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THE COMPUTATION OF SEXTIC FIELDS

WITH A QUADRATIC SUBFIELD

A.-M. BERGE, J. MARTINET, AND M. OLIVIER

Abstract. We describe four tables (one for each signature) of sixth-degree

fields K containing a quadratic subfield k . The tables contain various infor-

mation, including, for each possible discriminant dK of K , a cubic polynomial

which defines K/k , the discriminant of the quartic field k such that k/k is

the quadratic extension corresponding to K/k , and the Galois group of the

Galois closure N/Q of K/Q .

1. Introduction

When using geometrical tools to construct tables of fields K of a given de-

gree n , one has to deal with the following problem: when n is not a prime, it

may happen that some elements 6 e K, 6 $. Q which are given by geometry,

generate a proper subfield of K . Two methods have been used in this case. The

first (the one used by Pohst in [12] to find the minimal discriminants for the de-

gree 6 ) relies on the consideration of successive minima. The second, described

by one of us in [11], and used by Diaz y Diaz in [4] to find the first 15 discrim-

inants for totally imaginary octic fields, makes use of relative calculations. Here

is our method: let K/k be an extension of degree 3 for some quadratic field

k ; the 6 e K, 6 £ k given by geometry generates K over k . This enables us

to make a list of polynomials such that any field K with discriminant less than

a given bound (depending on the signature) can be defined by a polynomial of

the mentioned list. (The choosen bounds are 6-107, 2-107, 8-106 and 4-106

for the respective signatures (6, 0), (4, 1), (2, 2) and (0, 3).)

We then remove the reducible polynomials by computing an approximation

of the roots, and come to the calculation of the relative discriminant DA/A. of

K/k. This is done by a local study (note that we cannot use relative integral

bases which may not exist).

We now order the polynomials by increasing absolute values of the discrim-

inants of the corresponding fields, and test the fields with equal discriminants

for isomorphism, using the previously computed roots. Among polynomials

defining the same field, we choose one with smallest index /, where / is the
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norm of the ideal f defined by (dp) - f ?DK,k , dp being the discriminant of

the polynomial P.

Finally, we determine some other data: the Galois group, and the field k

such that k/k is the quadratic extension attached to K/k .

As an application, we obtain by class field theory results concerning the im-

primitive quartic fields (resp. sextic fields with a quadratic subfield) with relative

class number divisible by 3 (resp. 2 ).

We also get from the tables the minimal discriminants with given infinite

Frobeniuses for seven isomorphism classes of transitive groups of degree 6

which have imprimitivity sets with three elements. The analogous problem

for quadratic extensions of cubic fields could be solved essentially by hand.

However, we intend to construct long tables of fields of this kind, in order that

anybody who would like to produce a list of sixth-degree fields should not be

bothered by problems caused by imprimitivity.

As a third application, we point out in the table for signature (0,3) the cubic

field on the imaginary quadratic field Q(\/-19) defined by the polynomial

X3 -X2 -coX + (co-l),    with ®K/k = p2 ,

where co = (I + \/-19)/2 and p7 is a prime ideal of k lying above 7, and

dK = -336091. This field is given in the table with index equal to 5. The

problem was: does there exist a power basis of TLK over TLk ? The answer

is related to the following problem: let k be an imaginary quadratic field,

/c(5 ' the ray class field of conductor 5 ; thus k(V] = ß?ilb(k) ; from work

of Ph. Cassou-Noguès, J. Cougnard, V. Fleckinger, R. Schertz and M. Taylor

(cf. for instance [13]), it is known that k /k has a power basis if certain

conditions concerning £ or the ramification at 2 or 3 hold. These conditions

are not fulfilled for dk = -19 and 5 = p7. An intensive computation seemed

to show that there was no power basis; this result has recently been proved by

J. Cougnard and V. Fleckinger ([3]).

Note, however, that most of the fields in the tables have an integral power

basis.

2. Notation

In what follows, K is a cubic extension of a quadratic field k whose signature

is denoted by (r,, r2) ; TLK (resp. Zk ) is the ring of integers of K (resp. k ).

Let k/k be the quadratic extension attached to K/k by Galois theory (k = k

is allowed); let N be the Galois closure of K/Q, and M that of K/k. For

a finite extension L1 /L of number fields,  ®L, ,L  is the relative discriminant,

whereas dL< stands for the absolute discriminant of l! ; we write d for dk .

Similarly, dp is the discriminant of the polynomial P.

We denote by v (or simply v ) the exponent of the prime ideal p of k

in a given ideal a of k , and use similar notation for K , except that we then

choose capital letters ( <$ and 21); n is a uniformizing parameter at p; ep (or



THE COMPUTATION OF SEXTIC FIELDS WITH A QUADRATIC SUBFIELD 871

e ) is the ramification index of p in k ( e = 1 or 2 ); TrK,k and NK,k are the

trace and the norm of K/k ( Tr = Trk/(} and N = Nk,Q ).

For an element x e k (resp. a polynomial P e k[X] ), x (resp. P' ) is the

conjugate of x (resp. P ) under the conjugacy of k/Q. Moreover, if <p is a

root of P in an algebraic closure of Q, the set of roots of P is {<px , tp2, tp}}

and the corresponding set for P   is {tpx, <p2, tp¿}.

3. Inequalities

Application of [11, Theorem 2.8] yields the following inequality:

Theorem. There exists 6 e ZK such that K = k(6) and

1
(3.1)        £ (|0,|2 + |c?;|2) < I (\TrK/k(6)\2 + \TrK/k(6')\2) +

4iL

9rf,.

where [6X, 62, 63} are the roots of the minimal polynomial of 6, and {6\, d'2,

öj} those of its conjugate.

Moreover, 6 is arbitrary modulo Zk .

So, let D be the bound of \dK\ and B = \$-\~4 .

Let P(X) - X -aX~ + bX-c be the minimal polynomial of 6 , and (1, to)

be the standard basis of ZA/Z ( co = (\+y/m)/2 if d - m is odd, and co = y/m

if d = 4m).
Replacing 6 by 6 + a for some a eZk , we may choose a = p + qa>, with

p and q e {-1, 0, 1}, and even (by changing 6 in -6 ), p = 0 or 1 . Finally,

as P' and P define the same field (up to conjugacy), it suffices to consider four

values of a , say {0, I, co, I + a>}.

In the particular case d = -4 (resp. d = -3 ), multiplication by i (resp.

j ) allows us to choose a among {0, 1, 1 + /} (resp.  {0, 1 , 2 + 7} ).

Now, such an a being fixed, we determine the possible b 's via the element

e = a   - 3/3 of Zk  for which we have a tolerably good bound in terms of

Dl</<3 lö/l   :

Lemma. Let 6, , ..., 6    be m complex numbers (m > I). Then, we have

(m-l)\ E ei\ ~2m E ' 7 + E <m £ \e,\2,
\<i<m\<i<m       I \<i<j<m

and equality holds if and only if all the 6 's are real, in which case we have

(m-l)\   £
\<i<m

-2m    ^2    Bflj > 0.
1 </<./'<»!
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The proof is based on the following equalities:

(m-l)i  £   d]   -2m    ¿2    °fii=    E   Vi-0j)2
\ \<i<m        I 1<'<7<'» \<i<j<fn

and
2

= m  E   l»,f-E i«,-«/+
\<i<j<m Ki<m

E
l<i<m

(Note that the inequality between arithmetic and geometric means gives (cf.

[11]), for real 0,.'s,

(m-l)[   E   M   -2m    E    ^^^¿/"K
\l<t<W        / 1<'<7<»'

where P(A") = T\i<i<m(X-0j) e cf^] !this DOund is optimal for m = 2, while,

for m = 3, a direct computation of i/p enables us to multiply the right-hand

side by 21'  .)

In our context, and with the notation of the theorem, the result of the above

lemma can be written as

(3.2) ¡\e\ + \\a\2<  £   |0,|\        f|e'| + i|a'|2<  £   K|2,
l</<3 l</<3

and from (3.1) we get

(3.3) |*| + \e'\ < jB.

It follows that e e Zk satisfies the conditions

\Tr(e)\<\ß   and   \N(e)\ < (^bJ .

From the finite set of  (e,e) in Zk   satisfying the above inequalities,  we

eliminate those for which (3.3) is not valid and those not congruent to a

modulo 3.

Actually, we use sharper inequalities for signature (6,0) and (4, 1), derived

from the condition e > 0 when dp> 0.

The coefficients a and b being now chosen, we determine the set of suitable

c 's by use of (3.1), via the inequality between arithmetic and geometric means.

For instance

Let us denote by A, C, C' the following constants:

A = ^(\a\2 + \a'\2) + B,        C = A - l-(\a \2 + 2\e'\),        C' = A-l-(\a\2+ 2\e\).
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We get

\N(c)\<(^)   ,   and then   min(|c|, \c\) < (à\

From the lemma we also obtain weaker inequalities

Finally, we obtain universal (relative to signature) inequalities:

i

(3.4)

and

Actually, we can improve them in the totally imaginary case, replacing (3.4) by

|c| < (|)- . In contrast, for signatures (6,0) or (4,1), testing dp > 0 (or

dp, > 0 ) gives us sharper (and independent of D ) bounds for c, c and

Tr(c), using the equality

21dp = 4e3 - (2a3 - 9ab + 21c)2.

Now, for each pair of conjugate integers of k corresponding to given Tr(c)

and N(c), we test back the conditions (3.4). Of course, we take into account,

when possible, all symmetries.

For each polynomial P of the remaining set with suitable sign of dp and

dpi, we compute an approximation of the roots 6I of P and 0' of P' by

Cardano formulae and test whether (3.1) is fulfilled.

It remains to verify that P is irreducible over k[X], in other words ( P

being cubic), whether one of the roots of P belongs to k . We then test, for all

reasonable pairings (0;, 0') (9,3, 1,3 tests for r, =6,4,2,0 respectively),

if 0, + d'j and 0(0' are, or are not, in Z. In practice, we guess from a weak

accuracy of 6¡ and 0' the possible integers, and substitute in P by a formal

computation.

4. Relative discriminant

We write now D and ö for the respective discriminants ^K,k and T>k/k .

(Recall that D = Zk if k = k, i.e., if K/k is cyclic.)

Let g be the conductor of the cyclic extension M/k . It can be proved that

g comes from an ideal of k , still denoted by g ; this is a consequence of [ 14,

Ch. IV, §2, Cor. 1 to Prop. 9]. Note that g is divisible exactly by the ideals of

k which are totally ramified in K/k .
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Proposition 4.1.  We have £ = ög".

This is obvious when K/k is cyclic. When K/k is dihedral, £ is the

Artin conductor of the irreducible degree-2 character of ^al(M/k), and the

induction formula gives the proposition, since g is the conductor of a degree-

one character of M/k.

Proposition 4.2. The g.c.d. of D and g divides (3).

For the first ramification group in M/k , if nontrivial, is a 3-group.

We want now to calculate 9 and g from the knowledge of the polynomial

P which defines K/k .

Of course, v(D) and v(q) are zero when v(dp) = 0.

For v(dp) nonzero, we make a local study of K/k at p. In the sequel, k

(resp.   K ) denotes the completion of k (resp.   K ) at p ; note that K   need

not be a field. We have the obvious congruences

v(dp) = v(D) = v(t))    (mod 2).

Using elementary properties of ramification in quadratic extensions, we prove

the following two results:

Assertion 1. If v(dp) is odd, then

( 1    ifp>3,
v(t))=l 3   if p = 2 ande-\,

{ 5   ifp = 2 ande = 2.

Moreover, v(q) = 0 if p ^ 3 or if p = 3 and v(dp) = 1.

Assertion 2. // v(dp) is even and if p =¿ 2, then v(D) = 0.

We are left with the following two problems:

(i) To compute v(q) for v(dp) even and nonzero, and for p — 3 , v(dp) > 3

and odd.
(ii) To compute v(D) for p = 2, when v(dp) is even and nonzero (then, P

splits in k ).

When there are at least two prime ideals in K lying above p, by classical

results of Kummer extensions (cf. e.g. [7, §39]), we have:

Assertion 3. If P splits in kp,

1) Kf is isomorphic to /cp x k , so that v(q) = 0.

2) If P = 2 and v(dp) is even and nonzero, write dp = it' a, with a e k ,

a  p-unit, and

t = min{w g N |    a is a square modulo p      " }       (0 < t < e).

We then have v(D) = 2t .
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Finally, when there is a unique ideal lying above p, we use the obvious

assertion:

Assertion 4.

1) If p is inert in K/k, then v{D) - 0.

2) If p is totally ramified in K/k,
a) if p ¿ 3, then v(g) = 1, v(d) = 0,

b) if p = 3, then v(q) = {v(D) - v(D))/2, v(Q) = 0 or 1 according

to the parity of v(dp) ; in this last case, v(£)) is given by the dis-

criminant of an Eisenstein polynomial which defines the extension

K/k.

We now describe the Disc algorithm which either proves that P splits in k ,

or proves that it is inert in K/k, or produces an Eisenstein polynomial which

defines the same extension.

Disc 1. If v(dp) = 0, the algorithm terminates with v(D) = 0.

Disc 2. If v(dp) is odd and p ^ 3, or p — 3 and v(dp) = 1 , use Assertion 1

and the algorithm terminates.

Disc 3. Factorize P mod p (there is at least a double root   mod p ).

Disc 4. If P possesses a simple root mod p (then P splits in k ), use Asser-

tion 3 and the algorithm terminates.

Disc 5. Make a translation on X in P(X), in order that P(X) = Xy - aX2 +

bX-c, with v(a), v(b) and v(c) > 1. If v(c) = 1, then P is Eisenstein; use

Assertion 4 and the algorithm terminates.

Disc 6. If v(b) = 1 , then p splits in K (use the Newton polygon). Use

Assertion 3 and the algorithm terminates.

Disc 7. If v(c) > 3, then replace P by the polynomial Q(X) = X3 - ^X2 +

AX-^j, with v(dn) = v(dp) - 6 . Go to Disc 1.

Disc 8. The minimal polynomial of y ,

R(X) = x'-{-^^X2 + ^^X-C',

with v(dR) - v(dp) - 2, is Eisenstein. Use Assertion 4 and the algorithm

terminates.

5. Isomorphisms

In this section and the next ones, all number fields are in a given algebraic

closure Q of Q. Let k be a number field and let K and L be two extensions

of k with the same degree m. We write K = k(6) and L = k(tp), where 0
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and <p are algebraic integers defined by their minimal polynomials P and Q

in Zk[X]. For every embedding r: k —► C, let 6j T and <p. T be the conjugates

of 0 and tp above x.

If ^ and L are isomorphic, there exists a permutation rr G Sm such that

for all h e N, the sums

Qr./,=     E     ei,r<Pa(i),r
\<i<m

belong to x(k) (and even to ZT,k)).

Conversely, if the ax h 's belong to t(/c) (for one t ), the solution (x0,

JC], ..., xm_x) in Q'" of the linear system

E       X7<T = ^(/),r> Í=\,...,m,
0<j<m-]

belongs to x(k)"1, since it is also the solution of the linear system

E     xj   E   d'i+.T=aT.h>        h = 0,...,m-l,
0<7<»i-l        \<i<m

with coefficients in x(k) and nonzero determinant, namely x(dp).

So, for every h, we test whether ar h belongs to x(k), by computing an

approximation of its conjugates: since 0 and q> are integral, the aT h 's must

be the roots of monic polynomials in Z[X]. We guess these polynomials, and

then verify that the a, 's are integers of k .

In practice, we test the existence of an isomorphism only when K and L

have the same signature and the same relative (ideal) discriminant.

Let us go back to the case [K: k] = 3 and [k: Q] - 2. For rx — 6 (resp.

4, 2, 0 ), the numbers of permutations of the tp¡ r to consider are 36 (resp.

12, 4, 6 ), and these numbers are to be doubled if ^K,k is an invariant ideal

of k , for K and L can be isomorphic without being rc-isomorphic. (Note

that for arbitrary sextic fields, the numbers of permutations to be considered

are respectively 720, 48, 16, 48.)

6. Galois groups

Using a Galois action on a primitive element of K, one can attach to each

sextic field a transitive permutation group of degree six. The list of such groups

is given in [2]; seven of those groups correspond to a sextic field with quadratic

subfield, and only one of them (denoted by G^6 ) is even.

In the table below, we give all possible groups for K, k and A^0 , where KQ

—if it exists— is a cubic subfield of K ( Cn is the cyclic group of order n,

and D   is the dihedral group of order 2« ).
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type of K

D3^S,

D6cS3xC2

G^ = C^xC2~C3xD}

G36 = C3 * C4

G36 = C, xi C, ~ fl3 x D3

G12 = C; x D4

type of k

C2

a
c2

c2

c;

type of K0

c,
possible r, 's

6,0
6,0

6, 2, 0 (*)

6,0

6,2

6,2,0

6, 4, 2, 0

(*) two possible Frobenius substitutions when r, = 0.

We now just have to test the nature of k and K0 (when it exists). First, the

type of k/Q is: C-, if úíp is a square in Z^ , C2 if yV^) is a square but i//,

is not, C4 if N(dp)/dk is a square, and Z>4 otherwise.

Finally, it is easy to see that if K has a cubic subfield K0 , then the conjugate

0' of 0 over £0 is defined by P', and if 0 + 0' is not in Z, K0 = Q(0 + 0'),

otherwise, AT0 = Q(00'). This provides a simple method for finding the type of

KQ , based on a straightforward computation of (6j + 6'n) and (0,0^,0 for a

in 53. Moreover, the type of K0 is C3 if i/^  is a square, and Z>3 if not; note

that K0 is cyclic if and only if the discriminant of 0 + 0' (or 00' ) is a square.

These obvious assertions allow us to compute the type of K, using the fol-

lowing Gal algorithm:

Gal 1. If N(dp) is a square, go to Gal 4.

Gal 2. If N(dp)/dk is a square, K is of type G36 and the algorithm terminates.

Gal 3.  K is of type G71 and the algorithm terminates.

Gal 4. If A^0 exists, go to Gal 7.

Gal 5. If dp is a square in Zk , K is of type C718 and the algorithm terminates.

Gal 6.  K is of type G36 and the algorithm terminates.

Gal 7. If dK   is a square, K is of type C6 and the algorithm terminates.

Gal 8. If dK /dk is a square, K is of type D} and the algorithm terminates.

Gal 9.  K is of type Z>6 and the algorithm terminates.

7. Remarks on class numbers

For a number field L, let WlL be the ideal class group of L ; for a finite

extension L'/L, let ^7¿'/¿ be the relative class group of L'/L, i.e., the kernel

of the norm NL,/L: WlL, -» g7L ; we denote by hL,,L the order of ^lL',L ■
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In this section, we discuss the divisibility of hk,k by 3 (resp. of hK,k by

2 ) in connection with the existence of some cubic (resp. quadratic) unramified

extension of k (resp. K ).

Let F be a number field; by class field theory (see, e.g., [1]), there is a

unique one-to-one correspondence between unramified abelian extensions and

subgroups of WlF , which maps F'/F on the norm group H = NFi/F(WlF,) ;

the Artin map coF>/F : WlF —► &al(F'/F) is onto, and its kernel is the norm

group.

The same considerations apply to abelian extensions which are solely assumed

to be unramified at finite primes, with 97f. replaced by Wl^., the narrow class

group.

7.1. Assume first that F is quadratic over some subfield E.

Since F is Galois over E, then F' /E is Galois if and only if H is invariant

under &al(F/E), and, when this condition is fulfilled, coF>/F is a homomor-

phism of & al (F / E)-modules (cf., for instance, [14, Ch. 11, §3]).

The number of cubic unramified extensions of F which are cyclic (resp.

dihedral) over E is equal to the number of order-3 subgroups of Wlf (resp.

félf/E )'■ for, denoting by {1, x) the Galois group of F/E, the cubic unramified

extension F' of F which corresponds to a given subgroup H of index 3 of

fêlF invariant under x is cyclic (resp. dihedral) over E if and only if x acts

on fêlp/H by x(x) = X (resp. x(x) = x~ ). In the canonical isomorphism

WlF 3 ~ WlF 3 x ^iFjF 3 between 3-components, x acts trivially on 97£ 3,

and by X h-> x~ on ^lFiE 3 • Hence, the subgroups H of index 3 invariant

by x that we consider are in one-to-one correspondence with the subgroups of

index 3 of ^7£ 3 (resp. ^7F/£ 3 ) in the cyclic (resp. dihedral) case. Our

claim is then established by a duality argument, these subgroups being in one-

to-one (noncanonical) correspondence with the subgroups of order 3 .

Accordingly, we see that the number of cubic extensions E'¡E with corre-

sponding quadratic extension F/E and with discriminant ^>F> ,¡.: = ^F/E is

(3' - l)/2 , where r is the 3-rank of the group &lF,y •

We now apply the above results to the groups ^lkik , counting cubic exten-

sions K/k with DA/A. = 3)¿,k. One has dK = dkdk , hence \dK\ < \dk\' .

Thus, a table of fields K with \dK\ < D for some D allows us to find all im-

primitive fields k of degree 4 with relative class number divisible by 3 whose

discriminants satisfy the inequality \dk\ < D1 , and even \dk\ < (x/ÏD)1  (resp.

(2D)1 ) when k is (resp. is not) of mixed signature, if we except bicyclic

fields k/Q  (and then,  Wlk   is the direct product of the class groups of the

3 quadratic subfields). When k/Q is cyclic, the cubic unramified extensions

K/k we must consider are of type C736, and there is no occurrence within

the size of our tables. (It is known, cf. [5] and [6], that ^lkik is of or-

der divisible by 3 only for very large discriminants.) We are thus left with

dihedral quartic fields  k   (K  is of type  G12 ).   Then the four possibilities
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fx — 4,   2,  0 and k real ,   r, = 0 and k imaginary   correspond to cubic ex-

tensions K/k with r, = 6,  4,  2,  0 .

In our tables, we find the first five discriminants of such fields k (of type D4 )

in signature (4,0), the first thirty-one in signature (2, 1 ), the first fifty-four in

signature (0, 2) with k real, and the first forty-eight in signature (0, 2) with

k imaginary. We give below the list of the first five for each signature.

(4,0) (2,1) (0,2), k real (0,2), k imag.

97025
135232

193225
196025

230009

-20975

-23488
-24048
-28975

-29975

6025

6208
7025

10225

10525

3897
5517
5648

7677

8001

Looking at systems of four nonisomorphic fields K with equal discriminants,

we found 26 examples of fields k of type D. with 7-lk/k of 3-rank 2: fourteen

over

B or hF/E in connection with the existence

3), one over Q(i), ten imaginary over Q(\/5), and one of mixed

signature over Q(\/5). We give below the value of N(5)k/k) for these fields:

dk = -3: 41617, 73849, 83269, 88432, 103557, 109969, 111261, 116521,
120397, 122437, 126901, 142141, 144741, 146341.

dk = -4: 54713.

dk = 5 and k imaginary: 8921, 11909, 15445, 18749, 20329, 26669, 39344,
43321,44669,48809.

dk - 5 and k of mixed signature: 127271.

7.2. Assume now that F is cubic over some subfield E.

We discuss here the parity of h

of some special primitive quartic extension E' /E.

The quadratic extensions F /F, including F itself, can be given a group

structure denoted by (S(F), for which F¡F2 - F(^Jax~a~f) if F[ = F(sfa[) and

F2 = F(y/a2^), and the norm NF/E induces a homomorphism yV from S(F)

to S(E) (the analogous group for E ).

Since [F: E] is odd, A" is onto, and i* : F'/E h^ FF'/F is an injective

section of yT (Jo/* = id). We thus have a direct decomposition S(F) ~

Ker JV x S(E). The same results hold for the subgroup S(F)nj' of those

elements of €(F) which are unramified over F .

If F/E is non-Galois, primitive quartic extensions E'/E associated with F

by Galois theory are in one-to-one correspondence with quadratic extensions

F'/E e Ker JV (one must accept F itself as a quartic field when F' = F).

Furthermore, an easy calculation with Artin conductors shows the relation

®EfE = ®FIE ^ where 21" = NF/E(DF

Hence, quartic extensions  E' ¡E with £>

extensions F'/F in Ker jV unramified at finite primes.
E /E

'/F)

T),....  are in bijection with



A.-M. BERGE. J. MARTINET, AND M. OLIVIER

Now, by class field theory, the group S(F)nj' (resp. ¿f(E)nr~ ) is in one-to-

one correspondence with the group of order-2 characters of fêlF (resp. fëlE ),

and analogous results hold for class groups in the narrow sense. By the canonical

isomorphism

7+    ~lF,2 — 7I+      v <&l+lE,2 x & 'F/E.2-

the number of primitive quartic extensions É/E (up to conjugacy) correspond-

ing to F/E with 2)£'/£ = T)FjE is equal to the number of order- 2 characters

of Wlp~ ,E, and then, by duality, is equal to the number of order- 2 elements

in ^lE/E ■ Note that if F/E is Galois, one must divide by 3 the number of

characters.

We now apply these considerations to the groups &lK,k and ^l^,k ■ The

following table gives the number of real places to consider in E', k , K and

F' above each infinite place of k , and the nature of the classes of K involved

above each infinite place of k : "o" for ordinary, "n" for narrow.

/•;'

(4,4)
(4,2)
(4,0)
(2,2)
(2,0)
(0,0)
(0,0)

2
2
2
2
2
2
0

K

(3,3)
(3,1)
(3,3)
(1,1)
(3,1)
(3,3)
(0,0)

F'

(6,6)
(6,2)
(6,2)
(2,2)
(2,2)
(2,2)
(0,0)

7A. or 'a

(o,o
(o,o
(o,n

(o,o

(n,o

(n,n

(o,o

Using tables of octic fields taken from [8], [9], and [10], we find six examples

of extensions K/k with groups ^7A/A. of even order: five with k = Q(\/^3),

one with k - Q(\f^l), and one with even group &lE/k  over Q(\/5)  and

signature (4, 1) for K.

dK cubic polynomial on k

-4

-3

-3

-3

-3

-3

5

-440896

-447471

-599103

-706023

-739071

-771471

■1151375

Xs - X- -?>X + 4

toX3 - X2 + (2 - 4w)X + (1

X3 - X2 + (4 - 3co)X - 4

X3 - X2 - 3o)X + ( 1 +2co)

X3 - ( 1 + co)X2 - (6 - 2to)X -3(1-to)

X3, + (3 - (o)X - 3to

X3 - coX2 - 4coX + (3 + 5co)

Let us look more closely at the case dk < 0 (resp. K totally real). Diaz

y Diaz's unconditional lower bounds for discriminants in degree 12 give, for

K with even class number, the lower bound |úfA.| > 165923 (resp. dK >

11956734 ). Using lower bounds in degree 8 together with the relation dF> —

dkdK , one obtains \dK\ > 1052356/1^1  (resp.   dK > 159055768/¿A ). Then,
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the trivial inequality \dk\3 < dK only gives \dK\ > \dEi\* , and finally \dK\ >

32857 (resp. dK > 1416323). However, we get better results when k has a

small discriminant, e.g. \dK\ > 350786 for dk = -3, and dK > 31811154

For d,  < 0, we can do a little more: since Diaz y Diaz foundfor dk = 5.
in [4] the first 15 totally imaginary octic fields, we can prove the inequality

\dK\ > 165611 l/\dk\ whenever K is totally imaginary with exactly one excep-

tion, namely the field K with discriminant dK = -33 • 16573 = -447471. (It

is now known (Diaz y Diaz) that all primitive quartic extensions É/k have

discriminant greater than 330,000,000; thus, for K totally real of even class

number, one has the inequality dK > 330,000,000/i/A..)

8. Algorithm

Field 1. Using the inequalities of §3, we establish a list of polynomials such

that any field with discriminant below the given bound D can be defined by at

least one polynomial of the table.

For each polynomial, we compute the roots by Cardano's formulae , and get

rid of the reducible ones, and of those which do not satisfy the inequality (3.1).

Field 2. We compute the relative discriminant £>A ,A of K/k by the Disc

algorithm of §4, and suppress P if dK is bigger than the bound D.

Then, we order fields by increasing discriminants and determine   t>k/k

and dk .

Field 3. We test the fields with equal discriminants for isomorphism, as

detailed in §5.

Field 4. We use the Gal algorithm to compute the Galois group as explained

in §6.

9. Tables

The algorithm Field is implemented on a station "Matra/Sun 3/260" with

MC 68020 cpu at 25 Mhz, 16 Mbytes of main memory, under UNIX system

environment.

With the bound 6 • 107 (resp. 2 • 107, 8 • 106 and 4 • 106 ) for r, = 6 (resp.

4,  2,  0), there are 1057 (resp. 2646,  2055, 4041 ) sextic fields.
Let us give a few statistics on the first thousand fields for each signature.

For r{ = 6 to 0, the number of polynomials we had to handle was 205529

(resp. 55299, 69027, 30994). Hence, it is no wonder that the computation time

is much greater in the totally real case, as summarized below, together with the

distribution of the fields in dependence on the possible types.

Wk max.

57405413
8581375
3982000
1102400

time

15h30'
2 h 50'
4 h 40'
3 h 30'

C

25
x

x

6

D,

12
x

X

17

A.

48
x

91
77

'18

31
X

X

38

g* '36

2
x

32
5

G„

881
1000
871
857

(" x " means "impossible"; "time" is the running time of the algorithm.)
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Note that among the 77 totally imaginary fields of type D6, only 5 corre-

spond to a real cubic subfield (this is indicated in the tables by the appendix "r"

or "i").

We give now a few comments about the index / alluded to in the in-

troduction (/ is the absolute norm of the ZA-index of ZA[0] in ZK , where

K = k(6) ). The smallest index / we found is equal to 1 except for very few

cases (22, 4, 24 and 30 exceptions for rx = 6, 4, 2, and 0) among the first

thousand fields, i.e., most of the time, the algorithm actually yields an integral

power basis (1,0,0) for K/k. Let us look more closely at the first three

exceptions in the totally imaginary case, namely the fields with discriminants

dK = (-8)3 • 625, (-19)3 • 49 (the ones referred to in the introduction), and

(-20) • 49, for which we found f = 2, 5 and 3, respectively (actually the

smallest possible values for /). That / must be greater than 1 comes from

local reasons in the first case ( / must be even), from [3] in the second case,

and from the fact that ZA is not a free Zk -module in the last case.

We give below the minimal discriminants of sextic fields with quadratic sub-

field for each signature and each possible type

sign. (6,0) (4,i; (2,2) (0,3)

type

c6

D,

D,

300125

810448

2738000

x

X

X

X

66125

-16807

-12167

imag.  -14283

real  -309123

G¡6

g;6

G12

722000

55130625

27848000

485125

x

x

X

■104875

x

525625

242000

30125

-9747

-309123

-11691

(" x " means "impossible")

Finally, the following table shows the coincidences of discriminants among

the first thousand fields of each signature.

i 0

2 fields
3 fields
4 fields

6
0
0

23
2
0

38
9
7

40
6
0
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sig.(6,0)

300125
371293
453789
485125
722000
810448
820125
966125
980125

1075648

5
13
21

5
5

37
5
5
5

28

2401
169
49

3881
5776

16

6561
7729
7841

49

5
13

21
97025

5
37
5

193225
196025

28

C6r
C6r
C6r
G 72
G18
D3r
C6r
G 72
G 72
C6r

Xí-(7+7co)X+ (7+ 14(0)
X 3-(oX 2+ (-10+ 5(fl)X+ (2-(i>)

X3-(oX2+(-l+(o)X+(-3+w)

X 3+ (-6-7co)X+ (7+ 10(0)
X 3-X 2+ (-5-4(o)X+ (-1-6C0)

X3-X2+ (-5-2(0)X+ (-5-2(0)

X3+ (-6-6(0)X+(6+ 11(0)

X3-X2+ (-4-5(0) X+ (-1-3(0)

X 3-(l+ (0)X 2+ (-3+ (0)X+ (-1+ (0)

(245+ 392(0)
(10777-4680(0)
(21-7(0)
(1741+ 2816(0)

(232+ 364(0)
(244+ 96(0)
(81+ 81(0)
(1381+ 2232(0)
(85+ 8(0)
(7)

sig.(4,l)

-104875
-144875
-149875
-158875
-174875
-187904
-188875
-202375
-214875
-221875

-839
-1159
-1199
-1271
-1399
-367

-1511
-1619
-1719
-1775

-20975
-28975
-29975
-31775
-34975
-23488
-37775
-40475
-42975
-1775

G 72
G 72
G 72
G 72
G 72
G 72
G 72
G 72
G 72
G 72

X 3-(2+ 2(û)X-(l+ (0) (106+ 175(0)
X 3-(ûX 2-(2+ 3(0)X+ (8+ 13(0) (-4163-6736(0)

X 3-(oX 2+ (-4+ 3(û)X+ (-2+ (0) (581-360(0)
X 3-(l+ (0)X 2+ (3-(û)X+ (-5+ 3(0) (-931+ 576(0)

X 3-(oX 2+ (4-3(û)X+ (8-5(0) (-2459+ 1520(0)

X3+ (-5-2(o)X+ (-3-3(0) (251+ 178(0)
X 3-(l+ (û)X 2+ (-3+ 3(0)X+ (11-7(0) (-3883+ 2400(0)

X 3-(l+ oo)X 2-2(ûX+ (1+ 5(0) (-74+ 55(0)
X 3-(l+ 0))X 2+ (-8+ 6(0)X+ (-13+ 8(0) (-2679+ 1656(0)

X 3-X 2-(oX+ (-1+ (0) (-35+ 40(0)

sig.(2,2)

30125
35125
49664

51125
52625
56125
66125
71125
82000
82625

241

281
97

409
421
449

529
569
656
661

6025
7025
6208

10225
10525
11225
13225
14225
1025

16525

G 72
G 72
G 72
G 72
G72
G72
D6i
G 72
G 72
G 72

X 3-(l+ (0)X -(1+ (0)X+ (3+ 5(0)

X 3-(oX 2+ (-4+ 3(0)X+ (8-5(0)

X3-(l+ (0)X2+ 2X+ (l-(0)

X3-(oX2+ (-1+ (0)X+(-2+(o)

X3-(l+ (0)X2+ (-1+ 2(0)X+ (-4+ 2(0)

X 3-(oX 2-X+ (-3+ 3(0)

X3-(l+ (0)X2+ (5+ 8(0)

X 3-(oX 2+ (6-3(0) X+ (-2+ (0)

X3-(l+ (0)X2+ (0X-1

X3-(ûX2-(oX+(-1-2(0)

(-287-464(0)
(-2343+ 1448(0)
(-77+ 54(0)

(-86+ 51(0)
(-562+ 347(0)
(-415+ 256(0)
(-2047-3312(0)

(-1683+ 1040(0)
(-28+ 4(0)
(-203-327(0)

sig.(0,3)

-9747
-10816
-11691
-12167
-14283
-16551
-16807
-19683
-21168
-21296

-3
-4

-3
-23
-3
-3
-7

-3
-3

-11

361
169
433

1

529
613
49

729
784

16

-3
-4

3897
-23

4761
5517

-7
-3
-3

-11

G18
G18
G 72
D3i
D6i
G 72
C6r

C6r
G18
D3i

X3-(l+ (0)X2+ (ûX+ (l-(û)

X3-(l+ (û)X2+ 5(ûX+ (-1-4(0)

X3-(l+ (0)X2+ (-2+ 2(0)X+ 1
X3-(l+ (0)X2+ (-2+ (0)X+ 1

X3+ (l-(O)X-l

X3-(l+ (ú)X2+ 2X+ (-1+ (0)

X3-(oX2+ (-1+ (û)X+ 1

X 3+ (-1+ (0)

X3-X2+ (1-2(0)X+ 1

X3-(oX2+ (-1+ (o)X+ 1

(-5+ 21(0)
(-5-12(0)

(13-24(0)
(1)
(-23)
(28-9(0)
(-7)
(27(0)

(-32+ 12(0)
(4)

Looking at the extended tables, we found for rx = 6 (resp. 4, 2, 0 ) zero

(resp. one, eleven, eighteen) systems of four nonisomorphic fields with the same

discriminants.

We conclude with a short excerpt from the tables; we simply give in each case

the first ten fields; more extensive tables can be requested from the authors. The

eight columns correspond to the following data: dK , dk , N(DK/k), dk, f,

the Galois group of a Galois closure of K/Q, a polynomial P which defines

K/k and finally dp .
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