
mathematics of computation
volume 54, number 190
april 1990. pages 895-902

FERMAT'S LAST THEOREM (CASE 1)

AND THE WIEFERICH CRITERION

DON COPPERSMITH

Abstract. This note continues work by the Lehmers [3], Gunderson [2], Gran-

ville and Monagan [1], and Tanner and Wagstaff [6], producing lower bounds

for the prime exponent p in any counterexample to the first case of Fermat's

Last Theorem. We improve the estimate of the number of residues r mod p"

such that fP = r mod p~ , and thereby improve the lower bound on p to

7.568 x 1017.

1. INTRODUCTION

The first case of Fermat's Last Theorem (FLTI) is the statement that, for any

odd prime p , the equation xp +yp = zp does not have integer solutions where

none of x, y, z is divisible by p . The generalized Wieferich criterion (for

given q) is the statement that if FLTI fails for some prime p , then qp = q mod

p . This criterion has been proved [1] for all qeW = {2,3,5,1,..., 89},

the first 24 primes. It trivially holds for q = -1 or 0, so for convenience we

write W = Wu{-1,0} = {-1,0,2,3, 5, 1,... , 89}.

The number of distinct pth. powers (mod p ) is only p, since (a+bp)p = ap

(mod p ). If p violates FLTI, the generalized Wieferich criteria (for all q e W)

can produce a large number of distinct pth powers (mod/T), and when this

number exceeds p , we establish FLTI for p .

The following lower bounds for the number of distinct pth powers (mod p )

have been established:

• /|(p,W), the number of integers in [0, p  - 1], all of whose prime

factors lie in W ("smooth integers");

• f2(P, W), the number of smooth integers in [-(p2 - l)/2, (p2 - l)/2]

[4];
• fj(P, W), the number of pairs of relatively prime smooth integers

(a, b) with -p/y/2 <a< p/\f2 and \<b< p/\f2 [2].

To these we add a new bound,

• f^P > W), the number of pairs of relatively prime smooth integers
2 2 2

(a, b) with b > 0, such that a  + b  < p .
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Clearly f4(p, W) > f3(p, W).

Theorem 1. There are at least f4(p, W) distinct pth powers r    (mod p ), if

p$W.

Proof. Each pair (a, b) counted by f4(p, W) gives rise to a residue r mod p
1 2

such that a — br mod p . Since both a and b are pth powers   (mod p ), r

is also.
Suppose two such pairs, (ax, bx) and (a2, b2), give rise to the same value

of r (mod p2). Then from
2 2

ax=bxr   (mod/?),        a2 = b2r   (mod p )

we obtain

a2bx = bxb2r = axb2   (mod/?),

(1) a2bx-axb2 = 0   (mod/?).

As vectors in R3, both (ax, b,,0) and (a2, b2, 0) have norm less than p , so

the magnitude of their cross product, \a2bx - axb2\, is less than p . Together

with (1), this implies a2bx - axb2 = 0. So ax/bx = a2/b2 as rational numbers.

Since a. and b- are relatively prime, both fractions are reduced to lowest terms,

and b > 0 implies that both have positive denominators. Thus (ax, bx) =

(a2 , b2) .

This implies that distinct pairs (a, b) counted by f4(p, W) give rise to

distinct pth power residues r (mod p ).   G

2. Generating function

To obtain an effectively computable lower bound fA(p, W, a) for f4(p, W),

we use a generating function on two variables. We select a real number a >

1, and an integer N such that a ~ exceeds the desired bound on p, and

such that our computer can handle an array with N elements. We define the

generating function

c(^y) = EEvV
l>07>0

by

(2) C(x,y)=Yl fex^+^y^ + l

We will compute the coefficients c    for 0 < i < N, 0 < j < N.
a

For each positive smooth integer a = n ¿w Q    » define the index

ind(a,a)=^riogQÍ?(/')l.

qeív

Evidently, ind(a, a) > loga a .
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Lemma 2. The coefficient c¡ counts pairs of relatively prime smooth positive

integers (a, b) such that

i = ind(a, a),        j = ind(Z?, a).

Each pair (a, b) is counted in only one coefficient c( .

Proof. This follows by the properties of generating functions. In the definition

of C(x, y), the factor

(jV^'i + jy'^ + i\/>i />i
corresponding to a given q e W, expresses the condition that q may either

appear in a (to some positive power) or in b (to some power) or in neither

(but not both, since a and b are relatively prime),   a

Corollary 3. We have

f3(p,W)>2- £    £ c,,,
0<;</  0<j<J

where I = J= \loga(p/V2)] - 1.

Proof. Each pair (a, b) counted by one of the c¡¡ satisfies

logn(p/V2) > I > ind(a, a) > loga a,

so that p/\Í2 > a . Similarly, p/\l~2 > b . The pair (a, b) corresponds to two

pairs counted by f}(p, W), namely (a, b) and (-a, b).   a

Define

f4(p,W,a) = 2.        £        cu.
ij

(a')2+(n')2<p2

Corollary 4. For a > 1  we have f4(p, W) > f4(p, W, a).

Proof. Each pair (a, b) counted by one of the c(   satisfies

2 ^   /   i\2  .   i   j-,2       i   ind(a,n),2       ,   ind(ft,o)\2 .      2      ,2
p   > (a )  +(q)   = (a ')  +(a )   >a  +b ,

so that (a, b) and (-a, b) are counted in f4(p, W).   a

Theorem 5. If f4(p0, W, a)>px > p0, then FLTI holds for all p in the range

P0<P<Pi-

Proof. For fixed values a and W, f4(p, W, a) is monotone nondecreasing

in p . For p in the indicated range,

f4(P, W) > f4(p, W,a) > f4(p0, W,a)>px>p.    D

Procedure. Build the array of c¡¡, using the standard techniques for computing

generating functions.   Starting with a known lower bound for FLTI, such as
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pQ = 101, repeatedly evaluate pk = f4(pk_{, W, a), as long as pk > pk_x .

When the process converges (pk = pk_, ) we have found a lower bound pk on

any counterexample /? to FLTI.

3. Results

We tried various values of a and got different lower bounds for the case

W = {2, 3, 5, ... , 89} ; these are tabulated below.

alpha

1.08
1.05

1.045
1.041616011

1.026004485

bound (q = 89)     size of array

6.037el7

6.608el7
6.999el7

7.040el7

7.568el7

532 x 532
841 x 841

934 x 934

1008 x 1008
1604 x 1604

The last two values of a correspond to the 17th and 27th roots of 2, respec-

tively. Our bound of p > 7.568 x 10 compares with the bound of 1.56 x 10

obtained in [6] by estimating /3. Only a small part of the improvement can

be attributed to our use of f4 instead of f. The main improvement came

from our use of the generating function C(x, y), whereas [6 and 2] had used

an analytic approximation to f3.

The following table compares Gunderson's results, those of Tanner and Wag-

staff [6], and our results for a = 1.08 and a = 1.05, respectively. The first

two columns are from [6]. For the last two columns we used an array of size

1024x 1024.

q(n)

3
5
7

11

Gunderson

9.310e01
8.614e02
7.616e03

5.273e04

Tanner-
Wagstaff

1.31 le02

1.392e03
1.307e04
9.48 le04

ours

(« = 1.08)

2.060e02
2.554e03
2.560e04
1.972e05

ours

(o = 1.05)

2.100e02
2.578e03
2.642e04

2.033e05

13
17

19

23
29

3.503e05
2.032e06
1.136e07
5.755e07
2.564e08

6.613e05
4.08 le06
2.452e07

1.359e08
6.796e08

1.386e06

9.224e06
5.656e07
3.279e08
1.740e09

1.452e06
9.575e06
5.958e07
3.445e08
1.800e09

31
37
41

43
47

1.110e09

4.343e09
1.601el0
5.744el0
1.948ell

3.349e09
1.533el0
6.773el0
2.959ell
1.252el2

8.859e09
4.199el0

1.931ell
8.849ell

3.827el2

9.321e09
4.428el0
2.021ell
9.135ell
4.000el2

53
59
01

67
l\

6.1 lOel 1

1.779el2
5.026el2
I.320el3
3.290el3

5.065el2
1.968el3
7.588el3
2.827el4
1.033el5

1.568el3
6.315el3
2.514el4
9.807el4
3.661el5

1.663el3
6.752el3
2.669el4
1.033el5
3.880el5
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q(n)

73
79

83
89
97

Gunderson

7.906el3

1.762el4
3.697el4
7.145el4

1.242el5

Tanner-

Wagstaff

3.755el5
1.326el6
4.610el6

1.564el7
5.150el7

ours

(a=  1.08)

1.363el6
4.992el6
1.748el7

6.037el7
2.051el8

ours

(a=  1.05)

1.456el6
5.347el6
1.908el7
6.608el7
2.286el8

101

103

107

109
113

1.985el5
2.926el5
3.835el5
4.408el5
4.107el5

1.674el8
5.419el8
1.732el9
5.516el9
1.736e20

6.954el8
2.327el9
7.534el9
2.434e20
8.045e20

7.538el8
2.535el9
8.273el9
2.736e20
8.858e20

127

131

137
139
149

151
157

163

167

173

2.321el5

2.686el4
i

5.248e20

1.571e21

4.640e21
1.365e22
3.926e22

1.125e23
3.188e23
8.926e23
2.481e24
6.826e24

2.442e21

7.593e21

2.272e22
6.731e22
1.967e23

5.752e23
1.676e24
4.839e24
1.344e25

3.870e25

2.734e21

179
181

191

193
197

1.858e25
5.046e25
1.347e26
3.588e26
9.502e26

1.064e26
2.920e26
7.929e26
2.153e27
5.841e27

199

211

223
227
229

2.509e27
6.51 le27
1.661e28
4.218e28
1.068e29

Gunderson's gives no bound for larger W .

' Our method ran out of storage (1024x 1024) at

1.582e28
4.236e28
1.084e29
2.769e29
7.329e29

= 131 for n= 1.05.

4. Discussion

Granularity. Our lower bound f4(p, W, a) underestimates f4(p, W) to the

extent that the logarithms are rounded up to integers in (2). That is, the in-

tegers q are rounded up to integral powers of a. These powers of a are

sparsely distributed among the real numbers. The coarseness of the resulting

approximation is analogous to granularity in a photograph.

We can lessen the effect of this granularity by choosing a closer to 1—the

error approaches 0 as a approaches 1—but at the expense of increasing N,

and therefore increasing the amount of storage necessary.

As an example of this effect, consider the computation of f4(p, W, a) for
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/? = 208, W = {-1,0,2,3}, and the two choices of a upon which our

tables are based: 1.08 and 1.05. First let a = 1.08 and (a, b) = (1, 192).

We find log10g64 = 54.039 and log, og 3 = 14.275. To be conservative, the

computation in (2) has rounded both logarithms up, to 55 and 15, respec-

tively. Then the point (a, b) = (1, 192) is counted in the coefficient c0 70,

which means it is being estimated as (1, 1.0855+15) ~ (1, 218.6). This is too

large for the bound /? = 208: l2 + 218.62 > 2082. In fact, the four points

(±1, 192) and (±192, 1) are discarded by this rounding procedure. For this

reason we find that f4(p, W, 1.08) = 206 underestimates f4(p, W) = 210.

Selecting a = 1.05, we correctly include these four points: log, 05 3 = 22.517,

log, 05 64 = 85.240, 1.0523+86 = 204.001, and l2 + 204.0012 < 2082. We find

that f4(p, W, 1.05) = 210 = f4(p, W).

Monotonicity. For a fixed value of a, as W grows (the Wieferich criterion is

proved for more values of q), our estimate f4(p, W, a) increases, as does

/4(p, W). In the expression defining C(x, y), the term 1 in the factor corre-

sponding to a new value of q ensures that the new values of c- are at least as

large as the old ones, and the other terms increase the values. (This is in con-

trast to the behavior of the methods in [2], where the addition of new primes

to W sometimes decreased the size of the attainable bounds. This behavior is

discussed in [5].) Of course, to attain these bounds, we must deal with larger

arrays, and the computer storage becomes a consideration.

For a fixed array size N, to prove larger bounds for larger estimates of W,

we must use larger values of a, and it is quite possible that the granularity will

make it impossible to prove larger bounds after a while.

5. Improvements

If we select a value of p such that 1 < p < (4/3)1/4 , and consider two disks

of radius pp and p/p, respectively, then we can get another estimate of the

number of distinct pth powers (mod p2). This has not given an appreciable

improvement in the result.

Lemma 6. If 1 < p < (4/3) , then the number of distinct pth powers r

(mod/?2) is at least \[f4(p/p, W) + fA(pp, W)].

Proof. We fix a pth power r (mod /? ) and ask what points (a, b) inside either

disk represent r in the sense that a = br (mod p ), a and b are relatively

prime smooth integers, and b > 0. We assert that r (mod /? ) can be rep-

resented by either ( 1 ) one point in the upper half of the smaller disk, or (2)

at most two points in the upper half of the annulus (the larger disk minus the

smaller disk), but not both.

If we have a point (a,, Z?, ) in the upper half of the smaller disk and another

point (a2, b2) in the upper half of the larger disk, their norms are bounded

by p/p and pp, respectively, so the magnitude of their cross product is less
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than p2. As before, if both points represent r, then ax/bx = a2/b2 as rational

numbers, whence (ax ,bx) = (a2, b2).

Suppose we have three points in the upper half of the large disk, Px , P2,

P3, all representing r. Order the points in the counter-clockwise direction, and

let 0;.. be the angle subtended by Pi and P. at the origin. We have either

0 < ö,2 < 7r/3, 0 < 023 < n/3, or 27t/3 < 0,3 < n. So for some i ¿ j we

have 0 < sino- < v/3/2 . The magnitude of the cross product \a¡b¡ - ajb¡\ is

bounded by

(pp)(pp) sin 6¡j < p2p2 (^/3/2) < p2.

Again, since both Pi and P represent r, this implies that the two points are

equal:  (a¡, bi) = (aJ, bj).

Thus, if we count the pairs (a, b) of relatively prime smooth integers with

b > 0 in the smaller disk, and add half the number of such pairs in the upper

half of the annulus, we will obtain a lower bound on the number of distinct /?th

power residues r (mod p ). This count is

Up In, w) + {[f4(Pp, w)-f4(p/p, w)] = {[f4(p/p, w) + f4(pp, w)].  o

Another idea is to define an increasing sequence of positive integers y¡ and

let c¡j count points for which a < y¡, b < v. (i.e., yi is playing the role of

a1). For example, we could have y¡ = i + 1, 0 < / < 40, and subsequent

values could grow as c • a . This would eliminate some wasted storage. Then

a could become smaller (for a fixed amount of storage), and we would suffer

somewhat less from the granularity of powers of a. We have not implemented

this improvement.
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