) = -sign£2(At)(a) = sign£2w(a),

where eox is the first 0-entry in the sequence e0 x +1, ... , e0 N_x, we conclude

(see [4] for details) that

S~(g(a),..., g{N)(a)) < 5"(Q(fl),..., Q{N~l)(a)) = N-n,

a contradiction. Thus, £2(0 < £2(0 for each t G [a, b]. This implies (22),

since £2 ̂  £2. The proof is completed.   □
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5. Existence of Birkhoff quadratures of double precision

The fundamental question of existence of Gaussian quadrature formulae of

preassigned non-Hermitian type was studied first by Micchelli and Rivlin [12]

(see also Dyn [5]).

We say that the quadrature formula Q has double precision if it uses TV

evaluations and ADP(ß) = 2N - 1. Clearly, any such formula is defined by

a matrix E that has blocks of length 1 only. For example, the Gauss quadra-

ture formula has double precision. Jetter [8] proved recently the existence of

pyramidal Birkhoff quadratures of double precision. We shall derive here an

existence theorem treating the general case. The major ingredient of our proof

is the characterization result of Theorem 1, combined with the technique of

splitting nodes, described in the next propositions.

Lemma 5. Let the incidence matrix E = (£, ,)™o ¡~q satisfy the Pólya condi-

tion. Suppose that all interior blocks of E are even. Let {ai}} be the coef-

ficients of the interpolator quadrature formula (1) based on (x, E) for some

fixed nodes x = (x0, ... , xm+1), a = x0 < xx < ■ ■ ■ < xm+x = b. Let

ieij ' e¡ j+i > ■■• ' ein)' n ~ J - 3. be an arbitrary interior block of E. Sup-

pose that

1 )   ai k = 0 for some k G {j + 3,...,«} ;

2) tin+l)(x,E;Xi)¿0;

3) n-k is an even number.

Then for each j < r < k - 2 there exists a pair (xh , E¡) such that

(24) I f Q(xh,Er,t)dt\<\ / Cl(x,E;t)dt .
I Ja \ Ja

The pair (xh , E¡) is of the form

x

(A)

or

h = (x0,...,xi,xi + h, xM,... ,xm+l), h>0;   E¡ is ob-

tained from E by setting ei k_x= e¡ k = 0 in e( and inserting a

new row e between e( and e;+, which has 1 's only in positions

.r and r+ 1 ;

:, = (x0, ... ,xi_x, x-h, x(, x+h, x(+|, ... ,xm+x), h>0;h
i is obtained from E by setting ei}. = ••■ = eik = 0 in e( and

(B)      \ inserting two new rows er_h and eT+h corresponding to the points

x-h and x + h, one of which has 1 '5 in positions j, ... , k-2,

. and the other in r, r + 1 only.

Proof. Since the polynomials £2A(0 := £2(xA , E¡ ; 0 > ß(0 := ^(x> E ; t) have

the same sign in (a, b), we assume below for convenience that £2A(0 > 0,

£2(0 >0 in (a, b).
Suppose that there is no xh of the form (A) for which (24) holds. Then

b

[Clh(t)-Çl(t)]dt>0
Ja
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for each sufficiently small h > 0. Since aik =0 and the quadrature (1) based

on (x, E) is interpolator, we get

(25) f [Slh(t)-a(t)]dt = aik_l-ahk-{)(xi)>0.
Ja

Now note that the coefficients of the polynomial £2A(0 depend continuously

on h. This follows from the fact that E is a coalescence matrix of Ei and

from a general result about the continuity of the Birkhoff interpolating poly-

nomial (see [6]). Then, by Markov's inequality for the derivatives of algebraic

polynomials,

||Q(«+i)    Q(«+i),, 0        ,      n11"/! "      Wcia,b]^v   as«-*u.

Therefore, in view of assumption 2), there exists hQ > 0 such that £2A"+1)(i) ^ 0

on (x( - h, xt + h) for any h G[0, h0]. Moreover,

(26) sign £2¡;+1)(0 = sign £2("+1)(jc,.)

for te(Xj-h,x¡ + h). Using Rolle's theorem, the assumption j < r < k - 2,

and (26), we conclude that £2A (0 has exactly two zeros in (x¡, x¡ + h],

Slhk)(t) has exactly one zero, and £2J, +1)(0 has no zero in (x(, xi + h). Thus,

ajf-^jc.^O. In addition,

r\(k+\),.s r\(k+2),.^ r\(n+x) / ¿\ /-»("+>)/     \sign£2)!    '(r) = sign£2Ä    '(t) = ••• = signup    '(0 = sign£2v     '(x,.)

for t G (x( ,xi + h). This follows from the well-known fact that f(c + t) •

f(c + t) > 0 for any small t > 0 if the algebraic polynomial / vanishes at c.

Therefore,

signup    '(Xj) = sign£2)!    ;(0 = sign£2'     '(xt)

for t G (x¡, x; + h) and hence, on the basis of (25),

(27) signa,. fc_,= sign£2("+1)(x,)-

Observe that ai k_x ^ 0 if aik = 0. (Otherwise, the quadrature (1) cannot be

exact for nN_x.)

In the preceding discussion, xh was assumed to be of the form (A). Next,

we assume that xh is of the form (B) with h and x such that

(28) £2f)(x,) = 0.

Then many of the above conclusions about Qh remain true also in case (B). In

particular,

sign£2¡f+1)(0 = sign£2("+1)(x;)   for t € (*,., x + h),

and since n-k is an even number, the latter holds also for tG(x-h,xt).

As in case (A), we conclude that £2A*:_1)(0 has exactly two zeros a < ß in

(x - h, x + h), and then

(29) sign£2¡f_1)(0 - -sign£2("+1)(jc()
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for t G (a, ß). It follows from (28) and (26) that

maxinr^oi-ini    iXi)\=-P-
ot<t<p

•»(*-!)/„M       m(k-l)
max ii

a<l<ß

Then,

(30) \Qw(Xl)\<p-(2h)k-x-x,       X = j,...,k-2.

(This is a standard technique. The details can be found, for example, in [3].)

Applying the interpolatory quadrature formula ( 1 ) based on (x, E) and tak-

ing into account (30), we get

rb[Srîh(t)-Çi(t)]dt = Yatx-^ixi)

X=j

= aik_x-Si{k-X)(xl) + p-0(h)

= p-[aik_rsignClf-l\xi) + 0(h)}.

fJa

Since a < x( < ß, (29) implies

Q(k-\),    n <-»("+')/     \
\     '(x¡) = -sign£2v     '(*,■)

and hence, by (27),

«,,*_,- sign £2A     (*,.) = -|«iiJk_,|.

Recall that a( fc_, ̂  0. Thus,

f [ah{t)-a(t)]dt<o
Ja

for sufficiently small h . The proof is completed,   o

Lemma 6. Let the normal incidence matrix E = (e, ,)™o /Jo' satisfy the Pólya

condition and have only even blocks in the interior rows. Suppose that for a fixed

i g{1 , ... , m) the row e( contains exactly one block (en, ... , e¡n). Given the

nodes x= (x0, ... , xm+l), a = x0 < • • • < xm+x = b, denote by {akj(t;)} the

coefficients of the interpolatory quadrature formula based on (x(£), E), where £

is a parameter and

x(£) — (*o » • • • ' Xi-\ ' *» ' Xi+\ ' • • • ' Xm+l) •

Suppose that

ajn(x) = 0   and   £2("+1)(x(t), E; x) = 0

for some x G (a, b) such that

(a) x = x¡;  or

(b) x = xl for some I ^ / with the property that e; and e/ are not in collision

(i.e., e¡k-e¡k=0 for k = 0,..., N- 1) anJ £>, „+1 =0.
Then Ç = x is not an extremal point for the integral

/(£):= /" Q(x(í),£;0¿í-
./a
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Proof. We shall show first that
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(31)
dj_ 1+1),

í=r

= -ain(x)-n(n+l,(x(x),E;x).

Indeed, set for convenience

/ 1   t  •••  tN  \

D(t;X,...,n):=det\ {l, t, ... , tN}    ,

V     (*it),E)     J
where X, ... , n indicate the order of the derivatives in the consecutive rows

containing £. Similarly,

0 = fl„W,...,n):=de,(('.('.({)V^"'i).

We have

¿D(t;X,...,n)dt

^ DN(X,...,n)      ■

Suppose that c¡ is in a neighborhood of a point x satisfying (a) or (b). Then

dl       1    fh
= F2Lm'

dt
,n-l,»+ l)-D-D(t; X, ... , n)

•DN(X,...,n-l,n + l)]dt.

Since the integrand is a polynomial of degree N - 1, we apply the interpolatory

quadrature formula based on (x(£), E) and get

|| = ^~Z)(i;A,...,«-!,»+!)
t=i

Observe that

Thus,

—jfZ>(i;A,...,n-l,n + l)
at

dl

ifl+l

t=i dt
7^-^; a,...,«)

t=(

^ = -ain(t).n{n+l\x(Z),E;i),

which yields (31) for £ = x.

We now consider separately two cases.

Case A. Let t = x,. Note that

-,«+1

£2("+1W), E; Í) = ¿#-r0(t; A, ... , n)
Ddt"+i t=S

= (-1)
DN(X,...,n)
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where p := |e0| and DN+X is defined in a similar way as DN(X, ... , n). Then,

+l)ix(i),E;Z)

,    *,pDN+l{X,...,n,n+2yP-DN+i{X,.    n,n+\yPN{k,,..,n-\,n+\)
\       ) 73

^£2("+1)(x(0,£;0

Since

DN+x(X,...,n,n + 2)ID = (-lf-án+2)(x(í),E;cl),

DN+x(X,...,n,n+l)ID = (-lf-an+X)(x(ç:),E;a),

and £2("+1)(x(t) , E ; t) = 0, we obtain

(32) ^£2("+1)(x(0,£;^)
í=r

= (-ir.£2("+2)(x(r),£;t).

Similarly, one can show that

(33) dïa'"^
Í = T

=  -fl/.„-l(T)

if ain(x) = 0. For this purpose, denote by Ein the matrix obtained from E

by setting ein = 0. Let y/(x(Ç), E; t) be the polynomial of degree N — 1 such

that

W\
n).

WÍ ),£,■„
= 0,      ^'"(0 = i-

Clearly,

y/(x(ti),E;t)dt.

Using the determinant representation of y/(x,E;t) and straightforward cal-

culations, we get (33). Note here that (33) is true for x satisfying (b) as well.

Another proof of the relation (33) was given in [9].

Now observe that

*,,„-.(*) *0   ifa/B(T) = 0,

£2<w+2)(x(t) , E; t) ?É 0   if £2("+1,(x, E; t) = 0.

Then, using (31), (32), and (33), we obtain

dl_
0.

Í=T a¿;2
= 0,

í=r 0£3
¿0.

Í=T

The last relations show that ¿; = t is not an extremum point for /(£) in Case

A.

Case B. Let x satisfy (b). The proof is identical with that in Case A if e¡ n+2 =

0. Suppose that e¡ n+2 = 1. This means that e¡ contains a block (e¡ n+2, ... ,

e¡ ) and, according to the assumptions of the lemma, q-n is an odd number.
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The lemma will be proved in this case if we show that dl/dÇ does not change

its sign at ¿¡ = x = x¡. It was established above that

g-2f*-£w.-.-..-M>
t=S

= (-lf+xain(c;)-DN+x(X, ... , n - 1 ,n,n + l)/D.

Lemma 1 guarantees a constant sign for D. Further, since ain(x) = 0 and

Matni^)\i=r = -ß,,„-i(T) # 0, ain{£) changes it sign at £ = t.

Consider the function D^+1 (£) := DN+X(X,...,«— 1, », » + 1) in a neigh-

borhood of t = x,. Using the Taylor expansion of DN {(Ç) at £ = t, we

get

But

D^;")(T) = Z)iV+1(A,...,n-l,«,n + 2,...,í,í+l)?éO.

Indeed, suppose that DN+X(X ,...,n-l,n,n + 2,...,q,q+l) = 0. Then

there exist two polynomials px and p2 of the form t   H-  which vanish at

(x(t), E) and, in addition, p\"+X)(x) = 0, p2\x) = 0. Then p{- p2G nN_x

and (/>, - />2)|(x(r) E) ~ Q- Hence />, = p2, and consequently px = 0, a

contradiction.

Thus, Dff+x\x) ^ 0, and hence DN .(£) changes its sign at t\ x.

Then dl/dÇ does not change its sign at £, = x and the proof is completed.   D

We are now ready to prove existence.

Theorem 4. Let E = (e, ,)™q j~0   be an arbitrary normal incidence matrix

which satisfies (i). Suppose that for each a g {1, ... , m} the matrix Ea satisfies

the Pólya condition. Let kx, ... ,km be the levels of the interior blocks of E.

Then there exists a quadrature formula of the form

r-b m

f(x)dx*Yai-f{')ix*)+YAj-JAJ)ia)+   E   Bj-^ib)IJa '=' % = ' <Vi., = l

with ADP = 2m - 1 + |e0| + |em+11 and x* G (a, b), i = 1, ... , m.

Proof. Set

R(E) := inf{i?(x, E); a < xt < b, i = 1,..., tm}.

The polynomial £2(x, E; t) depends continuously on x¡ (see [6 or 8, Lemma

2.2]).   Then there exist points £   , ... ,¿     such that a < I    < b,  i =
1 m "i

I,..., m, and

R(Ç,E) = R(E),        ?=(«,{„ ,...,«„  ,b).
I m

Since (\v is the extremal location of x;, keeping all t\v , j ^ i, fixed, it follows

from Theorem 1 that a < I   < b for each /.
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Next we shall show that t\v ± Z,v if their corresponding blocks are in col-

lision, i.e., if \kx-k\ < 2. Assume the contrary. Then there is a block

ß = (s , ... , sn) in the coalesced matrix c(E) which is formed by the coales-

cence of interior rows of E, some of which are in collision. Moreover, there is

a sequence y = (sq, ... , sk) of l's, p < q < k < n, such that each component

(i.e., original block of length 2) of y is in collision with the coalescence of the

remaining components of y. Assume further that y is the highest subsequence

of ß with this property and the block ß . of the row e( has a highest level

among all components of y. Then /?. will occupy the consecutive positions

isk-\ ' sk) 1° the coalescence block ß . Since t\v is the extremal location of

xi, it follows from Theorem 1 that aik = 0, where ax denotes the coefficient

of f^^iZ,, ) in the interpolatory quadrature defined by (f, E). If k = n , then

£2{"+1)({, E ; t\v ) / 0, by Lemma 6, applied to the block ~ß . (We use here that

the whole block ß is in an optimal position if its components are optimally

located.) In case k < n we observe that the block (sn_x, sn) (which is not

in collision with other components of ß) corresponds to the optimal location

£v = t\v  of some x . Thus, by Theorem 1, ain = 0. This yields, again by

Lemma 6, that £2("+1)(£, E ; ¿¡u ) ^ 0. Now we can apply Lemma 5 to split the

node t\v and obtain a quadrature formula with a smaller error R, a contradic-

tion. So, the blocks remain in their original levels {k¡} after the optimization.

Applying again Theorem 1, we get

öi,fc,.+i=0'        i'=l,..., m,

which completes the proof.   D

Let us point out that if e0 = em+1 = (0, ... , 0) in Theorem 4, the resulting

extremal quadrature formula has double precision.

It is a well-known fact that the nodes of the famous Gauss quadrature formula

minimize the integral ¡a(x-xx) ■ ■ ■ (x-xm)2 dx. Theorem 4 reveals a similar

connection between the extremal problem

rb

£2(x, E; t)dt —> min
'a

and a Gaussian quadrature formula of Birkhoff type defined by E.

Theorem 5. Let the incidence matrices E = (e,,)™"I,1 'JJq   and Ê = (e{ •)^1 ^'

satisfy the requirements (i). Suppose that Ea and Ea satisfy the Pólya condition

for every a G {1, ... , m} . Let ê0 < e0, em+x < ew+1. Suppose that

kt<kt,       i = 1,..., m,

where (k^)™ and (k^)™ are the levels of the blocks in the interior rows of Ê and

E, respectively. Then

R(E) < R(E).

fJa
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Moreover, equality is attained if and only if E = Ê.

Proof. Assume first that Ê and E have the same boundary rows. There is

nothing to prove if k¡ = kj for all i. Suppose that ki < k¡ for some fixed i,

I < i < m. Push down the block in the i th interior row of E one position

and denote the resulting matrix by E. The assertion will follow by pairwise

comparisons if we prove that R(E) < R(E).

Let R(E) = R(Ç,E) for ?=(a,{„ ,...,<?„ , b). Let (s0, ... , sN_x) be
1 m

the coalesced (possibly) row at the point <\v . Since there is no collision in this

coalescence (see the proof of Theorem 4), (sk , sk+x) is the block corresponding

to t\v . Assume first that sk _, = 0. Applying the interpolatory quadrature

based on (£, E), we get

I  [Q(t,E;t)-n(C,E;t)]dt = 0.
Ja

Thus, R(Ç, Ê) = R(E). Evidently, R(Ê) < R(Ç, Ê). We need to show that

R(Ê)<R((,Ê).

Assume that R(E) = i?(£, E). This means that <\v  is an extremal point for

the matrix E as well. Since sk_x - 0, the polynomial tp, defined by (4), is

the same for E and Ê. Then it follows from Theorem 1 that tp( ~l\iv) =

<? ~ i^v ) = 0 with k — 1 = ki. But this leads to tp = 0, a contradiction. Let

now sk _, = 1. Then there is a collision between the block of ^  and some

other block in the coalescence of Ê with respect to f. This yields, as in the

proof of Theorem 4, that í is not extremal for E. Thus R(Ê) < R(Ç, Ê).

The proof is completed in the case when the boundary rows of E and Ê

coincide. Now the general result follows from the above reasoning and Theorem

3.   D
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