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COMPUTING THE DISCRIMINANTS

OF BRAUER'S CENTRALIZER ALGEBRAS

PHIL HANLON AND DAVID WALES

Abstract. This paper discusses a computational problem arising in the study of

the structure theory of Brauer's orthogonal and symplectic centralizer algebras.

The problem is to compute the ranks of certain combinatorially defined matrices

Zm k(x) (these matrices are presented in §2). This computation is difficult

because the sizes of the matrices Zm k(x) are enormous even for small values

of m and k . However, there is a great deal of symmetry amongst the entries

of the matrices. In this paper we show how to design algorithms that take full

advantage of this symmetry, using the representation theory of the symmetric

groups. We also present data collected using these algorithms and a number of

conjectures about the centralizer algebras.

1. Introduction

Early in this century invariant theorists began to study the commuting alge-

bras of the tensor powers of the defining representations for the classical groups

(see Weyl [19]). These algebras are defined in the following way. Let G be a

classical group, let V be its defining representation, and let TfV be the /th

tensor power of V . The group action of G on V lifts to the diagonal action

of G on TfV, defined by g • (vx®v2® ■ ■ ■ ®v j) = (gvx)<®(gv2)®---®(gvf).

Define the commuting algebra, EndG(TfV), of this action to be the algebra of

all linear transformations of TV which commute with this action of G.

The first important result was due to Schur [16] who studied the G =

Gl(«, C) case. He showed that there is a surjective algebra homomorphism

from CSym(/) onto EndGI(n CAT Cn), which is an isomorphism for / < « .

He went on to identify the kernel of this homomorphism, thus giving a complete

description of the centralizer algebra EndGI(fI C)(TJC ).

The next cases considered were the orthogonal group, G = 0(«, R), and the

symplectic group Sp(2«, E). In a 1937 paper, Richard Brauer [3] defined two
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algebras sf}x) and â$tïx) indexed by a positive integer / and a real indetermi-

nate x. He also constructed surjective algebra homomorphisms

^:<^End0(BiR)(;rV)

and

(2m)    ^,(2m)        _    , ,„/'_.2m,
y/f    :&f     -EndSp(2mR)(rE    ),

and he showed that these homomorphisms are isomorphisms if « and m axe

large enough. He failed to give a description of the kernels of the maps q>?

and y\      in the cases where these maps are not isomorphisms.

In the hope of finding an explicit description of these kernels, the present

authors began the study of the algebra structures of stf) and 3§y for x

an arbitrary real. One simplification of the problem comes in noting that the

algebras sfj     and &j-       are isomorphic. So it was only necessary to study

the algebra sfjx). The authors hoped to be able to describe the radical of sf}x)

and the matrix ring decomposition of sf}:x) /Rad(sf}x)).

In an earlier paper [7], the authors found the matrix ring decomposition of

s/f{x)/Rad(jnff{x)) and reduced the problem of finding the radical of sé(fx) to

the problem of computing the ranks of certain combinatorially defined matri-

ces Zm k(x) which are described in the next section. This paper concerns the

computation of these ranks and the slightly weaker problem of computing the

determinants of Zm k(x). These determinants, when considered in an appro-

priate way, are discriminants of the Brauer algebras sf}x).

The computational methods described in this paper make strong use of the

representation theory of the symmetric groups. The paper is organized as fol-

lows: §2 describes in combinatorial terms the computations that need to be

done, §3 gives background information about representation theory, §4 explains

how to use this representation theory to construct algorithms, §5 contains the

result of computations that have been done by the authors, and §6 contains pre-

vious results about the radicals of the «a^(x) as well as a number of conjectures

that are suggested by the data in §5.

We will assume familiarity with the standard notation, terminology, and the-

orems from the representation theory of the symmetric groups. In particular,

the reader will need to know the definition of a Littlewood-Richardson filling

and the Littlewood-Richardson rule (see James [9, pp. 51-64] or Macdonald

[14, pp. 68-73]). We write g, for the number of Littlewood-Richardson

fillings of [A/p] having content r\, and we write À \- I to signify that A is a

partition of /. Other notation and terminology can be found in Macdonald

[141.
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2. The computational problem

In this section we will define a class of square matrices Zm k(x) which are

indexed by positive integers m and k and which have entries that are poly-

nomials in x. Our computational problem will be to compute the rank of

Zm k(x) for every complex number x. The determinant of Zm k(x) is known

to be nonzero as a polynomial in x, so the rank of Zm k(x) is full except at

a finite number of values of x (those x that are roots of det(Zm k(x))). So

our computational problem breaks into two parts:

(1) Compute the roots of det(Zm k(x)).

(2) For each root r, compute the rank of Zm k(r).

Definition 2.1. Let m and k be nonnegative integers. An m,k partial I-factor

is a graph with m + 2k points and k lines which satisfies:

(C1 )   Every point has degree 0 or 1.

(C2)   The m points of degree 0 are labelled with the numbers 1,2, ..., m.

We always use / to denote m + 2k, and we use lower case Greek letters

ô, Sx, S2, ... to denote partial 1-factors. The points of degree 0 in a partial

1-factor ô axe called the free points of S . Lastly, we let Bm k denote the set of

m, k partial 1-factors and we let Vm k be the complex vector space with basis

Bm k . The notion of a partial 1-factor was introduced in [7], where there is a

discussion of how they are related to the Brauer centralizer algebras.

Let Sx and 62 be elements of Bm k. It is easy to check that the union of

ôx and ô2 is a graph consisting of some number y(ôx, ô2) of cycles together

with m paths Px, ... , Pm. If u is an endpoint of Pi, then « is a free point

of either Sx or ¿2. Hence, the endpoints of each path are labelled. We say ôx

and 62 are consistent if each path of ôx Uô2 has the property that its endpoints

have the same label. Otherwise, Sx and S2 axe inconsistent.

Definition 2.2. Let m and k be nonnegative integers. Define a matrix Zm k(x)

with rows and columns indexed by Bm k . For Sx, S2 e Bm k , let the Sx, S2

entry of Zmk(x) be

{x   ' ' 2     if Sx and ô2 axe consistent,

0 if ôx and 62 are inconsistent.

Note that each diagonal entry of Zm k(x) is x and that every off-diagonal

entry is either 0 or xe with e < k. So the determinant of Zm k(x) is a

nonzero polynomial in x of degree k\Bm k\.

As an example, consider / = 4 and m = 2. In this case, the matrix Zm k(x)
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is 12 by 12. An ordered basis for B    ,   is the set below:m ,k

1      2

The matrix Zm k(x) with respect to this basis is given by

x    0    1    0    0    1     100100
0x01 1001 1000

10 10 0 0 0 11 0 0

0 10x0101001

01 10x0001001
10010x0001 10

101000x01010

0101000x0101
01001010x010

100001010x01
000101 1010x0
OOlOlOOlOlOx

= Z, ,(x)

As stated earlier, our computational problem is to first compute the roots of

det(Zm k(x)) and then for each root r to compute the rank of Zm k(r). This

appears to be an intractable computation for all but a few small values of m

and k . It is easy to check that the size of B    .   (which is the length of each
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row and column of Zm k(x)) is

\BmJc\ = (m + 2k)\/2kk\.

Even for small values of m and k , the matrices Zm k(x) axe very large. More-

over, they have entries which are polynomials in x, and they are not particularly

sparse.

However, there is a great deal of symmetry amongst the entries of Zm k(x).

We will exploit this symmetry to design algorithms which will carry out our

computation for some surprisingly large values of m and k . Our first step is

to express the symmetries more explicitly.

There are permutation actions of both Sym(/) and Sym(m) on the set

Bm k . A permutation a in Sym(/) acts on a 1-factor ô by permuting the /

points of ô and correspondingly permuting the vertex labels and edges. To be

precise, if u is joined to v in ô, then ou is joined to av in oô, and if z

is a free point of ô with label a, then az is a free point of a à with label a.

The group Sym(m) acts on Bm k by changing the values of the labels. If n is

in Sym(m) and m is a free point of ô with label a , then « is a free point of

nö with label na. The edges of â and nô axe identical.

It is easy to see that these actions of Sym(«z) and Sym(/) commute. Also, it

is straightforward to check that Zm k(x) commutes with the actions of Sym(/)

and Sym(w). Hence we have the following theorem.

Theorem 2.3. The matrix Zm k(x) commutes with the action of Sym(/) x

Sym(m) on Vm k .

Theorem 2.3 tells us that many of the entries of Zm k(x) are identical, a fact

which we would like to exploit when we compute the determinant of Zm k(x).

In the next section we review some facts about the representation theory of

finite groups, and we state a theorem which tells us how to take full advantage

of the symmetries expressed by Theorem 2.3.

3.  A TOOL FROM REPRESENTATION THEORY

In this section we discuss a theorem from representation theory which will

be the basis of our algorithm. To understand the statement and application of

this result, the reader will need some background in the representation theory

of finite groups. There are many excellent sources for this information, in par-

ticular the books by Feit [6], Boerner [2], Curtis and Reiner [4], and Ledermann

[12]. The reader will need a more sophisticated background in the representa-

tion theory of the symmetric groups. We recommend the books by James [9]

and James and Kerber [10].

We now state the main result of this section, which can be thought of as a

constructive form of Schur's Lemma. This is a well-known result in represen-

tation theory, although it is usually not stated in this kind of algorithmic form.

The proof of this theorem is straightforward and we leave it to the reader.
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Theorem 3.1. Let G be a finite group with irreducible representations <f>x, ... ,

4>c. Let <j> be a representation of G on a complex vector space V which decom-

poses into irreducibles as
<•

i=i

Let Z be a linear transformation of V which commutes with the action of G.

Then Z is similar to a matrix which is a direct sum over i of matrices Z , where

Z; is an m( x mi matrix repeated in the direct sum deg(<7J() times. Moreover,

Zi can be computed as follows:

Step 1 :   Choose a complete set of primitive orthogonal idempotents

{e" : 1 <u <c, 1 < v < deg((f>u)} in the group algebra CG.

Step 2:  Find mi  vectors vx,...,vm  e V such that <t>(e(x))vx, ... ,

<f>(e\l))vm  are linearly independent.

Step 3:   Let  Vx     be the subspace of V spanned by cj)(eix'))vx, ...,

<P(e\'))vm .  The space Vx     is Z-invariant and Zi is the restriction of

Z to V¡¡).

Remark. Any multiple of e\l) will do just as well.

There are two difficulties one encounters implementing the algorithm set out

in Theorem 3.1. The first problem is to obtain a complete set of primitive

orthogonal idempotents for the particular group C7 under consideration. This

can be an insurmountable problem since these idempotents are in practice very

difficult to compute. However, idempotents are known for some groups, and

in particular for many groups that are likely to come up in practice. For our

application we will need idempotents for the symmetric groups. These have

been known since the time of Alfred Young. We present these idempotents and

discuss some of their combinatorial properties below.

The second problem one encounters with this algorithm is how to find the

vectors vx, ... ,vm € V such that (f>(e['))vx, ... , <p(ex )vm are linearly in-

dependent. This problem depends on the particular representation 4> under

consideration. The authors know of no general tools for finding these vectors.

We described Theorem 3.1 as a constructive form of Schur's Lemma. That

comes from considering the case where <f> = <f>¡ is irreducible. In this case,

Schur's Lemma tells us that any matrix Z which commutes with 0 is a scalar

matrix. One can compute the scalar by comparing v to Zv for any nonzero

vector v . Theorem 3.1 generalizes this idea to representations (f> which are not

irreducible.

In our applications of Theorem 3.1 the group G will be either a symmetric

group or a direct product of symmetric groups. We end this section with a

brief description of the primitive orthogonal idempotents we will use for these

groups.
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Let G be the symmetric group Sym(/). It is well known that there is an

indexing of the irreducible representations of G by partitions A of / such

that the dimension of the irreducible x corresponding to A is the number of

standard Young tableaux (SYT) of shape A. If t is a standard Young tableau

of shape A, let Ct and Rt denote the column stabilizer and row stabilizer of

t, respectively. Let et be the element of the group algebra C Sym(/) given by

/ = fnr ^ ¿2 www,
11     i i  -,<=/"  „CByec, oeR

where f] h¡¡ is the product of the hook-lengths of A. The element et is called

the Young symmetrizer indexed by t. It is well known that the set of et for

t an SYT of shape A gives a complete set of orthogonal idempotents for the

matrix ring in C Sym(/) corresponding to the irreducible x ■

Let et be a Young symmetrizer and let n be a permutation in Sym(/). It

turns out that the coefficient of n in et is -1, 0, or 1. Moreover, there is a

combinatorial algorithm to determine this coefficient, which takes no more than

Ylj(aj + aj) operations, where a is the number of elements in the jth column

of t. We will denote this algorithm by COEF(7t, t). We know of no reference

where this algorithm is discussed explicitly. However, one can construct the

algorithm by following the proof of Lemma 1.5.7 on p. 31 of James and Kerber

[10].

4. Computing the Brauer algebra discriminants

We are now ready to explain how to use Theorem 3.1 to attack the compu-

tational problem stated in §2. In this section, m and k are fixed nonnegative

integers and / = m + 2k . We will apply Theorem 3.1 with V being Vm k , with

Z being Zm k(x), and with G being Sym(/) x Sym(w). Recall from §2 that

there is a natural action of G on V, and the matrix Z commutes with this

action of G . We want to compute the rank and determinant of Z . The point

of §3 is that we can derive this information by computing with much smaller

matrices Zx (x) which are indexed by the irreducible representations <px ® ip

of G. Theorem 3.1 gives an algorithm for computing the Zx (x). Our next

step in carrying out this algorithm will be to compute the size of Zx (x), i.e.,

the multiplicity of <px <g> q>   in Vm k .

Theorem 4.1. Let p and A be partitions of m and f, respectively, and let

m(p, A) denote the multiplicity of <pA <g> <p   in Vm k . Then

( \

m(p,k) = £*. inn
.   r,\-2k
\ t\ even J

Proof. Let G be Sym(/) x Sym(«j), let H be the subgroup

(Sym(2A:) x Sym(m)) x Sym(«j),
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and let S be the subgroup of H given by

S = {(n, o, o): n e&2k, a e Sym(w)}.

Here, 3§2k  denotes the hyperoctahedral group of k x k signed permutation

matrices, which is considered to be a subgroup of Sym(2/c) in the usual way.

Note that G acts as a transitive permutation group on the set B . . So

the action of G on Vm k is the induction of the trivial character e from the

stabilizer of any A0 e B    .   to G. Choosing

\ =

we have that the stabilizer of A0 is S

1   2

Using a theorem of Littlewood (see Macdonald [14, p. 45, ex. 5]) and some

well-known facts about the structure of group algebras, we have

ind"(e) =  0  ©p,®^®^.
t]\-2k   fà-m
n even

By the Littlewood-Richardson rule we have for each rj, p

indi/(^ ® 9„ ® <Pfl) = ¿2 Sx^Px ® <PM ,
Xrf

which completes the proof.   G

At this point we can appreciate how much simplification Theorem 3.1 has to

offer us. In the case m = 6,k = 3,f= 12, the original matrix Zm k(x) has

dimension on the order of 10,000,000. Theorem 3.1 says that the matrix splits

as a direct sum of matrices Zx (x) of dimension m(p, A), each repeated f fx

times. Using Theorem 4.1, one can show that the largest dimension of any of

these matrices Zx   (x) is just 15.

Now fix partitions p \- m and Ah/. If p is not contained in A, then

g- =0 for all t], so m(p, A) = 0. Thus, we may assume that /tCl. We will

identify a particular idempotent e in the group algebra of G corresponding to

the irreducible representation tpx <g> tp . To obtain this idempotent, first let s0

be the minimal standard Young tableau of shape p . So:

1 2

(px + l)      (px+2)

(/*!+•••+  Pi_x + l)

(Ml +P>2)

ft

m

Next, let t0 be the standard Young tableau of shape A which agrees with s0 on

the intersection of A and p and which has the minimal filling of [A//i] with
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m + 1, ... , f. So, t0 looks like

i
(Ki + l) (fi + 2)

y«J (m+1)
(//,+/t2)| (m + zl,-//, + 1)

(m + A. -p.

(fix +■■■+   p,_{ + 1) ■■■

(/-A¿ + 1)

Let e be defined by e = e. x e , . We note that e is an idempotent in the

group algebra of G corresponding to the irreducible tpx ® <p .

Next we need to pick out vectors vx, ... , vM (M = m(p, A)) in Vm k such

that evx, ... , evM axe linearly independent. The formula for m(p, A) given

in Theorem 4.1 suggests how to choose the v.. According to the formula, we

need one vi for each Littlewood-Richardson filling of [A/>] with content rj,

where r\ is even. Our actual choice of vi will be put in terms of a certain

1-1 correspondence between 1-factors on 2k points and lattice permutations of

length 2k with even content.

In the general case, our proof that the evi are linearly independent depends

on a difficult technical lemma. Rather than obscure the exposition with these

details, we will do an interesting special case here and briefly discuss the general

case afterwards.

Definition 4.2. We say the pair (A, p) is p-extremal if [k/p] has no pair of

squares in the same row or the same column.

For the rest of this section we assume that (A, p) is /¿-extremal. In this case

the tableau tn looks like

m+1

ri+2^

|m+:
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Any lattice permutation of length 2k and shape n constitutes a Littlewood-

Richardson filling of [À/p], so for all r\ we have

°i.ßt] ~ J t] •

Thus,

m(p,k)= Y, /,= l-3-(2fc-l).
r] even

Hence the multiplicity m(p, A) equals the number of 1-factors on 2k points.

Note. For any pair (À, p) we have g.     < f .   So in general,  m(p,X) <

1 • 3 • • • (2k - 1). Equality is achieved if and only if (A, p) is //-extremal.

We want to define a vector vA for each 1-factor A with 2k points.

Definition 4.3. Let A be a 1-factor with 2k points. Define the m, k partial

1-factor vA as follows:

( 1 ) vA has free points 1, 2, ... , m . The free point j has label j .

(2) For every edge {u, v} of A we have the edge {m + u, m + v) of vA .

The next lemma will not only show that the evA axe linearly independent, it

will also greatly streamline our computation. It is this result which is difficult

to prove in the case of general pairs (A, p).

Lemma 4.4. Let (A, p) be p-extremal and define t0, s0 as above. Let y , a ,y ,

and d be in C. , R, ,C. , and R , respectively (so, sgn(y)sgn(/)(yfj, y'd)

is one of the terms occurring in the idempotent e = e. xe.). Suppose that
'o        ■'o

(ya,y'd)vA = t>2,

where A and A are l-factors. Then

(1) A = Â,
(2) y and a both fix t0/s0 pointwise.

(3) y restricted to s0 equals y , and a restricted to sQ equals d.

In particular, {evA: A is a l-factor with 2k points) is a basis for eVm k .

Proof. Recall that yd acts on an m, k partial l-factor by changing the la-

bels on the free points by (y'd). Since the free points of both A and A

are 1, 2, ... , m, it follows that ya preserves the sets {1, 2, ... , m} and

{m+l,...,/}.
In t0 , each square m + u (u= 1,2,... ,2k) is at the right-hand end of the

row containing it and at the bottom of the column containing it. So a moves

the point m + u weakly to the left. Since the image of m + u under ya is in

the set {m + 1,...,/}, the permutation y must then move o(m + u) down

to the bottom of the column it occupies. Thus, (ya)(m + u) = m + v , where

v > u. It follows easily that ya fixes the set {m + l,..., /} pointwise. So

A = À, and y and a individually must fix the set {m+l, ... , f) pointwise.

Next, consider ya x y'd on s0. The point j is moved by (ya, yd) to



COMPUTING THE DISCRIMINANTS OF BRAUER'S CENTRALIZER ALGEBRAS 781

ya(j) and its label is changed to (y'a')j . Since (ya, y'd)vA = vA , we have

{yo)J = (v'd)j

for all j. Thus, y a = yd, so y = y and a = d, where these last three

equalities refer to  ya, y, and a  restricted to the points of s0.   Suppose

J2A aAevA = 0. Then £A a\v& = ® > anc* so a^ aA = ^ > as tne ua are linearly

independent. Thus the set of evA is a basis, and this finishes the proof.   D

Lemma 4.4 is the basis for a major simplification of our algorithm. It will

show that instead of summing over all the terms of the idempotent e, xec , we
'o       so

can instead work with only those terms which arise from coset representatives

of /? and C. in R, and C. . In other words, we can ignore all of the terms

in e\ and most of the terms in e. . Before stating the final algorithm, we need

notation for these coset representatives and for one of the procedures in the

algorithm.

Definition 4.5. Let (a¡, b¡) (i = 1,2,..., 2k) be the coordinates of the

squares of [X/p]. For each i define sets C(,) ç C, and i?(,) ç R as fol-

lows:

( 1 ) C    contains the identity permutation as well as the (a(. -1 ) involutions

y¡ j which exchange the elements of t0 in squares (a¡, bA and (j, bA .

(2) R    contains the identity permutation as well as the (b¡ -1 ) involutions

a, . which exchange the elements of t0 in squares (a¡, bA and (ai, j).

Let C be the set of all products y(1) • •• ym , where y{i) G C(,), and let R be

the set of all products a{X) ■■■ a(2k), where a(l) e RU). Note that C and R axe

subsets of C,   and R.   of sizes
'o 'o

\C\=axa2---a2k,        \R\ = bxb2-■-b2k.

Our eventual algorithm will compute the vA , vA entry in Zx (x) as a sum

of terms of the form x = ((ya, y'a')vA , v. ), where y e C, a e R, /eC ,

and a' G R„ . For a fixed pair (y, a) G C x R there is at most one pair

(y , a') e Cr x /? for which x is nonzero. We next write down a method for

computing n = yd , given (y, a), v. , and v. . In the description below we

will assume that the input is ôx = yavA   and ô2 = v& .

Definition 4.6. Let ôx and â2 be m, k partial 1-factors. Define an element

U(SX, ô2) in the group algebra C Sym(m) according to the following algorithm.

For each i in the set {1,2,..., m} find the unique path in ôx U ô2 which

begins at the free point of 6X labelled / and ends at some other free point y . If

v is a free point of ôx, then Yl(3x, S2) = 0 and the algorithm stops. Otherwise,

y is a free point of ô2. Let Yl(ôx, S2)(i) be the label on y .
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When this algorithm finishes, we will have either Tl(ôx, ô2) = 0 or else

Yl(ôx, ô2) G Sym(m). For öx, ô2 both m, k partial 1-factors and r a standard

Young tableau of size m , define Tr(ox, S2) by

0   if n(J,, <52) = 0,

rr(Sx, S2) = I the coefficient of U(ôx, S2)

in the Young symmetrizer er if H(ôx, ô2) G Sym(w).

Recall that the algorithm COEF discussed in §3 computes Tr(6x, S2) from

Il(ôx ,ô2) in no more than X)a,(Q, + 1) steps, where a is the length of the

y'th column of r. Also it is easy to see that FA(ôx, S2) together with the number

of cycles in Sx u S2 can be computed in 0(f) steps (the actual bound is / or

2/ depending on what counts as a step).

Before giving the final algorithm, we prove one additional fact which will be

used to increase its efficiency.

Lemma 4.7. Let y = y(1) •• -y(2k) be in C, and a = dl) ■■■a{2k) be in R.

Suppose that for some i, both y(l) and a(l) are not the identity. Then

r (yav   ,vA ) = 0.
->0 u2 °1

Proof. Fix i such that y(/) = (u, è ) with u < a¡ and a(l) = (at, v) with

v <br Let a and ß be the labels in the squares (u,b¡) and (a¡, v) of t0.

The row permutation a moves the label ß to the corner square (a¡, b¡). Then

the column permutation y moves the label ß to the square (u, b¡). So in

yovA UnA the path beginning at the free point labelled ß in yovA has length

0 and ends at the same point of vA   which is a free point labelled a . So,

l~l(yovA, vA)(ß) =a.

But the corner square (a¡, b¡) does not exist in s0, so Yl(yavA , vA ) moves

ß from position (ai, v) to (u, b¡) where bj > pa . It is easy to see that such

a permutation cannot be written in the form ya where y G C and à g R. .

So,

Let 51 denote the set of pairs (y, a) with y = y '•••/ g C and a =

a{l) ■ ■ ■ a{2k) G R such that a{,) is the identity whenever y{,) is not the identity.

Note that the size of S is
2k

i=i

Theorem 4.8. The following algorithm computes the A¡, Aj entry in Zx   (x).

Algorithm. For each pair (y, a) G S

(1) Compute FspavA ,vA).

(2) Compute the number of cycles N in yavA U vA .

(3) Add sgn(y)rs (yavA , vA )xN to the current value of Zlß(x).
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Before proving that the algorithm in Theorem 4.8 works, we make some

remarks on its efficiency. Consider the case A = 654321 and p = 54321. The

size of our original matrix Zm k(x) is a whopping (21)1/48. The submatrix

Zx (x) that we wish to extract is 15 x 15. The six squares of [y/p] have

coordinates (1, 6), (2, 5), (3, 4), (4, 3), (5, 2), and (6, 1), so the size of S

is 6 . Thus each entry of Zx (x) is computed with 6 passes through the

main loop of the algorithm in Theorem 4.8. In practice, this matrix Zx (x)

was computed in about one hour of CPU time on a CRAY-2.

In general, we must perform the main loop in the above algorithm

Yi(al + bl. - 1) times. This main loop is carried out in 0(f + J2aj(aj + U)

steps. So Theorem 4.8 gives a method to compute each entry of Zx Ax) in

0{l[{ai + bi-l)(f + ̂ 2aj(aj + l))}

steps. In practice, this is efficient enough to work out a large number of cases,

as the data in the next section will indicate.

We now sketch a proof of Theorem 4.8. Let e = c ,r, be the Young sym-

metrizer indexed by s0. According to Theorem 3.1, the matrix Zm k(x) pre-

serves the subspace (evA: A is a l-factor of size 2k). By Lemma 4.4 the

coefficient of v.   in ev.   is 0 for / ^ / and is \Rr NCI for i = j. So the i, j

entry of Zx   (x) is (l/\Rs \\CS ) times the coefficient of vA  in Zx   (x)(evA ).

Thus,

= ip \\r i S sSn(^ J2 sgn(/)((y<7, y'd)vA , vA)
V   V y€C,o /ecjQ

°€R'o °'e«¡0

= J2Y1 sgn(y)rio(ycx^ , vA){yavAj, vA) .
y£C(T€R

The last equality follows easily from the definition of Tc . Now by Lemma 4.7

we have

(z^(*))a,,a, =   S   sgn(y)TSo(yavAj, vA)(yavA¡, vA),
(y,o)€S

which completes the proof.   D

We end this section with an example of how Theorem 4.8 can be used to

compute an arbitrary entry of Zx Ax). According to Theorem 3.1, there exists

a matrix similar to Z2 ,(x) which breaks up as a direct sum. One of the

summands corresponds to the irreducible representation <pJX ® <p2 of Sym(4) x

Sym(2), and this summand is itself a direct sum of (fixf2) = 3 one by one

matrices Z31 2(x). Theorem 4.8 tells us how to compute the matrix Z31 2(x)

directly.
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According to Theorem 4.8, the matrix Z31 2(x) is a sum over all pairs (y, a

in S. The tableaux /0 and s0 axe

y

id

id

id

(1,4)

(1,4)    (2,3)

(1,4)    (1,3)

Summing the right-hand column gives Z31 2(x) = [x].

Some readers may be familiar with the "Meataxe" programs developed at

Cambridge by R. Parker. These are exceptionally good algorithms for find-

ing subspaces invariant under a linear transformation T. The algorithms just

described perform the same function on the matrix Zm k(x) as the Meataxe.

However, the Meataxe is not suitable for use in this situation because of the

enormous size of the matrices Zm k(x). The Meataxe uses a different approach

than the algorithms developed in this paper because it is designed for use in a

very general situation. Since the Meataxe is powerful enough to be applied in a

general setting, it is limited in the size of the matrix that it can "chop up". Our

algorithms will handle a much larger size matrix, but they are highly customized

to the specific situation.

The algorithm we just described computes Zx (x) in the case that [A//i]

has squares in distinct rows and columns. In the case where [A//i] does not

have that property, most of the algorithm goes exactly as before. The important

difference comes in how we choose vectors vx, ... ,vM (M = m(p, A)) so that

evx, ... , evM axe linearly independent. We will now describe how to make

that choice. The choice will use Schensted's correspondence and the following

interesting property of Schensted's correspondence, originally due to Knuth (see

[15]).

Theorem 4.9. Schensted column insertion gives a 1-1 correspondence between

fixed-point free involutions in Sym(2A:) and standard Young tableaux whose

shape has even column lengths.

There is an obvious bijection between fixed-point free involutions in Syxn(2k)

and 1-factors on 2k points. So the above theorem gives a bijection between

standard Young tableaux whose shape is a column-even partition of 2k and

1-factors on 2k points.

Now let (A, p) be an arbitrary pair of partitions of / and m . Recall that
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the multiplicity m(p,X) is given by

m(p,X)=   ¿2  gXm.
tft-lk
t\ even

So we need to come up with one vector v, for every Littlewood-Richardson

filling (p of [A//i] having content r\ an even partition of 2k. The procedure

to find v, is as follows.<t>

Step 1: Read from cp the corresponding lattice permutation sx, s2, ... ,

s2k of content n .

Step 2: From sx, s2, ... , s2k produce the standard Young tableau t,

which has i in column s¡ for i = 1,2, ... ,2k .

Step 3: Use the bijection given by Schensted's correspondence to get a

l-factor a, from t, .

Step 4:  Define v^ to be the m, k partial l-factor with free points

1,2,... , m , labelled   1,2, ... , m , respectively, and with an edge

from m + i to m + j for each edge {/,;'} of S, .

Theorem 4.10. For each L-R filling <\> of[X/p] having even content, let v, be the

vector defined by the procedure above. Then the set of ev, is linearly independent.

The vectors v^ have many remarkable combinatorial properties owing to

the fact that <p is a Littlewood-Richardson filling. The proof of Theorem 4.10

is based on a careful analysis of these properties and is long and detailed. It

produces an abundance of combinatorial information, but has little bearing on

the general computational method being described in this paper. For the sake

of brevity we leave it out.

5. Results of the computations

We implemented the algorithm outlined in §4 on the CRAY-1 and CRAY-2

supercomputers at the University of Minnesota. The code was written to take

advantage of some features of the machines' architectures. The authors wish to

thank the National Science Foundation for supplying supercomputer time.

The first table lists the roots of the determinant of Zx (x) for all pairs

(A, p) where A is a partition of 8 or less. Table 2 gives this same information

for certain larger (A, p) which are particularly interesting. Lastly, Table 3 gives

the eigenvalues of the matrices Zx   (x) for some small cases.

Some of the roots in this table have stars and some of the rows have check

marks in the last two columns which are headed "rç-extremal" and "/¿-extremal".

These bits of information refer to theorems and conjectures which will be dis-

cussed in §6.
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Table 1

extremal

¿       P       k<ALnKkjln)      Roots of detfZ.^x)) t\       Ji

2 (j) 1 0 X
3 11 -2 X

21        1 1 1 XX
4 0 2 0,-2 X
4       2               1                               -4*

31        2 1 0 XX

31      l2 1 -2 X
,2 2 0, 1 X

22 2 1 2

212 l2 1 2 X

5 12 -2,-4 X
5 3 1 -6

41 1 2 1,-2                   X
41 3 1 -1                                X
41 21 1 -4*
32 1 2 1,-2                   X
32 3 1 2
32 21 1 -1                                X

312 21 1 1                                 X

312 l3 1 -2 X

221 1 2 1,2                      X

221 21 1 3                                   X

213 l3 1 3 XX

6 4> 3 0,-2,-4 X
6 2 2 -4,-6*
6 4 1 -8*

51 2 2 0,-4                   X

51 l2 2 -2,-4

51 4 1 -2                                 X
51 31 1 -6*
42 0 3 0, -2, 1 X
42 2 4 0,2,-1,-4
42 4 1 2

42 31 1 -2                                 X

42 22 1 -4

412 l2 2 2,-2                    X

412 31 1 0                                 X

412 212 1 _4

32 l2 2 -1,-2                  X

32 31 1 0

321 l2 2 2,-2                   X

321 2 2 0,2                     X

321 31 1 3                                 x

321 22 1 l                                 x

321 212 1 -l                                x

313 212 l 2 X

313 I4 1 -2

23 <t> 3 0, 1, 2 X

23 2 2 2,3
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Table 1 (continued)

extremal

x M      mC^g^)      Roots of det(ZA/i(.x:))      J\      p

23 22 1 4

2212 l2 2 2,3                     X

2212 212 1 4                                 X

214 l4 1 4                        XX

7 1 3 -2,-4,-6              X
7 3 2 -6,-8*
7 5 1 -10*

61 1 3 1,-2,-4               X

61 3 2 -1,-6*
61 21 2 -4.-6*
61 5 1 -3                               X
61 41 1 -8*
52 1 3 1,-2,-4               X
52 3 4 2,-1,-2,-6*
52 21 2 -1,-4
52 5 1 2
52 41 1 -3                               X
52 32 1 -6*

512 21 2 1,-4                   X

512 l3 2 -2,-4                  X

512 41 1 -1                                  X

512 312 1 -6*
43 1 3 1,-1,-2               X
43 3 2 2,-1
43 21 2 1,-4*
43 41 1 0
43 32 1 -3            X

421 1 3 2,1,-2      X
421 3 2 2,-1
421 21 4 3, 1, -1, -4*
421 41 1 3             X
421 32 1 0             X

421 312 1 -2            X

421 221 1 -4*

413 Í3 2 3,-2       X

413 312 1 1             X

413 213 1 -4*

321 21 2 1,-1       X

321 l3 2 -1,-2       X

321 32 1 2             X

321 312 1 0

322 1 3 2,1,-2 X

322 3 2 3,2

322 21 2 3,-1

322 32 1 4

322 221 1 0             X

3212 21 2 3,1        X

3212 l3 2 3,-2       X

3212 312 1 4             X
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Table 1 (continued)

extremal

¿ ß      fc(£,*W     Roots of dct'ZXß(x))      r¡      fi

3212 221 1 2                                  X

3212 213 1 -1                                 X

314 213 1 3                        XX

314 l5 1 -2                       X

231 1 3 1,2,3                   X

231 21 2 3,4

231 221 1 5                                  X

2213 l3 2 3,4                      X

2213 213 1 5                                  X

215 l5 1 5                        XX

8 0 4 0,-2,-4,-6             X
8 2 3 -4,-6,-8*
8 4 2 -8*,-10*
8 6 1 -12*

71 2 3 0,-4,-6                 X

71 l2 3 -2,-4,-6                X

71 4 2 -2,-8*
71 31 2 -6,-8
71 6 1 -4                                X

71 51 1 -10*

62 0 4 1,0,-2,-4              X
62 2 6              2,0,-1,-4,-4,-6*
62 4 4 2,-2,-3,-8*
62 31 2 -2,-6*

62 22 2 -4, -6*
62 6 1 2
62 51 1 -4                                X
62 42 1 -8

612 l2 3 2,-2,-4

612 31 2 0,-6*

612 212 2 -4,-6*

612 51 1 -2                                X

612 412 1 -8*

53 2 3 0,-1,-4                X

53 l2 3 -1,-2,-4               X

53 4 2 2,-2
53 31 4 0,-2,-3,-6*
53 51 1 0
53 42 1 -4                               X

53 32 1 -6*
521 2 3 2,0,-4                 X

521 l2 3 2,-2,-4               X

521 4 2 2,-2

521 31 4 3,0,-2,-6*

521 22 2 1,-4

521 212 2 -1,-4
521 51 1 3                                 X
521 42 1 -1                                  X

521 412 1 -3                                 X
521 321 1 -6*
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Table 1 (continued)

extremal

l M      k(LngXm)      Roots of dct(ZA ßM)       ñ      fi

513 212 2 2,-4

513 l4 2 -2,-4

513 412 1 0                                  X

513 313 1 -6*

42 0 4 1,0,-1,-2              X

42 2 3 2,-1,-4*

42 4 2 2,0

42 22 2 -3,-4*

42 42 1 -2

431 2 3 2,0,-1                 X

431 l2 3 2,-1,-2               X
431 31 4 3,0,0,2

431 22 2 1,-4*

431 212 2 -1,-4*

431 42 1 2                                   X

431 32 1 0                                  X

431 412 1 0

431 321 1 -3                                 X

422 0 4 2,1,0,-2              X

422 2 6                3,2,2,0,-1,-4*

422 4 2 3,2

422 31 2 3,-2

422 22 4 4,1,0,-4*

422 42 1 4

422 321 1 -1                                  X

422 23 1 -4*

4212 l2 3 3,2,-2

4212 31 2 3,0

4212 212 4 4,2,-1,-4*

4212 412 1 4                                   X

4212 321 1 1                                   X

4212 313 1 -2                                 X

4212 2212 1 -4*

414 l4 2 4,-2

414 313 1 2                                   X

414 214 1 -4*

322 l2 3 2,-1,-2

322 31 2 3,0

322 212 2 0, -1

322 32 1 4

322 321 1 1                                 X

3212 22 2 2,1

3212 212 2 2,-1

3212 l4 2 -1,-2

3212 321 1 3                                 X

3212 313 1 0

3221 2 3 3,2,0                  X
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Table 1 (continued)
extremal

¿        M       *(E„^,)      Roots of detfZ.^x))       fi- ll

32" 1

3221

3221

3221

3221

3221

3221

3213

3213

3213

3213

3213

315

315

2312

2312

2312

2214

2214

216

31

22

212

321

22,2

213

31J

2212

214

214

2T

22j2

I4

214

3,2,-2

4, 3

4, 1

4, -1

5

2

0

4, 2

4, -2

5

3
-1

4
-2

3,2,1,0

4, 3, 2

5,4

6

4, 3, 2

5, 4

6

5, 4

6

6

X

X

X

X

X

X

X

X

X

X

X

Table 2. This table contains the roots of det^ M(x))

for some larger values of A and p.

i
531
531

531
531
10

10
10
10
10

52

642
642

642
4321
5321
6321

54321
64321

M

3
21

I3
41

0

2
4

6
8

1, 1

2
4

22

321
421

521

4321
5321

543211 43211

Roots of det(Zx¡/l(x))

2, -1, -2
1,-1,-4
-1,-2,-4

3,0, -1, -3
0, -2, -4, -6, -8
-4, -6, -8, -10
-8, -10, -12
-12, -14
-16

-1, -2, -3, -4

3,2, 2, 2,0,0, 0, -1, -1, -1, -3, -4, -4, -4,
3,3,2,2,2,0,0, -2, -2, -3, -3, -8

4, 1, 1,0,0,-3,-3,-4,-4,-4,-6,-6

These six are p -extremal. The roots of

\ det(ZA    (x)) are exactly the roots predicted

by the p -extremal conjecture, Conjecture 6.7.
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6. Results and conjectures

In this section we state what is known and what is conjectured about the

discriminants of the Brauer algebras. The conjectures are based on the com-

putational evidence that we have been able to gather. These conjectures are

verified in all reasonably small cases and represent a number of very interesting

open problems of an algebraic/combinatorial nature.

A. An important result. Numerical evidence together with two previous results

(Theorems 6.6 and 6.10 below) led the authors to conjecture that the roots of

det(Zx (x)) axe in Z for all A and p. In algebraic terms, this is equivalent

to the conjecture that the Brauer centralizer algebras are semisimple except

possibly at integer values of the multiplication constant x .

Theorem 6.1 (Wenzl [18]). If x £ Z, then the algebra A A is semisimple.

Wenzl actually proves that the centralizer algebra of left multiplication by

Aj_x in End(^') is isomorphic to Aflx(l) when x ^ Z. It follows imme-

diately that A{p+X is semisimple (for x $ Z) by induction on f. His proof

relies on a construction due to Birman and Wenzl (see [1, §3]), which is in turn

a generalization of a construction due to Vaughan Jones (see [11]).

In view of Theorem 6.1, it seems all the more plausible that there is a com-

binatorial description of the roots of det(Zx Ax)). It is known that the roots

of det(Zx (x)) cannot be too large in absolute value. The first such result is

due to Brauer.

Theorem 6.2 (R. Brauer [3]). If A is a partition of f and z is a nonnegative

integral root of det(Zx (x)), then z < f. If z is a negative, even integral root

of det(Zx ß(x)), then \z\<2f.

Proof. In [3], Brauer showed that the homomorphism <p(p from sf}n) onto

EndQ(n RAT• K") is an isomorphism if « is a positive integer greater than or

equal to /. Since End0(/I RAT^Rn) is a semisimple ring, it follows that s/}n)

is semisimple, so the discriminants det(Zx   (n)) must be nonzero.

Similarly, Brauer showed that the maps y/f     from âS^     onto

Endsp^VrV")

are isomorphisms if « > / (so 2« > 2f). Hence, the discriminants of 3§^

are nonzero if 2« > 2f. Since ¿%(x) = sé{~x), the result follows.   G

It is clear from the data in §5 what bound should hold on the roots of the

Brauer algebra discriminants.

Conjecture 6.3. Let z be an integral root of det(Zx   (x)).

( 1 ) if z is nonnegative, then z < (f - A, ) ;

(2) if z is negative, then \z\ < 2(A, - 2).
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B. The extremal cases. When considering pairs (A, p), there are two natural

extremal cases that arise. One is the case discussed in §4, which we called p-

extremal. In this case, the squares of [X/p] axe in distinct rows and columns,

so that for any even partition t] we have

°kßn —  ' t] '

The other extremal case is what we call //-extremal.

Definition 6.4. The pair (A, p) is called rj-extremal if the partition A has ex-

actly m = \p\ rows of odd length, and these rows have distinct lengths.

The //-extremal case is in some sense opposite to the /¿-extremal case. If the

pair (A, p) is //-extremal, then there is a unique even shape rj for which g.

is nonzero. This t] is obtained by removing one square from each row of A

which has odd length. For this particular n we have

&lßri —   '\x "

In the //-extremal case we know exactly what the eigenvalues of Zx Ax) are.

To state this result, we need an expression due to El Samra and King for the

dimension of an irreducible Sp(2«, K) module.

For any partition p and large enough values of «, there is an irreducible

Sp(2«, K)-module indexed by p, which we will denote by V2n .

Theorem 6.5 (El Samra and King [5]). There is a polynomial d (x) with inte-

ger roots such that whenever n is large enough for p to index an irreducible

Sp(2«, R)-module V2ßn, then

u du(2n)

*«(•«)-rjprjî-
Here, (Y[ h¡¡) denotes the product of the hook-lengths of p.

King shows that the polynomial d (x) is monic of degree m = \p\. Because

of this, one can write dAx) in the form riyg^* + rv) > where the product is

over all squares y in [p], and r is an integer root corresponding to the square

y. King showed that if y has coordinates (i, j), then

A, - A, - 2   if / < /,i      j j *= (i + j-xi-xJ
"1 A, + Xj -i-j

Ty if i>j.

The following theorem completely determines the roots of the Brauer algebra

discriminants in the //-extremal case. This result was originally conjectured by

R. P. Stanley (based on computational evidence).

Theorem 6.6 (Hanlon and Wales [8]). Suppose the pair (A, p) is n-extremal.

Then Zx   (x) is an f xf  scalar matrix hx ß(x)I. The value of the scalar is

hx,p^x) = Sx(x)ldß(x),

where gx(x) = nUt2j_X)m(x + (2j - 1 - /)).
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For example, let A = 331 and p = 21. Then

dß(x) = (x - 2)x(x + 2)

and gx(x) = x(x - l)(x - 2)(x + 2)(x + 1). So, hXß(x) = (x - l)(x + I).

The other extremal case is where (A, p) is /¿-extremal. In this case we only

have a conjecture as to the roots of det(Zx (x)). Like the //-extremal case,

the formula is remarkably simple.

Before stating this conjecture, it is helpful to compute the degree of

det(Zx (x)). As noted in §4, the rows and columns of Zx (x) axe indexed

by the 1-factors on 2k points. So the degree of det(Zx (x)) is k times the

number of 1 -factors on 2k points. Since each 1 -factor has k edges, one could

hope to assign one root of det(Zx ß(x)) to every edge of each 1-factor on 2k

points.

Conjecture 6.7. Let (A, p) be an p-extremal pair. Let {(a¡, b¡) : i = 1, 2, ... ,

2k} be the coordinates of the squares of [X/p]. For each edge e = {i, j} in a

l-factor on 2k points, let w(e) = (¿>; - aA + (b- - a A. Then

det(ZXß(x))=   Yl    II  (x + w(e)-l).
ä€B0 k edges e

of<5

As an example of this, let A = 32 and p = 21. Then the squares of [X/p]

axe (1,3) and (2, 2). There is only one 1-factor 6 which joins these two

points, and the unique edge e of 6 has weight (3 - 1) + (2 - 2) = 2. So this

conjecture predicts that

det(ZXß(x)) = (x+l),

which is indeed the case.

There is overwhelming computational evidence in support of this conjecture.

Note in §5 the two columns marked p and //. If the p column is checked, that

means the pair (A, p) is /¿-extremal. Likewise, if the // column is checked,

then (A, p) is //-extremal. Conjecture 6.7 holds for every pair on those lists

which is /¿-extremal.

C. Sundaram roots. Certain of the roots of det(ZA (x)) are predicted by re-

cent work of Sheila Sundaram [17]. Her work concerns the centralizer algebras

EndSp(2n R)(TfR "). One of her most elegant results gives an explicit combina-

torial rule for describing the dimensions of the matrix rings in the Wedderburn

decomposition of the algebra Ends ,2n R)(7' R "). The next result follows by

combining her results with earlier results of the authors.

Theorem 6.8. Let X and p be partitions of f and m, respectively, and let r\

be an even partition. Suppose that <p is an L-R filling of [X1 / p] with content

//', and suppose that some odd number 2/ + 1 occurs below row n + i in <j>. If

2« > l(X') and « > l(p'), then -(2«) is a root of det(Zx   (x)).
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Roots of det(Zx (x)) which are forced by Theorem 6.8 will be called Sun-

daram roots. In the data given in §5, the Sundaram roots are the starred roots.

As an example of Theorem 6.8, consider A = 62 and p = 2. There are two

Littlewood-Richardson fillings of [X1 / p] with even content, namely:

and   4>2 =

If 2« > l(X), then « > 3 . It is easy to see that the hypotheses of Theorem 6.8

are never satisfied if « > 4. However, for « = 3 the hypotheses are satisfied

for i = 1, since the 3 in filling cf>x occurs below row 4 = (« + /). Hence, (-6)

is a Sundaram root for the pair (62, 2).

Theorem 6.8 is difficult to state and to apply, but it is potentially very impor-

tant. Recall that the number of roots of det(Zx ß(x)) is k times the number

of Littlewood-Richardson fillings of [X/p] of even content. Theorem 6.8 gives

a rule for deriving certain roots of det(Zx ß(x)) from the way the numbers are

arranged in these fillings. One could hope for some more general combinatorial

rule which would allow us to read k roots from each Littlewood-Richardson

filling of [X/p] of even content.

D. Hereditary roots. Perhaps the most striking pattern one sees in the tables of

roots is the recursive structure given by the following theorem.

Theorem 6.9 (Hanlon and Wales). If r is a root of det(Zx (x)) with multiplicity

(fxfß)l, and if X is obtained from X by adding two squares not both in the same

column, then the multiplicity of r as a root of det(Z= ^(x)) is at least (fxfß)l ■

The proof of this theorem is difficult and involved. For the sake of brevity

we will publish it elsewhere. However, we give an example of how Theorem 6.9

can be used.

Consider (X, p) = (531,41). We see from Table 2 that the roots of

det(Zx (x)) are 3,0,-1,-3, each with multiplicity fxfu. We can choose

four different values of
ß

X to satisfy Theorem 6.9. In each case, det(ZA   (x))

has exactly one root repeated fxf

corresponding roots are:

times.  These four choices of A and the

X     root of del(ZÀ ^(x))

421
43

52

3
0

-3

-1
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So Theorem 6.9 has predicted all four roots of det(Zx   (x)).

There is an obvious situation in which the roots of det(Z-x (x)) cannot be

predicted by Theorem 6.9. This is the case where p is a partition of m, and

Â a partition of m+ 2. However, the following theorem handles that case.

Theorem 6.10. Suppose [X/p] has size 2 with squares in positions (a, b) and

(c, d). Then the unique root of det(Zx ß(x)) is 1 + (a - b) + (c - d).

Theorems 6.9 and 6.10 combine to yield a recursive method for obtaining

some of the roots seen in the tables in §5. Roots obtained by this recursive

method are called hereditary roots. There are very few nonhereditary roots for

small values of /. Below we see a list of the nonhereditary roots for f <6.

Table 3. Nonhereditary roots for f <6.

X      p      Nonhereditary roots (Xx,px)

4 0 -2 (3, 1)

22 0 1 (21, 1)

5 1 -4 (4,2)

221        1                    2                        (22, 2) or (212, l2)

6 0 -4 (5, 1)
6       2                  -6 (5,3)

51 l2 -4 (41,21)

42 2 -1 (41,3)

32 l2 -1 (32,21)

23 0 2 (221, 1)

23 2 3 (221,21)

2212      l2 3 (221, 21)or(213, l3)

The following conjecture is consistent with the data we have so far.

Conjecture 6.11. Let X be a partition of f, and p a partition of m . Suppose r

is a nonhereditary root of det(Zx (x)). Then there exists a pair (A, , /¿,) with

Xx a partition of f - I contained in X and px a partition of m + 1 containing

p and such that r is a root of det(Zx     (x)).

In the list of nonhereditary roots above we have indicated possible pairs

(A,, px) which satisfy Conjecture 6.11. At present, the authors have no idea

why such a conjecture should be true, or how to find the pair (A,, /¿, ).
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