
mathematics of computation
volume 54. number 190
april 1990, pages 797-837

THE COMPUTATIONAL COMPLEXITY OF THE RESOLUTION

OF PLANE CURVE SINGULARITIES

JEREMY TEITELBAUM

Abstract. We present an algorithm which computes the resolution of a plane

curve singularity at the origin defined by a power series with coefficients in a (not

necessarily algebraically closed) field k of characteristic zero. We estimate the

number of £-operations necessary to compute the resolution and the conductor

ideal of the singularity. We show that the number of A:-operations is polyno-

mial^ bounded by the complexity of the singularity, as measured for example

by the index of its conductor ideal. Our algorithm involves calculations over

reduced rings with zero divisors, and employs methods of deformation theory

to reduce the consideration of power series to the consideration of polynomials.

The problem of resolving singularities is of fundamental interest in modern

algebraic geometry. In this paper we make a small step toward approaching this

problem from the point of view of computational complexity. We present an

algorithm, suitable for machine implementation, which computes the resolution

of a plane curve singularity—that is, a singularity at the origin defined by a

formal power series F in two variables x and y over a field k . As we describe

it, the algorithm requires that k be of characteristic zero (or at least of "large"

characteristic) but this hypothesis can certainly be removed at the expense of

some complications. The algorithm obtains explicit equations for the blowing-

up of the singularity, and therefore yields all of the interesting invariants of

the singularity, such as its conductor and its Milnor number. We also provide

upper bounds for the number of /c-operations needed for the operation of the

algorithm.

The problems we consider in this paper have a long history. In [18], Kung

and Traub consider the complexity of Newton's method for solving analytic

equations. There, they present estimates for the number of times Newton's

method must be applied to obtain an approximate solution to an analytic equa-

tion before an iterative method can be employed to refine the solution. This

process is closely related to the resolution problem. Berry, in [3], considers the

complexity of Coates' algorithm [8] for computing Puiseux expansions. Chud-

novsky and Chudnovsky [7] have looked at computing Puiseux expansions from

the point of view of differential equations. The work of Duval and Dicrescenzo

Received March 14, 1988.

1980 Mathematics Subject Classification (1985 Revision). Primary 14B05, 68Q40.
This research was supported in part by a Rackham Postdoctoral Research Fellowship at the

University of Michigan and by an NSF Postdoctoral Fellowship.

©1990 American Mathematical Society

0025-5718/90 $1.00+ $.25 per page

797

798 JEREMY TEITELBAUM

(see [11, 9, 10]), carried out independently from ours, gives another approach

to the resolution problem.

Our algorithm for the resolution problem was influenced by two primary

considerations. First, we require that our algorithm rely strictly on local data

regarding the singularity to be resolved, and we estimate the complexity of the

algorithm in terms of this purely local data; and second, we use only arithmetic

operations on polynomials over a field, and in particular do not invoke any

algorithms for factoring polynomials.

The first restriction was adopted partly for philosophical and partly for prac-

tical reasons. From a philosophical point of view, curve singularities (and oth-

ers) are local phenomena, and therefore one should compute with them using

only local data. More practically, it is worth observing that plane algebraic

curves—the usual source of curve singularities—typically are far less singular

than they can be. In other words, a plane curve of degree, say, d, over a field

k , will generically have only a few, rather simple, singularities. It seems reason-

able, therefore, that the complexity of an algorithm to resolve those singularities

should depend on the complexity of the singularities rather than on the degree

of the curve on which they lie.

The decision to work purely locally influences our algorithm in two main

ways. First, we assume that our singularity is defined by a power series with

coefficients in a field k (assumed for simplicity to be of characteristic zero). We

are allowed to ask for any desired coefficient of our power series, but we cannot

"know" the entire series at once. Therefore, we must reduce the consideration

of an infinite series to the consideration of a polynomial. By applying simple

techniques from deformation theory, we show that we can effectively discard all

but finitely many terms of the power series. Secondly, we measure complexity

in terms of local invariants such as the Milnor number (see §1). We show that

the time expended in determining how many coefficients of the power series are

necessary to describe the singularity, and the number of terms of the series that

we must consider, are polynomial functions of the Milnor number.

To illustrate the consequences of this local approach, suppose that we are

attempting to resolve an ordinary double point, at the origin, on a curve of

huge degree defined by a polynomial F(x, y). Our method computes quickly

that we only need the leading form of F, discards the rest, and therefore the

total time needed to blow up this simple singularity is unaffected by the fact

that F may have thousands of terms.

To accomplish the reduction of our problem from consideration of power

series to polynomials, we apply the theory of Gröbner bases. We find a standard

basis for the ideal generated by the partial derivatives Fx and Fv of the power

series F(x,y) which defines the singularity. Knowledge of this ideal tells us the

Milnor number of F , as well as enabling us, by an application of Tougeron's

lemma, to find an integer N such that the polynomial obtained from F by

dropping terms of total degree greater than N is analytically equivalent to F .

COMPUTATIONAL COMPLEXITY OF RESOLUTION 799

Our method is related to Mora's method [20] for computing tangent cones, but

is complicated by the fact that we work over a power series ring, and also by

the fact that we admit coefficient rings with zero divisors (for reasons discussed

below).

The second guiding consideration in constructing our algorithm was the desire

to avoid the use of polynomial factoring algorithms. The issue of factoring

polynomials arises because computers do not naturally compute in algebraically

closed fields, so we must begin with singularities defined over finitely generated

fields. However, the process of resolution generally introduces field extensions,

since the infinitely near points to a singularity need not be defined over the initial

field. Some method for handling successive field extensions therefore must be

built into the resolution algorithm. We show that, by working with successive

extensions of Artinian rings, rather than with successive field extensions, one

need never factor a polynomial; rather, whenever the issue of whether a given

polynomial factor arises, the necessary factor is already at hand as a by-product

of the algorithm. This usually occurs when an element of our coefficient ring

needs to be inverted; at such times, we may need to split the coefficient ring

into two parts, in one of which our element is zero, and in the other of which

it is a unit.

The technique of "passive factorization" which we exploit has been developed

independently, in somewhat different settings, by other authors. For example,

it is similar to the idea in Lenstra's algorithm for factoring integers using ellip-

tic curves, where one simply treats an integer as prime until one is forced to

accept the conclusion that it is not. In addition, Duval and Dicrescenzo (see [9,

10]) have independently developed and implemented ideas similar to ours, and

have applied them to the problems of computing Puiseux expansions and to

testing absolute irreducibility. Related ideas, under the heading of "flattening

stratifications", have apparently also been developed by Schreyer [21].

As with our goal of making the algorithm local, there are both philosophical

and practical reasons for adopting this approach. From the practical point of

view, by avoiding factoring algorithms we simplify our algorithm, and gain

greater generality since we can work over fields where we do not have good

factoring algorithms. However, in certain special cases we may pay a price in

efficiency.

The philosophical motivation for avoiding factorization comes from the sense

that resolution of singularities is properly viewed as a problem in linear algebra.

Based on our experience developing this algorithm, we have a hunch, unsup-

ported by evidence, that the lower bound for resolving a plane curve singularity

with Milnor number p is close to the lower bound for solving p linear equa-

tions in p unknowns—that is, on the order of p or more likely p . In

impressionistic terms, we feel that the two phenomena which contribute to the

complexity of resolution—successive field extensions, which increase the num-

ber of infinitely near points, and repeated blowings-up, which measure how

800 JEREMY TEITELBAUM

singular each such point is—should be treated in a balanced way. Using fac-

torization algorithms puts too much emphasis on the field extension problem.

For example, resolving even an ordinary multiple point of multiplicity m could

require factoring a polynomial of degree m, and therefore could be quite ex-

pensive, even though the singularity is trivial. In addition, use of factorization

algorithms will probably not affect the worst case complexity of the blowing-up

algorithm, since there are "bad" singularities which are analytically irreducible.

In this paper, we are able to obtain a complexity estimate on the order of

p (see Theorem 49 below) for our version of the blowing-up algorithm. Since

we are not convinced by any means that this is a proper lower bound on the

complexity of the resolution problem, a more careful study of our algorithm

may make it possible to improve our p estimate. Therefore, we have tried

to describe our algorithm in a very detailed manner, in the hope that some

future researcher will be able to whittle away at this p estimate and obtain an

estimate closer to p . In any case, the question of a reasonable lower bound

on the complexity of resolution is quite open, and deserves attention.

We remark that, since our decision to avoid factoring will force us to work

over rings with zero divisors after first blowing up, we assume that our initial

singularity is defined over a ring with zero divisors. This way we need not con-

sider the first blowing up as a special case, and so we may design our algorithm

to be recursive.

Finally, it is appropriate to give a few comments regarding implementation

of this algorithm. As described, it should be relatively straightforward to im-

plement this algorithm in a symbolic computation language such as MAPLE

or MACSYMA. To get good performance on other than simple singularities,

it would be worth writing a special purpose program. We have, in the course

of designing the algorithm, written a host of small test programs, on various

different computers, in various languages, at different universities. As a result,

while we have considerable experience with implementing small pieces of this

algorithm, and have expended considerable effort to make the version of it de-

scribed in this paper an efficient implementation, we have never had a complete

working model. Development of such a model would be a worthwhile project.

We would like to express our appreciation to David Mumford, who originally

suggested this problem to us.

The paper is divided into three sections. The first section briefly discusses

the various measures of the complexity of a singularity which we will consider,

as well as the small amount of deformation theory that we require. The second

section presents the algorithm which computes an algebraic deformation of a

singularity defined by a power series—that is, it finds a polynomial defining a

singularity analytically isomorphic to the original singularity defined by a power

series. Much of the time is spent developing a data structure, which we call a

"tree of standard bases", which is an efficient way to organize these calculations.

The third section describes the resolution algorithm itself.

COMPUTATIONAL COMPLEXITY OF RESOLUTION 801

1. Preliminaries

We begin with a brief discussion of plane curve singularities and their invari-

ants. Let k be a field. A plane curve singularity over k is defined by a power

series F(x, y) in the ring A = k[[x, y]] such that the quotient ring A/FA is

reduced. Since A is a UFD, this means that F must be square free—in other

words, if F = u f] n"' is a factorization of F, where u is a unit and the ni

are distinct prime elements, then all of the ni must be one. Throughout this

paper, we will be working with power series which we assume to be square free.

In fact, the question of determining whether or not a power series is square free

is uncomputable.

Lemma 1. There is no algorithm for deciding whether or not a power series F =

J2aijx'yJ with coefficients in a field k of characteristic zero is square free.

Proof. Suppose we had such an algorithm. Let /: N -* Z c k be any com-

putable function. Let F = y + 52f(i)x'. Then it is easy to see that F is not

square free if and only if / is identically zero. By applying our square free al-

gorithm to F , we could determine whether or not / was identically zero. But

this is not possible—for example, such an algorithm would lead to a solution

to Hilbert's tenth problem. D

It is an interesting question to ask what additional hypotheses one can place

on formal power series F so that whether or not F is square free becomes

computable. For example, if F is in fact a polynomial, then it is well known

that one can determine if F is square free by computing its discriminant. Is

there a class of power series F , with coefficients given by a computable function,

which is larger than the polynomials and for which the predicate "r7 is square

free" is computable?

Let p be a square free polynomial with coefficients in a field k, and let

D(p) = k[T]/p. Let F be a power series in x and y, with coefficients in

D. Geometrically, such a power series represents finitely many plane curve

singularities. We will be interested in the following invariants of the ring

D(p)[[x > y]]/F ■ F°r a more detailed discussion of these, see Brieskorn and

Knorrer [4, Chapter 8], Serre [22], or Gorenstein's paper [14].

Definition 1. Let A = D(p)[[x, y]] and let F e A be a square free power

series. Let B = A/FA . Then we define the following invariants:

1. The multiplicity mF of F is the largest integer such that F e (x, y)mh .

2. The Milnor number of F, pF , is the number:

pF = dimA. A/(dF/dx, dF/dy).

3. The conductor cF is the number

cF = 2dimkB* /B,

where B* denotes the total integral closure of B.

802 JEREMY TEITELBAUM

4. The degree ôF of F is the smallest integer ôF such that (x, yfh c

(dF/dx,dF/dy).

Since F is square free, all of these invariants are finite. We remark that our

cF is twice what some people call the "conductor"of F ; but since we will be

using it to measure asymptotic complexity, this factor of two is irrelevant.

Lemma 2. Let p(T) = px(T)p2(T) be a factorization of p over k. Let D¡ =

k[T]/pi, and let Fi be the image of F e D[[x, y]] in the quotient ring Ai =

D¡[[x, y]]. Then the various invariants of F are related to those of the Fi in

the following manner:

1. mF = xnin{mF , mF }.

2. pF = pF¡ + pF^.

4. ôF = max{f5f , SF}.

Proof. All of these properties follow easily from the Chinese remainder theo-

rem. D

We will need the following relationships between these invariants.

Lemma 3. The following relationships hold between the fundamental invariants:

mF-l<âF<pF<cF< 2pF < C deg(p)ôF .

Proof. By Lemma 2, we may assume that our coefficient ring is a field. Since

mF is the degree of the leading form of F , we know that (dF/dx, dF/dy) is

contained in (x, y)mf~ . Therefore, ôF > mF - 1. We know from the general

theory (again, see [4]) that pF and cF are related by the formula

PF = cF - r + 1,

where r is the number of connected components of the resolution of F (over

k). Since r > 1 , we must have p < cF . However, we also know that r < m .

It follows from the classical formula for the conductor [4, p. 764] in terms of

the multiplicities of infinitely near points that

cF > mF(mF - 1) > r(r - I) > 2(r - 1),

since r > 1. It follows that 2pF > cf . Now we show that ôF < pF . For each

element f of I = (dF/dx, dF/dy), let f* be its leading form—that is, the

homogeneous part of / of least degree. For each degree i, let

M, = {/: deg(/*) = /}, M* = {f : f e M,}.

It is easy to see that if i is such that M* spans all monomials of degree /,

then ô < i. Therefore, we can choose a monomial mi of degree /, but not

belonging to Mi, for each i <ôF . If h = Y^a¡m¡, then the leading form of h

is (a multiple of) one of the mi, and therefore h is not in /. It follows that

the m j are linearly independent mod/, and so pF >SF .

COMPUTATIONAL COMPLEXITY OF RESOLUTION 803

The last inequality follows from the fact that A(p)/IF is a subspace of

A(p)/(x,y)ô>\ D

Finally, we present the lemma from deformation theory which we will exploit.

This lemma, a special case of Tougeron's lemma, shows that, if F is a power

series, then the singularity defined by F depends, up to analytic isomorphism,

on only finitely many coefficients of F, and that the number of coefficients

required to "know" F is polynomially bounded by pF .

Lemma 4 (see Artin [1, p. 100]). Let k be a field of characteristic zero, let p be

a square free polynomial over k, and let F be an element of the ideal (x, y) in

A = k[T]/p[[x, y]]. Let I = (dF/dx, dF/dy). Suppose G is another power

series in A such that G = F (mod (x, y)I). Then there are power series

u(x, y) = x H-, v(x, y) = y H-,

such that u = x (mod/(x,y)) and v = y (mod I(x, y)), and G(x, y) =

F(u(x,y), v(x,y)).

Proof. Again, we may assume that p is irreducible— which amounts to saying

that F has coefficients in k . Let Fx = dF/dx and F = dF/dy. We will try

to find a , b, and c in (x, y) so that

G(x,y) = F(x + aFx + bFy,y + cFy).

Expanding in a Taylor series, we have

G(x,y) - F(x,y) = aF2 + bFxFy + cF2 + R(a, b, c, x, y).

It is not hard to see that R(a,b,c, x,y) can be written as

R(a, b,c,x,y) = Hx(a, b, c)F2 + H2(a, b, c)FxFy + H3(a, b, c)F2,

where the Hj axe power series in A[[a, b, c]], all terms of which are of degree

at least two in a, b, and c. Since G = F (mod I(x, y)), we may write

G - F = rF¡ + sFxFy + tFy ,

where r, s, and / belong to (x, y). Therefore, we will be done if we can

solve the system of analytic equations:

a + Hx(a,b,c) = r,

b + H2(a, b,c)=s,

c + H3(a, b, c) = t.

Clearly, setting a = r, b = s, and c = t gives an approximate solution to this

equation; since the Jacobian matrix of the system is invertible and r, s, and t

belong to (x, y), Hensel's lemma gives us an exact solution. This proves the

lemma. G

We apply this lemma in the following setting:

804 JEREMY TEITELBAUM

Lemma 5. Let F be a square free power series in A = (k[T]/p)[[x, y]], and let

G be the polynomial constructed from F by dropping all terms in F of degree

larger than 26F . Let IF = (dF/dx, dF/dy) and let IG be the similar ideal

for G. Then IG = IF and there is an automorphism 6: A —► A carrying F to

G and inducing the identity map on A/IF = A/IG.

Proof. Once again, we may reduce to the field case. It follows immediately

from Lemma 4 that there is an automorphism 8: A —► A which induces the

identity on A/IF and carries F to G. Therefore, we only need to show that

IF = IG. We leave it to the reader to show that this equality follows easily from

the assumption that F = G (mod ïp(x, y)). o

It is worth pointing out that we never actually need to compute the analytic

isomorphism referred to in this lemma. It is sufficient for our purposes to know

that it exists, and that it is congruent to the identity mod IF . Notice also that

the number of monomials in a polynomial of degree 28 is 0(S). This, in turn,

is bounded by 0(p2F). Therefore, the amount of data necessary to describe a

plane curve singularity is polynomially bounded in the Milnor number of the

singularity.

2. Computing an algebraic deformation

Let p(T) be a square free polynomial with coefficients in a field k , and let

D(p) = k[T]/p(T).

Suppose that A(p) = D(p)[[x, y]] is the ring of formal power series with D(p)

coefficients. Let / € A(p) and let IF = (dF/dx, dF/dy). Our aim in this

section is to describe a method for determining the invariants SF and pF.

This is equivalent to finding an algebraic deformation of F , since we know by

Lemma 5 that knowledge of ôF enables us to construct a polynomial G which

is analytically equivalent to F. Our method for computing ôF and pF is to

compute a special type of generating set for the ideal IF = (dF/dx, dF/dy),

from which we can read off the desired invariants.

2.1. Standard bases. In order to describe a standard basis, let us order the

monomials in x and y lexicographically within degree, so that

i 2 2l > x > y > x > xy > y >•••.

If / e A(p) is a power series, then we define the leading term /(/, p) to be the

largest monomial in / with a nonzero coefficient, and we let c(f, p) denote

its coefficient. Then the following definition describes a standard basis when p

is prime.

Definition 2 (see [5, 2]). Suppose that p(T) is a prime polynomial over k , and

that / C A(p) is an ideal. Then a set B of elements B = {/,,..., fn) of A(p)

such that /(/,, p) > l(f2, p) > ■■■ and such that the ft generate / is called a

standard basis for / provided that

B* = {l(fx,p),...,l(fn,p)}

COMPUTATIONAL COMPLEXITY OF RESOLUTION 805

generates the ideal

fF = {l(f,p)\f€l}

of leading forms of elements of /.

Standard bases for / are useful because they provide a method of construct-

ing canonical representatives for elements of A/I, as we see in the following

theorem.

Theorem 6 (Hironaka [15]). Suppose that p is prime. Suppose for I c A that

B = {fx, ... , fn) is a standard basis. Then every element g G A has a unique

representation

n

(1) g = Y,aifi + an+l> fli^'

where no monomial m occurring in an+x with nonzero coefficient is divisible by

any Kfi. P) • and if m is a monomial with nonzero coefficient in a¡, i < n,

then ml(fl, p) is not divisible by l(f, p) for any j < i.

We adopt some terminology for a representation of the form described in

this theorem.

Definition 3. If fx, ... , fn are a decreasing set of elements of A such that

l(fk , p) is not divisible by l(f , p) for all i <k , then an expression

n

g = Y,aifi
i=\

for g £ I with the property described in Theorem 6 will be called a normal

form for g.

The difficulty with using this theorem in our situation is caused by the pres-

ence of zero divisors in the ring D(p) when p is not irreducible. To deal with

this problem, we adopt the following definition.

Definition 4. Let p(T) be a square free polynomial over the field k, and let

/ e A(p) be an ideal. Then a set B = {/,,..., fn) of generators for / will be

called a standard basis for / over D(p) provided that B* generates /* as in

the field case, and all c(f, p) axe units in D(p).

Thanks to the Chinese remainder theorem, we have a normal form theorem

in this more general case as well.

Lemma 7. Let p(T) be a square free polynomial, and I c A(p) be an ideal.

Suppose that I has a standard basis B = {fx, ... , fn) over D(p). Assuming

that the f are listed in descending order, every element g G A(p) can be written

uniquely as
n

g = Y<a,fi+an+\> ateA(p),

806 JEREMY TEITELBAUM

where, as in the field case, no monomial m occurring in an+x with nonzero

coefficient is divisible by any l(ff, p), and if m is a monomial with nonzero

coefficient in a¡, i < n, then ml(fi, p) is not divisible by l(f, p) for any

j <i-

Proof. Let p = Y\pk(T) be the factorization of p(T) into irreducibles. Then,

by the Chinese remainder theorem, there is an isomorphism

A(p)^Y[A(pk).

Since the f have unit leading terms, the image of B in each factor is a standard

basis for the image of /. Thus we can obtain an expression of the desired form

in each factor. Using the isomorphism, we obtain an expression

n

8 = ¿2aifi + an+l> ateA(p),
i=l

which is in normal form in each component. But then suppose that m occurs

with coefficient u in ai and that ml(fi, p) is divisible by l(f , p) for j < i.

Then the coefficient of ml(fi, p), which is uc(fi, p), must reduce to zero in

each component. Since c(fi, p) is a unit, this means that u reduces to zero in

each component, and so u = 0. We conclude that we have a normal form for

g- a

The following corollary, which tells how to determine the Milnor number, is

an immediate consequence of the normal form lemma. It says that the index

of an ideal is the same as the index of the monomial ideal generated by the

leading terms of elements in a standard basis. Computing this index is just a

linear algebra problem.

Corollary 8. Let F be a square free power series in A(p), and suppose that IF

has a standard basis B over D(p). Let B* = {/(/, p): f e B) . Then

pF = dim^. A(p)/B*A(p) = deg(p) dimt A/B* A.

We will explain later how to compute the degree invariant ô .

2.2. Computing standard bases in power series rings. Buchberger has devised an

algorithm for computing standard bases of ideals in polynomial rings which is

based on a criterion for determining when a set of generators is a standard basis

(see [5 and 20]). Our first task is to adapt this criterion slightly so that we can

apply it to power series with coefficients in D(p). We begin by introducing the

R and 5" operations.

Definition 5. Suppose that g and h are elements of A(p). Let

m = lcm(l(g,p), l(h,p)).

Then
Stg h)=mc(h,p) mc(g,p)

{S'] ¡(g,P) g Kh,p) n-

COMPUTATIONAL COMPLEXITY OF RESOLUTION 807

Definition 6. Let G = {gx, ... , gn) be a set of elements of A(p) such that

c(g¡, p) = I for all i. Let h be any element of A(p). Then we define

R„(h, G, p) by the following rules:

1. If there is no element g e G such that l(g, p) divides l(h, p), then

Rx(h,G,p) = h.
2. Otherwise, let g be the largest element of G such that l(g, p) divides

l(h,p) and set Rx(h, G,p) = S(h, g).

3. Define Rn(h, G, p) = Rx(Rn_x(h, G, p), G, p).

Finally, we set R(h, G, p) = lim,,^Rn(h,G,p).

We make the following observations regarding the i?-operation.

Lemma 9. The R-operation is well defined. Let f = R(h, G, p). Then, if f
is not zero, l(f,p) is not in the span of the l(g,p) as g runs through G.

Furthermore, if f ^ h, then there are series a(g) e A(p) such that

h-f=J2a(g)g
g€G

is in normal form.

Proof. It is easy to see that the sequence Rn(h, G, p) converges in the adic

topology on A ; in fact, if / is not zero, then it will eventually stabilize. Thus,

either / is zero or /(/, p) is not in the span of the l(g, p). The normal form

claim follows easily by induction and the observation that

Rn_x(h,G,p) = mg + Rn(h,G,p),

where ml(g, p) = l(Rn_x(h, G,p),p) and g is maximal among elements of

G such that l(g, p) divides l(Rn_x(h, G, p), P). □

Having defined these operations, we have the following power series version

of Buchberger's criterion.

Theorem 10. Suppose that I ç A(p) is an ideal, B = {/,,..., fn} is a de-

scending sequence of distinct elements of A(p) which generate I, and that all

c(f, P) = I ■ If for all pairs (i, j), we may write

s(fi,fj)=Eaki)fk'

where all monomials m with nonzero coefficient in a[satisfy ml(fk , p) <

lcm(l(f , p), l(f, p)), then B is a standard basis for I over D(p).

Proof. Let g be an element of /. Assume that l(f, p) > l(fj, p) whenever

i < j. If e 6 A(p)®n, we will write e ■ B = J2e¡f¡ • With these conventions

established, let

E(g) = {(e0,...,en)eA(pf"+l:g = e-B}.

If m is a monomial occurring in some component et of e e E(g) such that

ml(fj, p) is divisible by l(f, p) for j < i, then we will say that ml(f) is in

808 JEREMY TEITELBAUM

the wrong place. Let exx(e) be a largest monomial in some e¡l(f¡) which is in

the wrong place if such a one exists, and 0 otherwise. Let Err(^) be the set of

all exx(e) as e runs though E(g).

Suppose that Err(g) contains arbitrarily small monomials. Then we claim

that there is an e e E(g) such that g = e ■ B is a normal form for g. In

fact, this hypothesis means that we can approximate g arbitrarily closely by

elements which can be written in normal form. But it follows easily from the

uniqueness of the normal form that if {e"} is a sequence of elements of E(g)

such that e" • B —► g , then the e" converge to an element e with e • B = g

giving a normal form.

On the other hand, let / be a minimal nonzero element of Err(g), and

suppose that / occurs in eil(fi, p). For each /, let mt be the monomial in e{

such that m^fj) = t. Let j be minimal such that 1(f) divides t. Then we

can write, for each /,

mifi-»*ifj = m"S{fi,fj)

with monomials m\ and m\ . But by assumption, we know that

m;.'5(y;.,y;.) = a(')-JB

for some a = (a0 ,... , an) € E(g), where all monomials occurring in

ak^l(f) in íz(,) • B axe strictly smaller than t. Let v{l) be the vector with

-mi in the z'th position, m'j in the ;'th position, and zero elsewhere. Then

e = e - J2¡(a +v) belongs to E(g) and exx(e') is by construction smaller

than exx(e). It follows that err(é") is zero. Therefore, every gel has a

representation in normal form. This clearly implies that B is a standard basis

over D(p), as was to be shown. D

In the next subsection, we consider the problem of doing arithmetic on power

series.

2.3. Computations with power series. In order to construct a standard basis for

an ideal in a polynomial ring, we must develop a method for computing with

power series. In this subsection, we examine this problem.

Our concern is computation of a standard basis for the ideal IF = (Fx , Fy) c

A(p) for a particular power series F. In practice, such a series may arise

in a number of different ways. For example, it may be presented as a large

polynomial, all of whose coefficients are known. More interestingly, F may

be the output of an iterative procedure which computes the coefficients of F

inductively. We wish to deal with this more general situation. We therefore

adopt the following representation for F .

Definition 7. Let Md = {q G k[T]: deg(<7) < d}. Let p(T) be a square free

polynomial of degree d. The power series F e A(p) is represented by a

function

F:NxN^ Md,

COMPUTATIONAL COMPLEXITY OF RESOLUTION 809

where F(i, j) is interpreted as a representative a¡. G D(p) for the coefficient

of x V in F.

We observe that the function (Fx), which represents dF/dx , is defined by

(Fx)(i,j) = (i+l)F(i+l,j),

with a similar formula holding for (F).

For elements h e IF which will arise in the course of our computations, we

adopt a different representation. The power series F defines a map <p(-, p) :

D(p)[x,y]®D(p)[x,y]^IF,

{hx,h2)^P)hxFx + h2Fy.

We will compute with elements h of IF which are in the image of the map

<j>, representing them as ordered pairs of polynomials with Z)(/?)-coefficients.

Clearly, we can perform arithmetic on such pairs by operating componentwise.

Lemma 11. Suppose h = (hx, h2) is an ordered pair of polynomials with coef-

ficients in D(p). If d(h) is the larger of the degrees of hx and h2, then the

coefficient of any monomial in hxFx + h2Fv = h can be computed with 0(d(h)2)

coefficient ring operations.

Proof. Write h¡ = £ ajjkx'y • Then the coefficient brs of xV in h is

K = ¿2 alJkFx(/,k') + a2jkFy(/,k'),
j+j'=r ,k+k'=s

and there are 0(d(h)) nonzero terms in this calculation. D

We also remark that if <¡>(h, p) = h ^ 0, then we can compute the leading

term l(h, p) of h by computing in sequence the coefficients of the monomials

in h , looking for the first nonzero coefficient. However, if h = 0, this procedure

may not terminate.

Because the determination of leading terms is such an important part of

any standard basis algorithm, we expand our abstract data type for elements

h G D(p)[x, y]® to include the leading term of cp(h, p).

Definition 8. We define an abstract data type vector. An element h of this type

consists of:

1. A monomial, called the leading monomial of h .

2. A polynomial in T, called the leading coefficient of h .

3. Two polynomials in x and y, with coefficients in the polynomials in

T, called the components of h .

Vectors are used to represent elements of A(p) as follows. Let h ^ 0 be

an element of A(p) which can be written h = 4>((hx, h2), p), where (hx, h2)

810 JEREMY TEITELBAUM

is a pair of polynomials. Then h is stored as a vector with the leading mono-

mial field set to l(h, p), the leading coefficient field set to c(h, p), and the

components set to hx and h2.

Vectors of this type are added together by adding their components and re-

computing the leading monomial and coefficient. They are multiplied by a

monomial m by multiplying the components and the leading monomial by

m . Scalar multiplication (by a nonzero scalar u) is computed by multiplying

the leading coefficient and the components by u . We abuse notation and write

4>(h, p) for the </>(•, p) applied to the components of h , l(h , p) for the leading

monomial, and c(h, p) for the leading coefficient.

Notice that addition is only defined on h and g when <f>(h + g, p) ^ 0. If

the sum is zero, the search for a new leading coefficient in the sum will never

terminate.

Algorithm 12. Algorithm for R.

Input: A square free polynomial p(T), a vector h, and a finite list G of

vectors gt, representing elements in A(p) in the manner described above, such

that h = <p(h, p) and all gi — <f)(gA are nonzero. We assume further that the

l(gi, p) axe distinct and all c(gt, p) = 1. A further condition, discussed in

Lemma 13, is necessary to guarantee termination.

Output: A vector r representing R(h, G, p) (here G = {4>(gj, p)}).

Step 1: Set r := h .

Step 2: While there exists i such that i(gt., p) divides l(r, p), do:

Let gj be the element of G which is maximal among all g eG such that

l(g,P) divides l(f,p). Set

(2) r := r - (c(r, p)l(r, p)/l{g], p))g.,

carrying out arithmetic componentwise.

Determine l(r,p) by searching for a nonzero coefficient xnodp(T).

Step 3: Return r.

That this algorithm computes what it claims to is a simple consequence of

the definition of the Ä-operation. However, the following lemma clarifies when

the procedure actually terminates after finitely many passes through the loop in

Step 2.

Lemma 13. If h has no normal form expression in the gt, then Algorithm 12

terminates.

Proof. Suppose the algorithm fails to terminate. Then we must have R(h, G, p)

= 0, and we conclude by Lemma 9 that we can find aj so that

h = ^2alg¡,

and this expression is in normal form. □

In our discussion of complexity, we will require the following result.

COMPUTATIONAL COMPLEXITY OF RESOLUTION 811

Lemma 14. Suppose that h is a vector. Let d(h) be the degree of the largest

monomial occurring in a component of h, and let dl(h) = deg(l(h, p)). Also,

we define

r(h) = #({m: m a monomial with m > l(h, p)}).

Let G be a list of vectors, and set

d(G) = max{d(g) :geG}, r(G) = xnin{r(g) : g e G}.

Finally, let f = R(h, G, p). Then f is computed by Algorithm 12 using

0((deg(p)2)(r(f) - r(h))(d(G) + dl(h)))

field operations.

Proof. Addition of polynomials of degree d in two variables can be computed

with 0(d) coefficient ring operations. Let hi be the vector computed in the

ith pass through the loop in Algorithm 12. Since h¡ := h¡_x - mg for some

geG, hi can be computed from «,._, by 0(xnayA,d(G),d(}\i_x)f2) coefficient

ring operations. In addition, since ml(g, p) = l(h¡_x, p), we must have

d(hi)<xnax(d(g) + dl(hi_x),d(hi_x)).

We conclude from this that

d(h¡) < xnax(d(G) + dl(f) - dl(G), d(h)).

Therefore, each computation of /z; in (2) requires at most

r^C^max^^ + ̂ Z),^))2)

coefficient ring operations.

Again, passing through the loop, we must compute the leading term l(hi, p).

This involves verifying that T2(i) = (r(h¡) - r(ht_x)) monomials have zero

coefficients; each verification requiring C2(í/(A;)2) coefficient operations. To

finish the lemma, we sum over passes through the loop:

time<X^(7'1+C2r2(/)(ííf(A/)2)).

Using the fact that the number of passes through the loop is bounded by the

number of monomials between l(h , p) and /(/, p), which is r(f) - r(h), and

substituting our estimates for Tx , T2, and d(h¡), we see that computing /

requires at most

0((r(f) - r(h)) max(d(h), d(G) + dl(h)))

coefficient ring operations. Converting coefficient ring operations to field oper-

ations completes the proof of the lemma. D

We also have a means for computing the ^-operation on power series repre-

sented as vectors h £ A(p) ® A(p).

812 JEREMY TEITELBAUM

Algorithm 15. S-operation.

Input: Two vectors h and g representing elements h and g in A(p) such

that S(<j)(h,p),<p(g,p))¿0.
Output: A vector s such that <p(s, p) = S(h, g, p).

Step 1: Compute m = lcm(l(h, p), l(g, p)).

Step 2: Compute

mc(h,p)¿ mc(g,p)t

1(8 >P) l(h,p)

doing arithmetic componentwise.

Step 3: Search for the leading coefficient of f.

Step 4: Return s, together with its leading term and coefficient.

An analysis similar to, but simpler than, the one given for the jR-operation

gives the following estimate.

Lemma 16. Let s = S(g, h, p). Then

d(s) < d(m) + xnax(d(g) - dl(g), d(h) - dl(h)),

where m = lcxn(l(g, p), l(h, p)). Computation of s by Algorithm 15 requires

0(deg(p)2d(s)2(r(s) - r(m)))

field arithmetic operations.

2.4. Trees of standard bases. In this subsection we discuss how to deal with the

presence of zero divisors in our ring of coefficients. Our method will consist

of "discovering" factors of the polynomial p(T) which defines D(p), and then

splitting up D(p) into corresponding factor rings.

In general, if q(T) is a divisor of p(T), there is a natural reduction map

D(p) —► D(q), inducing a reduction map A(p) —► A(q). In practice, if F is a

power series in A(p) represented by a function F, then the image of F in a

quotient A(q) of A(p) is represented by the function obtained by reducing the

values of F mod q . Therefore, we can carry out arithmetic in any factor ring

of A(p). We will therefore freely view any element of A(p) also as an element

of A(q) via the reduction map when q divides p . For example, if / G A(p)

and q divides p, then /(/, q) will denote the first coefficient of / which is

nonzero mod q.

It is important to notice that /(/, q) and /(/, p) are not in general equal.

Indeed, the coefficient c(f, p) might reduce to zero in D(q). However, when-

ever c(f, p) is a unit modp , then /(/, q) = l(f, p) for all q dividing p .

The following algorithm splits up the polynomial D(p) into factors p¡(T) so

that, if Fi is the image of F in D(p;), then the leading coefficient of l(Ft, pt)

is a unit modp(. Among other things, this guarantees that the multiplicity of

F¡ at all maximal ideals of A(p¡) is the same.

COMPUTATIONAL COMPLEXITY OF RESOLUTION 813

Algorithm 17. Constant multiplicity.

Input: A square free polynomial p(T) and a power series F in A(p), repre-

sented as a function in the manner described above. We assume that the image

of F in each irreducible component of D(p) is known to be nonzero.

Output: A list of triples (uk(T), m, Pk(T)), each consisting of a polynomial

uk(T), a monomial m , and a polynomial pk(T) such that

1. uk(T) is the inverse of the coefficient of x'yJ modpk(T).

2. m is the leading term of F viewed xnodpk—this means that m is the

first monomial with a coefficient not divisible by pk .

3. The coefficient of m is a unit xnodpk—meaning that F(i, j) is rela-

tively prime to pk .

4- P = Y\Pk(T).
5. The pk are pairwise relatively prime.

Step 0: LIST :={}. m := x°y° .

Step 1: While p¿ 1 do:

Let u be the coefficient of m in F .

Let d := gcd(i¿, p).

If d ¿ 0 do:

Let q := p/d .

Append {(u~ xnodq, m, q)} to LIST,

p := d.
m := next monomial in order.

Lemma 18. Algorithm 17 terminates. Further, the list it returns has the claimed

properties.

Proof. Each pass through the algorithm for which d ^ 0 holds will reduce the

degree of the polynomial p . Therefore, the algorithm can fail to terminate only

if there is a factor q of p such that all coefficients u of F axe congruent to

zero mod q . This contradicts our assumption that F is nonzero in all factors of

A(p). Therefore, the algorithm terminates. The correctness of the algorithm

follows by induction. In particular, let m be the first monomial in F with

nonzero coefficient uxnodp . If d = gcd(i¿, p) is 1, then the algorithm returns

{(u~ xnodp, m, p)} which has the desired properties. If d ^ 1, then d is a

factor of p and u is invertible xnodp¡d . Since the degree of d is smaller than

p, we may assume that the algorithm works correctly on F and d, computing

a list LIST'0. Then, since p/d and d are relatively prime, the list LIST =

LISTQ u {(u~ xnodp/d, m, p/d)} also has the desired properties. D

Lemma 19. Algorithm 17 uses at most 0(deg(p) +cFdeg(p)) field operations.

Proof. Let px, ... , pk be the polynomials which successively play the role of

p in the course of the algorithm, where px is the input polynomial p . Suppose

that {{Vj, m¡, ?,},} is the output of the algorithm, as i runs from 1 to k . If

m is a monomial, let r(m) be the number of monomials greater than m in the

814 JEREMY TEITELBAUM

ordering. Since the various polynomial operations mod/? carried out in each

pass through the loop require 0(deg(p)) coefficient operations, the number of

operations T for the algorithm can be estimated as

T < C (£deg(/?,)VK) - rK_,))),

where C is a constant. Since all deg(p¡) < deg(p), we may write

T<C (deg(p) (j2deg(Pl)(r(mi) - r(m¡_x)))) .

This sum can be rearranged to yield

r<c(deg(p)(^deg((?/)r(/n1.))).

If deg(w) > 1, there is a constant C' such that r(m) < C' deg(m)(deg(m) -1).

Therefore, we may split up our sum into two parts:

T < deg(p) lcx fedeg^j j + C2 f^deg^deg^Xdegtm,) - 1) j ,

where A is the set of indices where deg(m;) < 1 and B is the set where

deg(m¡) > 1. The first sum is bounded by deg(p) since Sdeg(^) = deg(p),

and the second sum is bounded by cF deg(p) by [4, p. 764]. It follows that the

time T is bounded by 0(deg(p) +cFdeg(p)) as claimed. D

We are now ready to begin describing our standard basis algorithm. We will

organize our data in a tree structure. This tree will be rooted at the top at a

node called root. Every node will have a finite (possibly empty) set of child

nodes, and every nonroot node will have a unique parent node.

Each node n of the tree will contain the following data:

1. A pointer to its parent node (denoted n —» p).

2. A set of pointers to its child nodes.

3. A square free polynomial q(T) (denoted n —> r).

4. A vector representing an element of A(n —► r), denoted n —► vec.

5. Two boolean fields (denoted n —► x and n-»v).

We will write x(n) and y(n) to denote respectively the power of x and

y appearing in the leading term of <73(n —► vec, n —► r) G A(n —» r). We will

abbreviate and write:

<p(n) = (¡)(n —► vec, n —► r),

c(n) = c(n —> vec, n —► r),

/(n) = /(n -*vec,n—>r).

The following definition characterizes the relationship between the various

fields in a node and the various nodes in the tree.

COMPUTATIONAL COMPLEXITY OF RESOLUTION 815

Definition 9. Suppose p is a square free polynomial in k[T] and F is a power

series in A(p). A tree T of nodes as described above will be called compatible

with p if, whenever n is a nonroot node, and c is one of its children, the

following myriad conditions are met:

1. root —> p = root.

2. root-» r = p(T).

3. root -ti = root -* y = false.

4. c(n) = 1.

5. c —► r divides n-+r.

6. FJC—>r = n—>r where the product is taken over all children c of n.

7. /(c)</(n).

8. n —► x = true if and only if either x(n) = 0 or x(n —> p) = true.

9. n —> y = true if and only if either y(n) = 0 or y(n —► p) = true.

To understand all of this, associate to every node n the ring D(n —> r). Then

the root node root corresponds to D(p), and if c is a child node of root, then

there is a reduction map D(root) —► D(c). Even more, by property 6, there is

an isomorphism (by the Chinese remainder theorem)

D(n^r)^Y[D(c-^r),

where the product is taken over all children c of n. Then n -> vec represents

an element of A(n —> r) via the map <p(-,n—*r). Notice that our requirement

that c(n) = 1 implies that the image of the leading term /(n) in A(c —* r) is

the same as /(n) for any descendant c of n.

Definition 10. Suppose that T is a tree compatible with F and p. If n is a

node in T, we derive three sets from n.

1. Let n(n) denote the set of nodes on the path between n and root. In

more formal terms, let 11* (n) be defined recursively by the rules:

nen».
If ben'(n), then b-* p eYl* (n).

Then II(n) = II* (n) - root.

2. When n is a node of T, we let

B(n) = {b^vec:beU(n)}.

3. Then, if n is a node of T, we define /(n) to be the list of elements in

A(n —> r) given by the rule

/(n) = {0(b) modn -» r: b G n(n)}.

The following definition summarizes the type of T we would like to con-

struct.

Definition 11. A tree T, compatible with p and F , is called a tree of standard

bases for F if, for each base node (that is, each node without children) b, the

set 1(b) is a standard basis for IF modb —► r over D(b -» r).

816 JEREMY TEITELBAUM

Notice that the polynomials b —> r, as b runs through base nodes of T,

yield a factorization of p into pairwise relatively prime polynomials. A tree of

standard bases T gives us a standard basis 1(b) for the image of IF in each

factor ring ,4 (base —> r). Since

A(p) = l\A(base^r),

T partitions A(p) into disjoint subrings so that in each subring we have a

standard basis for the image, in that subring, of IF .

The following procedure is the fundamental process by which a compatible

tree T is extended downward.

Algorithm 20. Tree extension.

Input: A compatible tree T for a power series F and a square free polyno-

mial p, a selected base node n in T, and a vector h representing an element

of A(n —> r). To guarantee termination, h must satisfy an additional condition

described in Lemma 22.

Output: A compatible tree T, consisting of T with a set of child nodes

attached to n. In addition to the compatibility conditions, these new child

nodes of n, cx, ... , cn, satisfy

Cj —► vec = R(h, I(n), c —► r).

Step 1: r:=R(ii,I(n),n-+r).

Step 2: i := 1, p := n —► r.
Step 3: Create a new node c¡. Set it up so that c, is the ith child of n.

Step 4: Compute polynomials a and b so that ac(r, p) + bp = d, where

d = gcd(p, c(r, p)).

Step 5: Compute an inverse c(r, p/d)~ for c(r, p) xnodp/d .

Set c¡ —> vec := c(r, p/d)~ r.

Set c(-»r:= p/d.
Set c¡ —► x := cj. —» y := false.

If x(c(—► vec) = 0 or n —► x = 0 then c(—* x := true.

If y(c¡ —» vec) = 0 or n —> y = 0 then c; —► y := true.

Step 6: If d = 1, stop. Otherwise, i := i + 1 , p := d, and r :=

R(r,I(n),p).

Go to Step 3 .

Lemma 21. Suppose that Algorithm 20 halts when operating on h and n G T.

Then it produces a tree with the claimed properties.

Proof. Informally, the algorithm proceeds as follows. It reduces h by the set

of ancestors of n, working modp . Calling the result r, it attempts to invert

the lead coefficient c(r,p) of r mod/?. However, this coefficient may not be

relatively prime to p . Therefore, it computes d — gcd(c(f, p), p). It can invert

c(f, p) xnodp/'d , so it does. Then it creates a node c, with c, —> r = p/d . It

sets c, —* vec = c(r, p/d)~ r xnodp/d. At this stage it has computed the

COMPUTATIONAL COMPLEXITY OF RESOLUTION 817

reduction of h by the ancestors of n in the component of A(p) defined by

p/d = 0. Now it must consider the places where d = 0. The leading term

of r modi/ is no longer the leading term modp, since this lead coefficient

reduces to zero modúf. Therefore, it sets p := d and continues to reduce.

Any new nodes c; which the algorithm attaches will have c¡ —► r dividing d .

Inductively, this guarantees that all of the c(—> r axe pairwise relatively prime.

Since the algorithm halts when d = 1, the product of the c, -» r will be p.

The remaining properties of the extended tree are clear. D

Lemma 22. Suppose that Algorithm 20 fails to halt when operating on an ele-

ment h and a node n. Then there exists a polynomial q dividing n —► r and

a list of power series a¡ such that

h-¿2 aJi (mod «)

is a normal form for h = <p(h, q) in the factor ring A(q) and the fi are the

elements of I(n).

Proof. Each pass through the loop in Algorithm 20 reduces the degree of the

polynomial p, and the algorithm halts if p has degree zero. Therefore, the

algorithm can only fail to halt if one of the reduction steps fails to halt. But by

Lemma 13, this can only happen if the stated condition holds. D

Now suppose that T is a compatible tree. The following adjacency condition

allows us to avoid unnecessary reduction steps in our standard basis algorithm.

Definition 12. Let n be a node in a compatible tree T. If adj ^ n belongs to

n(node), then we will say that adj is adjacent to n if |x(adj)-x(n)| is minimal

among all elements of II(n). The set of nodes adjacent to n will be denoted

Adj(n). (Notice that adjacency is a relation between the series represented by

the nodes, and does not refer to their positions in the tree.)

This algorithm creates a tree of standard bases for F and p .

Algorithm 23. Standard basis.

Input: A square free polynomial p(T) and a square free power series F G

D(p) represented by a function in the manner described above.

Output: A tree of standard bases for F and p .

Step 0: Create a root node root for T and set root -► r := p. Call Algorithm

17 on Fx and p, yielding a list LIST.

For each entry (a, m, q) of LIST:

Call Algorithm 17 on F and q , obtaining a list LISTB .

For each entry (b, n,w) in LISTB :

if l(Fx,w)>l(Fy,w) then:

Create a child node child of root with:

child —► r := w.

child —► vec := [a, 0] mod w .

Call Algorithm 20 (Tree extension) on child and [0, b].

818 JEREMY TEITELBAUM

otherwise:

create a child node child of root with:

child —> r := w .

child —> vec := [0, b] mod w .

Call Algorithm 20 (Tree extension) on child and [a, 0].

Step 1 : Until all base nodes base of T have base —> x = true and base —►

y = true, do:

Let base be a base node of T with at least one flag set to false.

Let prev be an element of Adj (base).

Compute h := Sybase —► vec, prev —» vec, base —► r).

Carry out Algorithm 20 (Tree extension) on node and h .

Step 2: Return T.

We now begin the process of proving that this procedure terminates, and

delivers a tree of standard bases.

Lemma 24. Step 0 of Algorithm 23 terminates.

Proof. The calls to Algorithm 17 terminate since we assume F, Fx and F do

not reduce to zero at any maximal ideal of k[T]/p[[x, y]]. If one of the calls

to Algorithm 20 fails to terminate, then we conclude that there is a divisor q

of p such that F and Fy have a common factor mod q . But this contradicts

our assumption that F is square free. Therefore Step 0 terminates. D

Lemma 25. At the completion of Step 0, T is strictly compatible.

Proof. This is a consequence of the termination of Step 0 and the actions of

Algorithm 20. D

Lemma 26. Suppose, while executing Algorithm 23, we are at the top of the loop

in Step 1. Then every node n of T has the following properties:

1. The set Adj(n) contains a unique element. In fact, either

x(n) = maxx(n) and y(n) = miny(n)
n(n) n(n)

or

x(n) = minx(n) and y(n) = maxy(n).
n(n) n(n)

2. Let p and a be respectively the parent node of n and the sole member

o/Adj(p). Then

/(n)<lcm(/(p),/(a)).

3. Let p be n —<• p and let b be any element of II(n). Then we may write

5(p —> vec, b —► vec) = ^ a(w)w —> vec (mod n —> r),

where the sum is over II(n) and where every monomial m occurring

with nonzero coefficient modn -» r in some a(w) satisfies

mlM < lcm(/(p), /(b)).

COMPUTATIONAL COMPLEXITY OF RESOLUTION 819

4. For any node n, /(n) is not in the span of the 1(b) as b runs through

n(n).

Proof. We proceed by induction. Let us consider the tree prior to the first exe-

cution of the loop in Step 1. Each base node base has one nonroot ancestor p.

Since base —> vec was obtained by reducing something smaller than p —► vec

by p —► vec, property 4 must hold. Properties 2 and 3 are satisfied vacuously.

As for property 1, clearly each base node has at most one adjacent ancestor.

The stronger claim holds as well. To see this, observe that if m and n axe

monomials such that x(m) < x(n) and y(m) < y(n), then obviously m di-

vides n . But the reduction operation guarantees that /(base) is not divisible

by /(base —► p). Therefore, one of the two conditions in 1 holds.

Now suppose that T has the stated properties after some number of iter-

ations of Step 1. Let base be a base node of i. We will check that after a

pass through Step 1, T still has all of the desired properties. If all base nodes

have both flags set, the algorithm halts and we are done. So suppose that b is a

base node of T with at least one flag false. By the inductive hypothesis, Adj(b)

contains one element; call this element a. We must check that all of the nodes

attached by Algorithm 20 to b have the claimed properties. Let c be such a

node.

We know that

child —► vec = R(S(b -» vec, a ->• vec), B(b), c->• r) (mod c-»r).

Since this Ä-operation halted, claim 4 must hold. Similarly, claim 2 is clear.

As for claim 1, let

U+ = {b G n(child) : x(b) > x(child)},

U_ = {b G n(child) : x(b) < x(child)}.

If either set is empty, we have settled claim 1 ; therefore, let us assume that both

are nonempty. Let u+ be the element of U+ such that x(u+) is minimal, and

let u_ be the element of U_ suchthat x(u) is maximal. Suppose for the sake

of argument that /(u+) > /(u_). Then u_ is the unique element of Adj(u+) by

the structure of T and the inductive hypothesis. Since /(c) < lcm(u+ , u_) by

claim 2, we can conclude that /(child) is a multiple of /(u_). This contradicts

claim 4.

To finish, by properties of the i?-operation, we may write

h = S(b, a) = J2 a(h)(h -* vec) + (c - vec)
beB

with £a(b)(b —► vec) in normal form. Let bl be any ancestor of b, and let

g(bl) = S(b —> vec, bl —> vec). By claim 1, lcm(/(b), /(bl)) must be divisible

by lcm(/(b), 1(a)). This means that we can find monomials m, and m2 so

that

g(bl) = mxS(b —► vec, a -» vec)

+ m2S(a —► vec, bl —► vec) (mod c —» r).

820 JEREMY TEITELBAUM

Claim 3 follows easily from this expression by induction. D

Corollary 27. The loop in Step 1 of Algorithm 23 is executed only finitely many

times.

Proof. This follows from the Hubert basis theorem and property 4. D

Because of this corollary, we see that Algorithm 23 can fail to terminate

only if one of the Ä-operations carried out in the calls to Algorithm 20 fails to

terminate. As we will see, the assumption that F is a square free power series

will guarantee that this cannot happen.

Theorem 28. Suppose that T is a tree satisfying the conditions of Lemma 26.

Let b be a base node of T and let a be the unique element of Adj(b). If there

exists a nontrivial divisor q of b —> r such that

R(S(b -^vec,a-* vec),B(b),q) = 0 (mod q),

then 1(b) is a standard basis for the image I(q) of IF in the factor ring A(q)

ofA(p).

Proof. Write 1(b) = {fQ,..., fn}. It follows from the inductive property 3 of

Lemma 26 that S(f, fi) has the property required by the criterion in Theorem

10 for all pairs fi and fi with both / and j less than n. The additional

hypothesis of this theorem guarantees that the criterion also holds for S(fn , g),

where g is the unique element adjacent to fn = <f>(b —» vec, b —► r). However,

as in the proof of Lemma 26, if fk is a nonadjacent element, then there are

monomials mx and m2 so that

S(fn, fk) = mxS(fn , g) + m2S(g, fk) (mod c -> r).

It is easy to see that this expression also satisfies the criterion of Theorem 10.

Therefore, /(n) is a standard basis as claimed. □

Corollary 29. Algorithm 23 terminates.

Proof. Suppose the algorithm does not terminate. Then, by Lemma 26 and our

results on the termination of Algorithm 20, there is a node n such that the

set /(n) is a standard basis for the image of IF in the factor ring A(n —► r).

However, since either n —► x or n —> y is false for all ancestors of n, then either

no ancestral node of n has x(n) = 0 or no ancestral node has y(n) = 0. But

this contradicts the assumption that IF has finite codimension in A(n -* r),

since it implies that no element of IF has leading term a power of x or y . D

Corollary 30. Algorithm 23 correctly computes a tree of standard bases for IF .

Proof. Upon termination, 1(b) for every base node b of T satisfies all of the

properties listed in Lemma 26. Furthermore, there is an ancestor n G 11(b) such

that x(b) = 0 and y(n) = 0, or x(n) = 0 and y(b) = 0. Then it follows from

Lemma 26, part 1, that, if h = R(S(b —► vec, n —► vec), 1(b) , b -► r) ^ 0, then

x(h) < 0 or y(h) < 0. Therefore, we must have h = 0. But then it follows

as in the proof of Lemma 29 that 1(b) satisfies the criterion of Theorem 10,

COMPUTATIONAL COMPLEXITY OF RESOLUTION 821

and therefore /(b) is a standard basis for the image of IF in A(b —► r). This

means that we have constructed a tree of standard bases. D

We are finally able to give a simple method for computing the invariant SF .

Lemma 31. Let T be the tree of standard bases computed by Algorithm 23 for

a power series F in A(p). For each base node b of T, let ¿(b) be the è

invariant for the image of F in A(b -* r). Let a be the unique node adjacent

to b. Then

(3) S(b) < deg(lcm(/(b -► vec, a -♦ v«:))).

Proof. Let m be a monomial, and let

U+ = {nGn(b):x(n)>x(w)},

U_ = {nGn(b):x(n)<x(w)}.

If m is not in the span of the leading terms of B(b), then U must be

nonempty. U_ is nonempty, since there is a node n with x(n) = 0. Let

u+ be the element of U with x(u+) minimal. Let u_ be the element of

U_ with x(u_) maximal. If m is not divisible by /(u_), then y(m) < y(u_)

and therefore deg(w) < deg(lcm(u_ , u)). It is not hard to see, however, that

u+ and u are adjacent in T, and therefore, by Lemma 26, we must have

deg(w) < a, where a is the right-hand side of the inequality (3). We conclude

that every monomial of degree at least a is in the span of the leading terms of

B(b). This implies easily that every monomial of degree at least a is in the

ideal IF and therefore that ô <a. D

2.5. Complexity of the standard basis algorithm. We will now estimate the com-

plexity of the algorithm described above for computing a tree of standard bases.

We will determine a bound on the number of field operations required to com-

pute such a tree, assuming as always that F is known to be square free.

Let node be a base node of a tree of standard bases T constructed by Algo-

rithm 23 from the power series F . Let

n(node) = {node0, ... , node,, = node}

and, to simplify notation, let p¡(T) = node; —> r and fi = node, —► vec. In the

notation of Lemma 14, let di = d(f¡), r¡ = r(f), and dl¡ = r(f).

Lemma 32. For any base node node, and for all 0 < / < n, we have d <

dl,-dl0.

Proof. As usual, we proceed by induction. We know that there is an element u

of k[T] suchthat ^ = [«,0]. Then fx =R(S([0, I], [u, 0]), px(T)). There-

fore, we may write [0, l] = a[l,0] + fx (mod p¡(T)), and every monomial m

in a satisfies ml ([1, 0], px) > l(fx, px). This means that deg(m) + dl0 < dlx

and therefore deg(m) < dlx -dl0 . We conclude that dx < dlx -dl0 as claimed.

822 JEREMY TEITELBAUM

Now suppose dj < dlj - dl0 for all 0 < j < i < n. Then, assuming node, is

the unique element in Adj (node,), we have

S(fnft) = Í2akfk + fi+r
fc=0

If mk occurs in ak, then we have deg(mk) + dlk < dlj+x, and therefore

deg(mk) < dll+x-dlk . This gives us deg(mk)+dk < dli+x-dlk+dk < dl¡+x-dl0
by induction. D

We now have enough information to get a bound on the complexity of com-

puting the Milnor number.

Theorem 33. Let F be a square free power series in A(p) and let T be a tree

of standard bases for IF . Suppose that all terms of F of degree at most S(F)

have been computed. Then T can be computed by Algorithm 23 in less than

0((S(F)4 + l)deg(p)2) field operations.

Proof. It is easy to see that our algorithm does not refer to the coefficients of any

monomial in F of degree greater than ô(F). Therefore, we need only consider

the time spent computing a tree of standard bases. The constant multiplicity

algorithm requires 0(deg(p) +cF deg(p)) operations. Since there is a constant

C such that c(F) < Cp(F) < Cdeg(p)SF , we will be done if we can show that

the remainder of the algorithm requires at most 0(<5(/7)4deg(p)2) operations.

Let us first determine the time necessary to extend the tree by one step from a

node n in Step 1 of Algorithm 23. Let h = n —> vec and let g = adj -* vec

where adj is the unique node adjacent to n. Let ? = n-»r. Then we compute

s = S(h , g, q), and from Lemma 16 and Lemma 32 we conclude that

d(s) <d(m),

where m = lcm(/(,g, q), l(h, q)). The time required for this computation is

T0 = C0(d(m)2(r(s) - r(m)) deg(q)2).

The next step is to compute / = R(s, I(n), q). Our estimates from Lemma 14

tell us that this requires

Tx = Cx((r(f) - r(s))(dl(h))2 deg(q)2),

where we have used the fact that dl(I(n)) = dl(h). We conclude from this that

the time needed to attach the first child node to n is bounded by

0(deg(q)2(r(f)-r(h))d(f)2).

In attaching the next child node, we continue to reduce /mod/(n), working

now mod^' = Q/d , where d = gcd(c(/, q), q). Repeating the analysis above,

we see that the total time to attach all the child nodes is given by a sum over

the child nodes,

T(n) = C2J2(r(fi) - rd^dKffk2,

COMPUTATIONAL COMPLEXITY OF RESOLUTION 823

where

f. = child, -+ vec,

kx = deg(q),

kj = k¡_, - deg(child, —> r), i > 2,

and by convention the subscript 0 refers to n itself. This sum may be rearranged

to yield

time = C3 Y,(r(fi) " r(/0))(deg(child,. - r)2dl(ff).

The total time for the algorithm is found by summing this time estimate over

all nonbase nodes of the tree. Recall that

â(F)>maxn(dl(n)),

deg(p) > maxn deg(n -> r).

Then our sum can be estimated by

time < C4 deg(p)S(F)2 £>(n) - r(n -* p)) deg(n - r).

Let Q be the sum in the above expression. Let P be the set of nonbase nodes

in T, and let us write nnp when p is the parent node of n. Then

ß=£(r(n)-r(n-»p))deg(ii->r)

= J2 r(n) des(n -*r) - J2 r(n ~>p) des(n ~*r)

= QX-Q2,

where

Q\=^2 rW deg(n ""* r)

and

Q2 = ^2 r(P) 5Z deg(n ~*r)~ r(T00t) deg(root -» r).
per nK-.p

Using the fact that

^2 deg(n -»r) = deg(p -+ r),
ni—»p

which is a property of compatible trees, we conclude that

Q-^2 r(n) deg(n "~* r) ~ r(T00t) deg(root —► r).

r-f

2
Since, for each base node n we must have r(n) < CôF , we obtain the desired

estimate. D

3. Resolving singularities

In this section we apply our results on computing deformations to the prob-

lem of blowing up plane curve singularities. Before tackling this problem, we

need some algorithms for basic operations in rings with zero divisors.

824 JEREMY TEITELBAUM

3.1. Coefficient ring operations. We begin by describing some straightforward

generalizations of standard algorithms for computing greatest common divisors,

square free factorization, and primitive elements to polynomials over D(p)

when p is a square free, but possibly reducible, polynomial. We do not claim

any great originality for these techniques, but we spell them out explicitly so

that we can use them in careful complexity estimates.

Since D(p) is abstractly isomorphic to a product of fields, D(p)[x] is iso-

morphic to a product of PID's. Therefore, every ideal in D(p)[x] is principal.

The following generalization of the Euclidean algorithm, which splits D(p) up

into factor rings, computes the generator of an ideal (u, v) in D(p)[x].

Algorithm 34. Extended gcd (EGCD).
Input: A square free polynomial p G k[T] and two polynomials

m n

U = Y,Um-iX'> V = Y,Vn-iX'>
1=0 1=0

in D(p)[x] = k[T,x]/p(T).
Output: A list of triples EGCD(u,v,p) = {(q., a., b., wA} , where q. g

k[T] and each of a , b¡, and w. axe polynomials in D(p)[x]. This list

satisfies:

1. The q. are pairwise relatively prime, and \~[q¡ = p .

2. For each j , we have the identities

u = ajwj (mod qß, v = bjWj (mod q.).

Step 0: If v = 0, then return {(p, 1,0,«)}.

Step 1 : Find polynomials a , b , and d so that avQ + bp = d, where d =

gcd(p ,v0).

r:=0.
Carry out the following operations, doing arithmetic xnodp/d :

t := deg(u) - deg(u).

while t > 0 do: (division)

u:= u- (u0/v0)x'v.

r := r + (u0/v0)xl.

t := deg(u) - deg(v).

u := v.

v := u.

LISTX := EGCD(u , v , p/d).

LISTU:={ }.
For each (q, a, b, d) e LISTX do:

LISTU:= LISTUu {(q, b + arxnodq, a,d)}.

LISTZ :={}.
If deg(d) > 0, then

LISTZ := EGCD(umodi/, v modi/, d).

Step 3: Return LISTU U LISTZ .

COMPUTATIONAL COMPLEXITY OF RESOLUTION 825

Lemma 35. Algorithm 34 does what it claims to.

Proof. Suppose that qx and q2 axe relatively prime polynomials and that qx q2

= p. Let u and v be polynomials in D(p)[x]. Then it is easy to see that

if LISTX and LIST2 satisfy the conditions required of EGCD(u, v , qx) and

EGCD(u, v , q2), respectively, then LIST = LISTX LiLIST2 satisfies the condi-

tions required of EGCD(u, v , p). This fact is the basis for an inductive proof

of the correctness of the algorithm.

Let us suppose first of all that deg(p) = 1. Then Algorithm 34 reduces to the

Euclidean algorithm, and therefore works properly. Now consider the situation

when deg(p) is bigger than one. Clearly the algorithm works if deg(w) = 0.

So suppose that deg(v) > 0. Notice that the lead coefficient v0 of v is a

unit in D(p/d), where gcd(p, v0) = d. It follows that the ideal (u , v') c

D(p/d) is the same as the image of (u, v) in D(p/d). Since the degree of

v is smaller than that of v , we may assume by induction that the algorithm

computes EGCD(u , v', p/d) correctly. This being the case, it is easy to see

that the "change of coordinates" which gives LISTU is a correct derivation of

EGCD(u, v , p/d) from EGCD(u , v', p/d). Since p and p/d axe relatively

prime, the observation made above shows that LISTU U LISTZ has the desired

properties. D

Lemma 36. Algorithm 34 computes EGCD(u, v, p) using

0(deg(p) deg(í¿)deg(í;))

field operations.

Proof. Let T(u, v, p) be the number of arithmetic operations necessary to

carry out Algorithm 34 on polynomials u, v , and p . The division loop requires

0((deg(í¿) -deg(v)) deg(v)) operations in the ring D(p/d), for a total of Tdiv =

0((deg(i¿) - deg(v)) deg(v) deg{p/d)) field operations. The shift operations

b >-> b + arrnodq require, each, at most Cdeg(w)(deg(i¿) - deg(t;))deg(#) .

Since ^2deg(q) < deg(p/d), we conclude that the time for each pass, T' ,

satisfies

Tpass ̂ C deg(v)(deg(u) - deg(v))deg(p/d)2.

From the recursion we then obtain

T(u,v,p) = Tpass + T(u,v,d) + T(u , v', p/d).

It follows by induction that

T(u,v,p)< C(deg(w) - deg(v))deg(w)deg(p/d) + Cdeg(u)deg(u)deg(d)

+ Cdeg(v)2deg(p/d)2,

which is less than 0(deg(«) deg(v) deg(p)2). o

As an application of this extended gcd algorithm, we consider the problem

of "square free factorization" in a ring with zero divisors. Suppose that k is a

826 JEREMY TEITELBAUM

field of characteristic zero and p(T) is a prime polynomial in k[T]. Letting

D(p) = k[T]/p as usual, suppose that q is a polynomial in D(p)[x]. Then,

since D(p) is a principal ideal domain, we can write q = qxq2q3 ■ ■ q^ where

the q¡ axe relatively prime polynomials. The "square free" part sqfr(^) of q is

then the polynomial qxq2- ■ ■ qn . We can compute the square free part sqfr(^)

very simply since sqfr(#) = q/ gcd(q, dq/dx).

As we remarked earlier, every ideal in D(p)[x] is principal. Therefore, it

makes sense to speak of the square free part of an element q G D(p)[x]. The

following algorithm computes this square free part, by exploiting our extended

gcd algorithm.

Algorithm 37. Square free factorization.

Input: A square free polynomial p(T) with coefficients in a field k of char-

acteristic zero. A polynomial q(T, x) with coefficients in D(p).

Output: A list of pairs (p¡, q¡) such that

1. The pi are relatively prime, and n^, = P ■

2. qt is the square free part of the image of q in the factor ring D(pf) of

D(p).

Step 1: Compute LIST = EGCD(q, dq/dx, p).
Step 2: For each quadruple (/?,, <a,, b¡, d¡) in LIST, keep only (pi, a¡).

Lemma 38. Algorithm 37 works as claimed.

Proof. This is an immediate consequence of the properties of EGCD, the Chi-

nese remainder theorem, and the square free factorization algorithm over

fields. □

We remark that this algorithm can certainly be modified to work over fields

of characteristic / ^ 0 by separately handling cases where q is divisible by /th

powers. In the interests of space and simplicity, we do not consider this case.

Our blowing up algorithm will depend on one more operation on coefficient

rings D(p). Suppose f(W) G D(p)[W] is a square free polynomial (perhaps

computed by the square free factorization algorithm). Then we can find a prim-

itive element for the ring D(p)[W]/f—that is, we can find a polynomial q(T)

and an isomorphism

D(p)[W]/f->D(q).

Again, our method is a generalization of the standard method for finding prim-

itive elements in field extensions.

Algorithm 39. Primitive elements.

Input : A square free polynomial p(T) over k , and a square free polynomial

f(T,W) over D(p).
Output: A list of triples of polynomials {q¡(T), ut(T), v¡(T)} such that the

COMPUTATIONAL COMPLEXITY OF RESOLUTION 827

map

k[T, W]/(p(T),f(T, W))^\\k[T\lqi'T),

T^(u,(T)),

W^(V¡(T))

is an isomorphism.

Step 0: c := 0. RESULT :={}.

Step 1: Let g(T, Z) := f(T,Z- cT) in D(p)[W].
Compute the resultant r(Z) of g(T, Z) with p(T), eliminating T.

If r(Z) is not square free over k , increment c and repeat Step 1.

Step 2: Let LIST := EGCD(r,p, g). Note that, in this invocation of

EGCD, Z plays the role of T and T plays the role of x.

For each quadruple (p¡, ai, bi, dA in LIST, do:

Write i/,(Z, T) = a(Z)T - b(Z).

Set u(T) := b(T)/a(T) mod p ¡(T).

Set RESULT:= {pAJ), u(T), Z - cu(T)) U RESULT.
Step 3: Return RESULT.

Lemma 40. Algorithm 39 terminates, returning a list (q^u^vA with the

claimed properties.

Proof. First, Step 1 terminates. To see this, interpret the resultant r(Z) com-

puted in each pass through Step 1 as the projection of the points in the (T, W)

plane determined by the equations p(T) = 0 and f(T, W) = 0 onto the Z-

line, where Z = W + cT. Since the ground field k is infinite and the equations

p(T) = 0 and f(T,W) = 0 determine a set of points with multiplicity one,

there must be a line such that the projection consists of distinct points. There-

fore, we eventually reach a c such that the polynomial r(Z) is square free. It

follows that the map

k[T,Z]/(p,r,g)^k[T,W]/(p,f),

T^T,

Z^W-cT

is an isomorphism. However, since the dimension of k[Z]/r(Z) is equal to

that of k[T, W]/(p,f), the ideal (p, g) in k[Z, T]/r(Z) must be of the
form (aT - b) where a is a unit. Therefore, we have an isomorphism

k[Z,T]/(r,p,g)^k[Z]/r,

Z^Z,

T^b(Z)/a(Z).

Recalling that we constructed r by setting Z = W + cT, we see that W =

Z-cb(Z)/a(Z) under this isomorphism. In Step 2, the call to EGCD computes

the generator aT - b for the ideal (p, g), possibly splitting up the ring r in

the process. Then, for each factor, we compute the b(Z)/a(Z) and W =

828 JEREMY TEITELBAUM

Z - cb(Z)/a(Z). Thus, the list RESULT that we eventually return has the

desired properties. □

We conclude this subsection with a discussion of the complexity of the prim-

itive element algorithm.

Lemma 41. Let p(T) and f(T, W) be polynomials such that p(T) is square

free over k and f(T, W) is square free over D(p). Let

n = dim k[T,W]/(p,f).

Then the primitive element algorithm requires 0(n) field operations.

Proof. Let «, be the degree of p(T) as a polynomial in T, and n2 be the

degree of / as a polynomial in W. Then n = nxn2. Each substitution of

Z - cT for W in Step 1 requires 0(n2) operations in the ring D(p), for a
7 7

total of 0(n) field operations. Each resultant can also be calculated in 0(n~)

operations. The square free check requires 0(n) operations since it amounts to

computing the gcd of r with r over k . In addition, this loop need be executed

at most 0(n) times. To see this, recall that g(T, Z) will not be square free

if the line W - cT = 0 intersects two or more of the points satisfying p(T) = 0

and f(T, W) = 0. Since there are n points, there are less than n2 lines

meeting two or more of them. Thus, Step 1 requires 0(n) operations.

In Step 2, the EGCD operation requires

0(deg(r)2deg(p)deg(g))

operations, and this is simply 0(n). The various arithmetic operations in the

quotient rings D(pi) produced by EGCD are all 0{deg{p¡)), and since the

sum of these degrees is n , the total time for them is 0(n). It follows that the

grand total number of operations for this algorithm is 0(n). o

We point out that this result is very much a worst case. If, in Step 1, a random

c is picked and used to change coordinates, the chances are excellent that the

loop in Step 1 will only need to be executed once. Therefore, this algorithm is

"generically" an 0(n3) algorithm.

3.2. The blowing up algorithm. For a detailed description of the process of

blowing up, we refer the reader to the algebraic geometry literature, and in

particular to [4, Chapter 8]. However, we will walk through the process a step

at a time, describing it algorithmically as we go.

We begin with a polynomial F G (x, y)D(p)[[x, y]] = (x, y)A(p). Assume

that the multiplicity of F at each maximal ideal of A(p) is m. Let Fx G

A(p)[y/x] and F-, G A(p)[x/y] be defined as follows:

F(x,y/x) = x~mF(x,x(y/x)),
(4)

F2(x/y,y)=y '" F(y(x/y),y).

COMPUTATIONAL COMPLEXITY OF RESOLUTION 829

Let Bx and B2 be the rings

Bx = A(p)[y/x]/Fx, B2 = A(p)[x/y]/F2.

Then the blowing up X of X = Spec A(p)/F at the ideal (x,y) is the

scheme constructed by gluing Spec 5, to Specß2, identifying SpecSJx/y]

with SpecB2[y/x] by means of the obvious isomorphism between these rings.

It is easy to see that Spec Bx covers all of X except possibly for the point

on Spec52 where x/y = 0. The function x/y is not a unit in B2 precisely

when F2e (y, x/y). If this is the case, a standard theorem [19, p. 175] shows

that the localization B^ of B2 at the ideal (x/y, y) is a direct factor of B2,

and is isomorphic in the obvious way to A(p)[[y, x/y]]/F2. Of course, if x/y

is a unit in B2, then B^ is the zero ring. If we write B2 = B2 x Bx , the

maximal ideals of B^ axe the "points at infinity" on the exceptional divisor,

and the maximal ideals of B2 axe covered by Specß, . We conclude from this

discussion and the definition that the blowup of A(p)/F is the ring Bx x 5œ.

Notice that B^ is in the form A(q)/G for a polynomial q and power series

G. Our computation of the blow up of X amounts to finding an isomorphism

of Bx = B with a ring of the form \~[A(qi)/Gi. The following lemma explains

how this is done.

Lemma 42. Let B = A(p)[y/x]/Fx(x, y/x). Let f(W) = Fx(0, W), and let
(P, > f,) be the pairs returned by the square free factorization algorithm applied

to p(T) and f(W) over k. Then there is an isomorphism a:

B - X\(D(pl)[Wi]/fi)[[x,yl]]/Fx(x,yl + Wt),

(5) XH-t-x,

y/x H+ y i + Wi.

Proof. Every maximal ideal of B must contain x . Since

B/xB = A(p)[y/x]/(x,Fx) = D(p)[y/x]/f(y/x),

we see that the radical of the ideal (x, /(y/x)) is the Jacobson radical of Bx.

The square free factorization algorithm returns a list of polynomials (p¡, f)

such that f¡ generates the radical of the ideal fD(pi) c D(p). Let B¡ be the

factor of B corresponding ')/»,.. Then (x, f(y/x)) is the Jacobson radical of

Since fj(y/x) is in the Jacobson radical of 5,, Bj contains an approximate

solution to the equation f^W^ = 0. Since f¡(y/x) is square free modx, we

know that /¡(y/x) is a unit in 5,. It follows by Hensel's lemma that there

exists a W¡ e J5, with W{ = y/x mod(x, fAy/x)) and f¡(W¡) = 0. It is easy

to see that (x, y/x -W¡) = (x, f¡(y/x)). We conclude that there is a surjection

D(pi)[Wi]/fi[[x,y/x-Wi]]^Bi.

It then follows easily that the kernel of this surjection is generated by

the form F, (x, (y/x - W/) + W¡). Since B = Y[B¡, the lemma follows. D

830 JEREMY TEITELBAUM

(7)

The lemma shows us how to split A(p)[y/x]/Fx up into a product of rings

of the form D(p)[lV]/(fi(W))[[x, y]]/G. As a final stage in finding a standard

form for the blowup of A(p)/F , we convert the coefficient rings D(pi)[W¡]/f¡

into the form D(h¡). This is the problem of computing a primitive element,

which we have discussed in Subsection 3.1. As we saw there, we may find

polynomials qt, «,, and v¡ such that the map /?,

k[T, W]/(pi(T),fl(T, W))[[x,ylw-Wl]]^k[T']lqi[[x,ylx-vl]],

(6) T^U¡(T'),

Wt-*vt{f)

is an isomorphism. If we let y, = p°, o a, then we obtain an isomorphism

A(p)[y/x]/Fx 0? HAiqJUx.yfl/G,,
x h+ (x),,

y/x ^ (y{ + v,)t,

T^u¡,

G!J-(x,J'/)=^-(*,J'/+ «,-).

The maps y,, which we would like to compute, are determined by quintu-

ples (var, Gi, q¡, u¡, v,), where Gj, q¡, «,, and v¡ define a map as in (7), and

"var" is either x or y. We use this piece of information to identify the equa-

tion of the exceptional divisor in the image ring determined by the other data.

Thus, if var is x, then the remaining data describes a map exactly as in (7),

but if var is y , then we interpret that data as giving a map from A(p)[x/y]/F2

to A(qi)[[xi, y]] defined as in (7) but with the roles of x an y interchanged.

This convention allows us to handle the points at infinity without special con-

sideration. Indeed, the ring B^ discussed above, which is the coordinate ring

of the points at infinity, is determined by the data (y, F2, p(T), 0, T).

We represent the blowup of A(p)/F at (x, y) by supplying a list of quintu-

ples {u,, G,, qt, w,, u,} . The product of the rings A(qi)/Gj constructed from

this data will be identified with the coordinate ring of the blowup of A(p)/F

via the product of the isomorphisms constructed from the ut, v¡ as in (7).

In terms of this data structure, the blowing up algorithm takes the following

form.

Algorithm 43. Blowing up.

Input: A square free polynomial p(T) and a polynomial

p(x,y) = J2aijx'yJ

with coefficients a, in D(p). We assume that F is square free and that

the leading coefficient c(F) of F (relative to the lexicographic within degree

ordering) is invertible in D(p).

COMPUTATIONAL COMPLEXITY OF RESOLUTION 831

Output: A list of quintuples representing the blowup of A(p)/F as described

above.

Step 1: m := mult{x y)(F).

Fx := x~mF(x, xy).

f(lV):=Fx(0,W).
Step 2: Apply the square free factorization algorithm to the pair /(W) and

p(T). Let LIST:= {(fi, p.)} be the result.
Step 3: Set RESULT = { } . For each pair (f¡(W, T), P¡(T)) e LIST do:
Compute a primitive element Z for the ring k[T, W]/(p¡(T), fiAW, T)).

Let PRIMLIST be the resulting list (qu(Z), utJ(Z), vtj(Z)).
For each element of PRIMLIST, do:

Let C7, be the polynomial obtained from F{ by substituting:

T^vu(T),

y^y + uu(T),

computing mod <?, (T).

Set RESULT:= U, ,{(*, G(J, qfJ, utJ, vtj)} u RESULT.
Step 4: If a0 m = 0 then:

Let G := y~mF(xy, y).

Set RESULT := {(y, G, p, 0, T)} U RESULT.
Step 5: Return RESULT.

Theorem 44. The blowing up algorithm works as claimed.

Proof. First of all, we point out that our assumption that the leading coefficient

of f is a unit in D(p) guarantees that the multiplicity of F at all maximal

ideals of A(p) is the same. Therefore, Fx is indeed the equation of the strict

transform of F. The correctness of the remainder of Steps 2 and 3 follows

from the discussion preceding the algorithm. Step 4 computes the coordinate

ring of the points at infinity. □

It is now a straightforward matter to determine the complexity of the blowing

up operation. We write the complexity in a way that will be convenient when

we consider the complexity of the resolution problem.

Lemma 45. Let m be the multiplicity of F at the ideal (x, y), let r be the de-

gree of the coefficient polynomial p(T), and let d be the degree of the polynomial

F representing the singularity. Then Algorithm 43 requires 0(m4r4 + r m2d4)

field operations.

Proof. Step 1 requires time proportional to d . Step 2, a square free factor-

ization, requires r m operations. The primitive element calculations require

0(Y^rint), where r, is the degree of the /?, returned by the square free al-

gorithm. Since J2 rl■ = r, this sum is 0(r m). Let r, be the degree of a, .

Then the coordinate changes in Step 3 require Ylri¡d field operations. But

832 JEREMY TEITELBAUM

7 7 7
£ r(j < r m since Y, r¡j < rm ■ Therefore, the coordinate changes require

0(r m d) operations. Combining these totals yields the desired result. D

3.3. Resolution of singularities. We have finally assembled all of the necessary

apparatus for the resolution of curve singularities. We will combine the blowing

up procedure with the deformation computation to accomplish the resolution.

Algorithm 46. Resolution.

Input: A square free polynomial p and a square free power series F in

D(P) represented by a function as discussed in §2.

Output: A list of lists representing the resolution of the singularity of F at

the origin, in a manner discussed more fully below.

Step 1 : Apply the standard basis algorithm to F and p . From the resulting

tree of standard bases, we obtain a factorization p = \~[p¡(T) such that F has

constant multiplicity (and constant Milnor number) on each factor A(pi)[[x, y]]

of A(p). We also obtain from this computation the invariants S^F), that is,

the smallest power of (x, y) such that (x, y) ' c (Fx, F') in A(p¡). For each

/, let G • be the polynomial obtained by dropping all terms of F; of total degree

greater than or equal to 2ôj + 1.

Step 2: Let RESOLUTION = { }.
For each i, do the following: RES¡ = { }.

If mult(G,) > 1, then

Compute the blowup of G, using Algorithm 43. Let NEWPTS be the

resulting list.

For each quintuple (tu, , G, , q.., u¡j, vfj) in NEWPTS, do:

Call this algorithm recursively on G¡j and q.,. Let RES^ be the

resulting list.

Set

RES, := {(wu, Gu , qu, uu, vl}), REStJ}} U RES(.

RESOLUTION := RESOLUTION^ {p¡, RESJ .

Step 3: Return RESOLUTION.

Lemma 47. The resolution algorithm terminates.

Proof. The algorithm replaces p and F by polynomials p¡ and (J,. The /?,

and G, are such that A(p) is isomorphic to]~[A(p¡) and, by Tougeron's lemma

(Lemma 4 and Lemma 5), there is an analytic change of coordinates in A(p¡)

for each /' carrying the image F¡ of F in A(p¡) to the polynomial G¡. It

suffices then to prove that the algorithm terminates for each p{ and G,. If

m = 1, this is clear. If m > 1, then the blowing up step replaces p, and G, by

asetp, and G, such that the conductors of the rings A(pjJ)/Gij have smaller

index. It follows by induction on this index that the algorithm terminates. D

The list RESOLUTION produced by the algorithm consists of entries of the

form {p., LIST) , where p¡ is a factor of p . The list LIST is null if the points

COMPUTATIONAL COMPLEXITY OF RESOLUTION 8 33

in A(p) defined by the zeros of /?, all have multiplicity 1. Otherwise, the

list LIST consists of pairs of the form {(w , G, q, u, v), RESLIST} , where

(w, G, q, u,v) is a quintuple defining a factor of the blowing up of A(pi)/Gj

according to (7). RESLIST, which is of the same form as RESOLUTION,

describes the resolution of the infinitely near points described by the quintuple.

To construct the blowing up of F at (x, y) from the list resolution,

we proceed as follows. Let {/?,, LIST) be an element of RESOLUTION.

If LIST is empty, then F is nonsingular at the zeros of p.. Otherwise,

let {(tu, G, q, u, v), RESLIST} be an element of LIST. Then, by recursion,

RESLIST describes the resolution of the ring A(q)/G. Define a map

p:A(pi)/F^A(q)/G

so that p is the composition of the analytic isomorphism constructed by Tou-

geron's lemma and the map determined by the quintuple (w , G, q, u, v). The

product of the p defined in this way, for all elements of LIST, combined

with the data constructed recursively from RESLIST, gives the resolution of

A(p¡)/F . The product of these resolutions over all elements in RESOLUTION

gives the complete resolution of A(p)/F .

Since we are using the conductor to measure complexity, we need the follow-

ing result from the general theory.

Theorem 48 (see [4, p. 764]). Let F G A(p) be a square free power series such

that the multiplicity of F at all maximal ideals of A(p) is m. Let {Px, ... , Pn)

be the set of infinitely near points to the origin, and let c, be the conductor of the

strict transform of F at Pj. Then

cF = ^c, + deg(p)m(m - 1).

Theorem 49. Let p be a square free polynomial over k, F a square free

power series in (k[T]/p)[[x, y]], and let c be the index of the conductor of

F. Then the resolution algorithm computes the resolution of F using at most
7 ft

0(deg(p) (1 +C)) field operations.

Proof. We proceed by induction on the number c. If F is nonsingular at all

points of Spec A(p), then, since SF = c = 0, the Milnor number algorithm will

establish this in 0(deg(p)) operations. Otherwise, the algorithm will require

0(deg(p) ÔF + deg(p)2) operations to split F up into a set of pairs (p¡, G,).

Since ôF < c, we may estimate this by 0(deg(p)2(c + 1)). The algorithm then

considers those of the (/?,, G,) where G, has multiplicity greater than one.

Here the algorithm requires

Y2 °(m) deg(p,)4 + m) deg(pfô.)
i

operations, where w, is the multiplicity of G, and ó¡ is SG . Since w, > 1,

we may estimate deg(pi)mj < 0(c), and therefore this sum is bounded by

834 JEREMY TEITELBAUM

£0(deg(p(.) c, +c5ideg(pi)). Since each c(. < c and £deg(/?,) < deg(p), we

may bound the first steps of the algorithm by

0(deg(p)2(l + c2 + c4 + c5)) < 0(deg(p)2(l + c)5)

field operations. By the inductive hypothesis, the recursive computation applied
7 ft

to the Pjj and G, requires at most J2¡ jO(deg(pij) (1 + c,)) operations.
7 ft

Since deg(pu) < deg(p), this is bounded by deg(p) £(1 + c¿) . However,

since all of the points represented by the pairs (/?, , G,) were obtained by

blowing up (/?,, G¡), by Theorem 48 we must have £. 1 +c, < c,, from which

we conclude that our time is bounded by 0(deg(p) (^,c,.)6), which in turn is
7 f%

at most 0(deg(p) c). Therefore, the total time required is

O(deg(/>)2c6) + 0(deg(p)2(l+c5))

operations. For a suitable choice of constants, this is bounded by

0(deg(p)2(l+c6))

as claimed. □

We make no pretense to claiming that this bound is sharp. The primary

significance of the result is the conclusion that the complexity of resolution

can be measured by local data—namely the index of the conductor and the

number of connected components of the singularity—and that the complexity

is polynomial. The important problem of understanding the exact complexity

of the resolution of singularities is completely open.

3.4. Computing the conductor. Our final results show how the conductor of a

singularity can be extracted from the resolution data generated by the resolution

algorithm. We apply the classical method of adjoints, described in the following

theorem, to compute the conductor ideal.

Definition 13. Let p be a square free polynomial over k and let F be a square

free power series in A(p). Then an element / of A(p) is an adjoint for F

if, at each infinitely near point to F of multiplicity m, fi vanishes to order

m - 1 .

Theorem 50 (see [4, p. 797ff]). The conductor ideal of A(p)/F is the ideal in

A(p)/F generated by the adjoints.

We also make use of the following result.

Lemma 51 (see [4, p. 797ff]). Let p and F be as above. Then dF/dx and

dF/dy belong to the conductor of F.

Since the ideal IF = (Fx, F) has finite index in A(p), we can describe the

conductor by computing the kernel of the linear map

(8) A(p)/(Fx,Fy)^A(p)/c

COMPUTATIONAL COMPLEXITY OF RESOLUTION 835

expressed in terms of the basis of A(p)/(FX , F') given by the monomials. The

following procedure shows how to extract this information from the list RES-

OLUTION which is generated by the resolution algorithm.

Algorithm 52. Conductor.

Input: A square free polynomial p , a square free power series F , and the

output RESOLUTION from the resolution algorithm.

Output: A system of linear equations describing a linear subspace of A(p)/IF ;

this subspace is the kernel of the map in (8).

Step 0: For each {q, LIST) in RESOLUTION, do:
Construct a "generic" polynomial

so that aijk are unknowns and Q is the set of /, j such that x'yJ is not

in IF c A(q). (Q is just the set of monomials which are not divisible by

the leading terms of elements of the standard basis for IF .)

Call the conductor-reduction algorithm below on E and {q, LIST}.

Return the resulting list of linear equations in the aik .

Here is the conductor-reduction algorithm we refer to:

Algorithm 53. Conductor-reduction.

Input: A polynomial E in x, y, and T, with coefficients that are linear

functions in aijk ; and an element {p, LIST} from the resolution list RESO-

LUTION for a power series F.

Output: A list of linear equations in the ajjk .

StepO: Set EQLIST :={ }.
Step 1: Let m be the multiplicity of the point represented by {q, LIST} .

If m < 1 (in which case LIST is null) then return. Otherwise, for each term

e(ijk)T x'yJ occurring in E with i + j < m- 1, add the equation e(ijk) = 0

to the list EQLIST and delete this term from E.

Step 2: For each element {(w, G, q, u, v), RES} in LIST, make the change

of coordinates represented by the quintuple in E. (See (7).)

Set E := wl~mE (this is an exact division).

For each {p, LIST} reduce F mod/? and call this routine recursively on

F mod/? and {/?, LIST} . Append the resulting list to EQLIST.
Step 3: Return EQLIST.

Lemma 54. The list of linear equations returned by the conductor algorithm de-

fines the conductor of F, in the sense that if E is a polynomial J2 aijk Tkx'yJ

with a¡jk G k, then the aijk satisfy the equations in EQLIST if and only if

E belongs to the conductor of F. Furthermore, the equations in EQLIST are

independent.

836 JEREMY TEITELBAUM

Proof. First of all, the algorithm actually computes the conductor of the ring

A(p)/G, where G is the polynomial obtained by dropping terms in F of de-

gree larger than 2ôF + 1. However, by Lemma 5, the analytic isomorphism

t between A(p)/G and A(p)/F induces the identity on A(p)/IG = A(p)/IF .

Therefore, we may replace F by G without loss of information.

Now we proceed by induction on the conductor of F . If F has multiplicity

1, then the algorithm will return an empty list, which is correct. Otherwise, the

algorithm will add the set of linear equations in the coefficients of F to EQLIST

which are equivalent to the condition " F vanishes to order at least m - 1 at

(x, y)." It then makes the necessary changes of coordinates to find the equation

of F near each infinitely near point. By induction, we may conclude that the

recursive call will adjoin to EQLIST the conditions which force the blowup F

of E to belong to the conductors of all the infinitely near points (notice that

here, too, we are applying Tougeron's lemma). It follows by the theorem on

adjoints that this combined list defines the conductor. The independence of

the equations in EQLIST follows from Noether's theorem that the vanishing

conditions which define the conductor are independent. D

Lemma 55. The computation of the conductor requires 0(deg(p) c) field oper-

ations.

Proof. The algorithm adjoins some conditions to the list, then makes a change of

coordinates of a polynomial of degree 0(ôF), in two variables, with coefficients

that are polynomials in T of degree at most deg(p). These polynomials in

turn have coefficients that are unknowns. The total time for these changes

of coordinates is therefore 0(ôF deg(p) c), where we have used the fact that

the number of unknown coefficients is bounded by the Milnor number of F,

which, by Lemma 3, is in turn bounded by a multiple of the conductor. Using

the estimate SF < c from Lemma 3, we find that the changes of coordinates

require 0(c5 deg(p)2). It then follows by a reasoning similar to that used to

derive the complexity of the resolution algorithm that the total time for the
7 ft

algorithm, including the recursion, is 0(deg(p) c) as desired. D

Bibliography

1. M. Artin, Deformations of singularities, Tata Institute of Fundamental Research, Bombay,

1976.

2. D. Bayer, The division algorithm and the Hilbert scheme, Ph.D. thesis, Harvard University,

1982.

3. T. Berry, On Coates' algorithm, SIGSAM Bull. 17 (1983), 12-17.

4. E. Brieskorn and H. Knorrer, Ebene algebraische Kurven, Birkhäuser, Boston, 1981.

5. B. Buchberger, A criterion for detecting unnecessary reductions in the construction ofGröbner

bases. Lecture Notes in Comput. Sei., vol. 72, Springer, 1979, pp. 3-21.

6. B. Buchberger, G. E. Collins, and R. Loos (editors), Computer algebra: Symbolic and

algebraic computation, Springer, 1983.

7. D. V. Chudnovsky and G. V. Chudnovsky, On expansion of algebraic functions in power

and Puiseux series. I, J. Complexity 2 (1986), 271-294.

COMPUTATIONAL COMPLEXITY OF RESOLUTION 837

8. J. Coates, Construction of rational functions on a curve, Proc. Cambridge Philos. Soc. 68

(1970), 105-123.

9. C. Dicrescenzo and D. Duval, Computations on curves, Lecture Notes in Comput. Sei., vol.

174, Springer, 1984, pp. 100-107.

10. _, Algebraic computations on algebraic numbers, in Informatique et Calcul, Wiley-

Masson, 1985, pp. 54-61.

11. D. Duval, Diverses questions relatives au calcul formel avec des nombres algébriques, Ph.D.

thesis, L'Université Scientifique, Technologique, et Médicale de Grenoble, 1987.

12. W. Fulton, Algebraic curves, Benjamin/Cummings, 1974.

13. A. Galligo, Apropos du théorème de préparation de Weierstrass, Lecture Notes in Math., vol.

409, Springer, 1974, pp. 543-579.

14. D. Gorenstein, An arithmetic theory of adjoint plane curves, Trans. Amer. Math. Soc. 72

(1952), 414-436.

15. H. Hironaka, Resolution of singularities of an algebraic variety over a field of characteristic

zero, Ann. of Math. (2) 79 (1964), 109-326.

16. E. Kaltofen, Fast parallel absolute irreducibility testing, J. Symbolic Comput. 1 (1985),

57-67.

17. D. Knuth, The art of computer programming: Seminumerical algorithms, Addison-Wesley,

1971.

18. H. T. Kung and J. F. Traub, All algebraic functions can be computed fast, J. Assoc. Comput.

Mach. 25(1978), 245-260.

19. H. Matsumura, Commutative algebra, Benjamin/Cummings, 1980.

20. F. Mora, An algorithm to compute the equations of tangent cones, Lecture Notes in Comput.

Sei., vol. 144, Springer, 1982, pp. 158-165.

21. F. O. Schreyer, Ph.D. thesis, University of Hamburg, 1980.

22. J.-P. Serre, Groupes algébriques et corps de classes, Hermann, Paris, 1959.

Department of Mathematics, University of Michigan, Ann Arbor, Michigan 48109.

E-mail: jeremy@math.lsa.umich.edu

