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ITERATIVE METHODS FOR CYCLICALLY REDUCED
NON-SELF-ADJOINT LINEAR SYSTEMS

HOWARD C. ELMAN AND GENE H. GOLUB

Abstract. We study iterative methods for solving linear systems of the type

arising from two-cyclic discretizations of non-self-adjoint two-dimensional ellip-

tic partial differential equations. A prototype is the convection-diffusion equa-

tion. The methods consist of applying one step of cyclic reduction, resulting

in a "reduced system" of half the order of the original discrete problem, com-

bined with a reordering and a block iterative technique for solving the reduced

system. For constant-coefficient problems, we present analytic bounds on the

spectral radii of the iteration matrices in terms of cell Reynolds numbers that

show the methods to be rapidly convergent. In addition, we describe numerical

experiments that supplement the analysis and that indicate that the methods

compare favorably with methods for solving the "unreduced" system.

1. Introduction

We consider iterative methods for solving the linear systems that arise from

finite difference discretizations of non-self-adjoint elliptic problems of the form

(1.1a) -V -pVu + q-Vu = f   onQ,

(1.1b) ru + sun = g   ondÇl,

where Q is a smooth domain in R . Discretization of ( 1.1 ) by finite differences

results in a linear system of equations

(1.2) Au = f,

where u and / now denote vectors in a finite-dimensional space. A is typically

nonsymmetric and it is often not diagonally dominant.
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For five-point finite difference discretizations, A has Property A [21], i.e.,

its rows and columns can be symmetrically permuted so that (after appropriate

permutation of the entries of u and /) (1.2) has the form

where D and F are nonsingular diagonal matrices. The system (1.3) corre-

sponds to a red-black ordering of the underlying grid. With one step of cyclic

reduction, the "red" points u(r] can be decoupled from the "black" points u{b),

producing a reduced system

( 1.4) [F - ED' ' C]ulb) = f{h) - ED~ ' f].

The coefficient matrix

(1.5) S = F-ED~lC

is also sparse, so that (1.4) can be solved by some sparse iterative method.

For symmetric positive definite systems arising from self-adjoint problems, it

is known that iterative schemes such as the Chebyshev and conjugate gradient

methods converge more rapidly when applied to (1.4) than when applied to

(1.2), see [3, 11, 12]. It has also been observed empirically for a large collec-

tion of nonsymmetric problems that preconditioned iterative methods are more

effective for solving (1.4) than for solving (1.2) [7, 8].

In this paper, we present a convergence analysis of some block iterative meth-

ods for solving (1.4) based on a l-line ordering of the reduced grid. For the

full system (1.2), line methods of this type are known to be effective in the

self-adjoint case, see e.g. [14, 20, 21], and they have also been applied suc-

cessfully to non-self-adjoint problems [4, 5]. Our analysis applies to finite dif-

ference discretizations of a constant-coefficient version of ( 1.1 ) with Dirichlet

boundary conditions. We show that the coefficient matrix S is symmetrizable

under a wide variety of circumstances, and we use symmetrizability to derive

bounds on the convergence rates in terms of cell Reynolds numbers. In addi-

tion, we present the results of numerical experiments on nonsymmetrizable and

variable-coefficient problems that supplement the analysis. The results suggest

that the methods considered are highly effective for computing the numerical

solution to (1.1).

We remark that the choice of finite difference discretization affects the accu-

racy and quality of the discrete solution to (1.1), see [18] and references therein.

In this paper, we are concerned with properties of the matrices arising after this

choice is made. We consider two difference schemes as examples, based on ei-

ther centered differences or upwind differences for the first-order terms of ( 1.1).

The analysis of the paper can also be applied to other schemes.

An outline of the paper is as follows. In §2, we illustrate our methodology on a

simple one-dimensional example, where the algebra is more transparent than for

two-dimensional problems. In §3, we describe the discrete constant-coefficient
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two-dimensional convection-diffusion equation, and we present a convergence

analysis of a block Jacobi method for solving the full system (1.2). This anal-

ysis is closely related to that of [4], which applies in a somewhat more general

setting. In §4, we present the convergence analysis for the reduced system. We

present conditions under which 5 is symmetrizable, and we derive bounds on

the spectral radii of iteration matrices arising from a block Jacobi splitting,

where the underlying grid is ordered by diagonals. In §5, we present some nu-

merical experiments that confirm the analysis of the symmetrizable case and

demonstrate the effectiveness of the reduced system in other cases. Finally, in

§6, we draw conclusions.

2. A ONE-DIMENSIONAL EXAMPLE

In this section we demonstrate the use of cyclic reduction for one-dimensional

problems. Such problems are not difficult from a computational point of view;

we consider them because the algebra is more transparent than for higher di-

mensions. Consider the constant-coefficient problem

(2.1) -u" + au' = f   on (0,1), w(0), u(l) given.

Let (2.1) be discretized by centered finite differences with n interior mesh

points:

„     ui+x-2ui + ui_x ,     ul+x - M,_,
u--2 ,        u~        Th        ,

where h = l/(« + 1). The result is a linear system of equations Au = f where

A is a tridiagonal matrix,

(2.2) A = tû[-(l+y),2,-(l-y)]

with y = ah/2. We refer to this quantity as the cell Reynolds number. Here

tri[è(, ai, c¡] denotes the tridiagonal matrix whose /th row contains the values

b-, ai, and c¡ on its subdiagonal, diagonal, and superdiagonal, respectively.

The subdiagonal of the first row and the superdiagonal of the last row are not

defined. We omit the subscripts in the case of constant coefficients.

Consider symmetrizing A by a diagonal similarity transformation.

Lemma 1. For A = tri[bl, ai, c¡], where bj, a,, and ci are real, there exists a

real (nonsingular) diagonal matrix Q with Q~]AQ a real symmetric matrix if

and only if for each i  (1 < i < n), one of bj+xc¡ > 0 or bl+x = c; = 0 holds.

The symmetrized matrix is tri[(¿j/c/_,)l/ ,a¡, (bi+xcty ].

Proof. If all {b¡}, {c¡} are nonzero, then the entries of Q are determined by

the specification q~+xbi+iqi = q~ cjqi+x, i.e., qx ̂  0 is arbitrary and

9M'(bM/c,)l,2ql^[{bMe,)l,2/cl}tl,       i>l.

If b¡+x = cl■ = 0, then q¡+x # 0 may be arbitrary.   □
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This result implies that the tridiagonal matrix of (2.2) can be symmetrized

when y  < 1. The symmetrized matrix is

(2.3) A = Q-]AQ = tri[(l - y2f2,2,(1- y2f2].

A is diagonally dominant whenever Q is defined.

If the unknowns {«,}"=1 are ordered with the odd-numbered indices first,

then (2.2) has the form (1.3) where D and F have diagonal entries equal to

two, and C and E are bidiagonal. After one step of cyclic reduction (and

scaling by two), the reduced matrix has the form

(2.4) 5- = tri[-(l + y)2, 2(1 +/), -(1 - 7)2]

when n is odd. 5 also has this form when n is even, except that the last

diagonal entry is 3 + y . Lemma 1 implies that 5 is symmetrizable for all

y ■£ 1, with symmetrized matrix

(2.5) S = tri[±(l - y)2, 2(1 + y2), ±(1 - y2)].

It is straightforward to show that S is diagonally dominant for all y when n

is odd and for \y\ < 1 when n is even. S is diagonally dominant and positive

definite for all y.

Consider an analysis of the point Jacobi method for solving linear systems

with the coefficient matrices of (2.2)-(2.5). We use the following result, which

applies even if be < 0.

Lemma 2. The eigenvalues of the tridiagonal matrix tri[b, a, c] of order m are

{Xj = a + sign(c)2\/bc cos( jn/(m + 1)), j = 1,..., m}.

Proof. This can be verified directly. The eigenvector corresponding to X¡ is

vu) where v(kn = (b/cf2 ún(jkn/(m + 1)), k = 1,..., m.

Corollary 1. The spectral radius of the point Jacobi iteration matrix for (2.2),

and for (2.3) when \y\ < 1, is |(1 - y2)1/2|cos(7tA). For odd n and y ^ 1,

the spectral radius of the point Jacobi iteration matrix for both (2.4) and (2.5) is

\(l-y2)/(l + y2)\cos(2nh).

Proof. The Jacobi matrix for (2.2) is tri[-(l + y)/2, 0, -(1 - y)/2], and its

eigenvalues are determined as in Lemma 2. The analysis for the other three

matrices is identical.   □

Thus, one step of cyclic reduction produces a matrix that has good numerical

properties. In contrast to the full system, the reduced system is symmetrizable

for all y 7^ 1. For the full system, the point Jacobi iteration is convergent

only for y < 2, whereas for the reduced system it is convergent for y ^ 1 ;

in addition, the spectral radius is always smaller for the reduced system. We

remark that by expanding the reduced operator

-(1 + 7)V2 + 2(1 + y2)ui - (1 - y)2ui+2
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in a Taylor series centered at uj [19], we find that this difference scheme can

be viewed as second-order approximation to the differential operator

d     °2h2\   »        >- I 1 H-j—    "   +cru .

A heuristic explanation for the good algebraic properties of the reduced matrix

is that it corresponds to a perturbation of (2.1) in which "artificial viscosity" is

added (see [18]).

Many of the observations made above carry over to the variable-coefficient

case, e.g. where the differential operator is -u" -\-o(x)u . The coefficient matrix

is then

A = \û{-(\ + yi),2,-{l-yi)],

where yi = a(xj)h/2 . The symmetrized form

A = tri[((l + y,)(l - 7i_x))l/2, 2, ((1 + yi+x)(l - y,))1/2]

is well defined if \y¡\ < 1 for all i. The reduced matrix is (for odd n)

S = tn[-(l + y2i)(l + y2i_x),4-(l + y2,)(l-y2i_x)-(\-y2i)(l+y2i+x),

-(l-y2i)(l-y2i+I)],

where I < i <[n/2\. If the conditions

su>°>   (i + 72i)(1 + ^2/-i)>°-   (i-y2l)(i-y2/+1)>o

hold, then S is diagonally dominant. If, in addition,

(l-72i_2)(l + 72,)(l-722,_1)>0,

then S is symmetrizable by a real diagonal similarity transformation. These

conditions all hold if \y¡\ < 1 for all i, and they also hold for large {y(}

whenever a(x) does not have large derivatives in regions where it changes sign.

Both sets of conditions are trivially true for constant a .

Finally, returning to the constant-coefficient case, note that the equation of

(2.1) can be written in self-adjoint form

,   ax   Ut ax r
-(e   u) =e   f.

Consider the symmetrizing matrices Q discussed above. If the first entry

satisfies qx  =  1, then  qt = [(1 + y)/(I - y)]'-1   for the full system, and

Qi = [(1 + ?)/(! - y)] {'~ ' for the reduced system. In either case, the en-

tries of Q are very large for many values of y. (For example, for 0 < y < 1,

the limiting value as n —► co of the last entry of Q is ea , for both systems.) In

this sense, the symmetrizing operator behaves like the integrating factor eax .

For large a, both are difficult to implement in floating-point arithmetic.

3. The two-dimensional convection-diffusion equation

Consider the constant-coefficient convection-diffusion equation

(3.1) -Au + «72^ + xuy = /
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on the unit square Q = (0, 1) x (0, 1), with Dirichlet boundary conditions

u = g on dQ. We discretize (3.1) on a uniform n x n grid, using standard

second-order differences [20, 21]

±îl-.ui+iJ-2uU + ui-U  ,  »/J+i-2",7+ ",■,;-!

h2 h2

for the Laplacian, where h = \/(n + 1). We examine two choices of finite

difference schemes for the first derivative terms:

1. centered differences:   u  ta "''+'■>    "'-'•■>      „  ~ "<•>+> ~ "<'->-'
-V 2A '      v 2A

2. upwind differences:     w   « ——¡-!—— u  « -^—r-iji— ,
x n v h

where the latter is applicable when a, x > 0.

Suppose the grid points are ordered using the rowwise natural ordering, i.e.,

the vector u is ordered lexicographically as (ux x,u2 x, ... , un n)T.  Then,

for both discretizations of the first derivative terms, the coefficient matrix has

the form

(3-2) A = tri[AJJ_x,AJJ,Ajj+x],

where

(3.3) Aj¡_x=bl,       AJj = tti[c,a,d],       AjJ+l=eI,

I is the identity matrix, and all blocks are of order n . After scaling by h ,

the matrix entries are given by

a = 4,        b = -(l+S),       c = -(l + y),
(3.4)

d = -(\-y),        e = -(\-S),

for the centered difference scheme, where the cell Reynolds numbers are y =

ah/2 and ô = xh/2 ; and

a = 4 + 2(y + c5),        b = -(\+2S),        c = -(l + 2y),

d = -\,       e = -l,

for the upwind scheme.

First, assume that cd > 0. This is true for the centered difference scheme

(cd = 1 - y ) when \y\ < 1, and it always holds for the upwind scheme (cd =

1 + 2y). Consider the block Jacobi splitting

(3.6) A = D-C,

where D is the block diagonal matrix diag(Ax,, A22, ... , Ann). For our analy-

sis, it will be useful to define several auxiliary matrices. In particular, by Lemma

1, each Ajj can be symmetrized by a real diagonal similarity transformation

Qj. The choice of the first entry qx of each Q. is arbitrary; for the moment

we fix this choice to be one. The symmetrized matrix is

Ajj = Qj XA¡.Q¡ = trilv^, a,yfdl\.
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By Lemma 2, the eigenvalues of A¡¡ are {Xk = a + 2\/cdcos(knh)\l < k <

n}. Let Vj be an orthonormal matrix whose columns are the corresponding

eigenvectors of A,¡. Let

Q = diag«2,, Q2.Qn),        V = diag(F, ,V2,...,Vn).

Finally, let P denote the permutation matrix that transforms the rowwise nat-

ural ordering into the columnwise natural ordering, i.e., P AP has the form of

(3.2)-(3.3), except that the roles of b and c are interchanged and the roles of

d and e are interchanged.

Consider the similarity transformation A = (QVP)~' A(QVP). This trans-

formation first symmetrizes the block diagonal of A, then diagonalizes the

resulting interior tridiagonal matrix, and then reorders to produce a block di-

agonal matrix with tridiagonal blocks. The splitting of A analogous to (3.6)

is D-C where D = (QVP)~lD(QVP) and C = (QVP)~lC(QVP). But

D~lC= (QVP)~lD~lC(QVP), so that the eigenvalues of D~lC are the same

as those of D~ C. Moreover, Z)   is a diagonal matrix, all of whose nonzero

entries are X-, and the choice ¿7,    = 1 implies that C is the block diagonal

matrix whose jih diagonal block is tri[¿», 0, e] for all j. Hence, D~ C is a

block diagonal matrix whose jih diagonal block is

[D"[C]j = tri[b/XJ,0,e/XJ].

Applying Lemma 2 again, we have that the eigenvalues of D~ C are

2\fbe cos(knh)

a + 2\/cd cos( jnh)

The maximum such value occurs when j = n , k = 1 .

Note that this analysis imposes no condition on b and e . If be > 0 (\ô\ < 1

for centered differences and always for upwind differences), then an identical

analysis could be applied to the columnwise ordered version of A . Hence, we

have the following result.

Theorem 1. If cd > 0, then the spectral radius of the block Jacobi iteration

matrix for the rowwise ordered full system is

2\fbecos(nh)

a - 2\fcd cos(nh)

If be > 0, then the spectral radius of the block Jacobi iteration matrix for the

columnwise ordered full system is

2\fcdcos(nh)

a - 2\fbe cos(nh)

The bounds for the difference schemes under consideration are derived by

substituting the values of a-e from (3.4) and (3.5) into the results of Theorem

1. These bounds also follow from the more general analysis given in [4].
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Corollary 2. For centered differences, if \y\ < 1, then the spectral radius of the

block Jacobi iteration matrix for the rowwise ordered full system is

y |1 - ó2|cos(7t/z)

2 - y 1 - y2 cos(nh)

If \ô\ < 1, then the spectral radius of the block Jacobi iteration matrix for the

columnwise ordered full system is

Y |1 - y2\cos(nh)

2- Vl-S2cos(nh)'

For upwind differences, the spectral radii are

\/l + 2S cos(nh) , \/\ + 2ycos(nh)

2 + (y + S)- ^/TT2ycos(7ili~) 2 + {y + S)-\/l+2Scos{ñh)

for the rowwise and columnwise orderings, respectively.

Comparison of these asymptotic bounds as h —► 0 shows that for centered

differences, when both \y\ < 1 and \6\ < 1, the rowwise bound is smaller

if \y\ < \S\ and the columnwise bound is smaller if |<J| < \y\. For upwind

differences, the rowwise bound is smaller if 6 < y and the columnwise bound

is smaller if y < S .

Finally, recall that the choice q\j] — 1 in the discussion above was arbitrary.

In particular, if both cd > 0 and be > 0, then for q\j+l) = (b/e)i/2q{xj),

Q~lAQ is symmetric. The analysis of the Jacobi splittings is unaffected. Hence,

we have the following result.

Theorem 2. If both \y\ < 1 and \ô\ < 1, then the coefficient matrix for the

centered difference scheme is symmetrizable by a real diagonal similarity trans-

formation. For all y > 0 and S > 0, the coefficient matrix for the upwind

scheme is symmetrizable.

We remark that these symmetrizing operations have been discussed in [6].

4. The two-dimensional reduced system

In this section, we discuss the construction of the two-dimensional reduced

matrix S1 of (1.5), and we present an analysis, based on symmetrizing the

reduced matrix, of a block Jacobi iteration for solving the reduced system. We

remark that only the analysis depends on symmetrizability; the solution methods

considered here do not require the construction of a symmetrizing operator.

4.1. Construction of the reduced matrix. The nonzero structure of 5 can be

determined from the connection between the graph of a matrix and Gaussian

elimination. It is well known that applying one step of Gaussian elimination

to a linear system introduces edges into the corresponding graph of the matrix
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[15]. If u is a node corresponding to an eliminated unknown, and v and

w are nodes such that (u, v) and (u, w) are edges in the graph prior to

eliminating u, then the edge (v, w) is introduced after elimination. In the

present setting, the original matrix A is a five-point operator whose graph is a

rectangular grid. The left side of Figure 4.1 shows the computational molecule

for A , and the center of the figure shows a portion of the graph of A relevant to

the construction of the reduced system. For the reduction, the points numbered

3, 6, 8, and 11 (the "red points") are eliminated, producing the computational

molecule on the right. Thus, the reduced matrix is a skewed nine-point operator.

a

I
b

X13

*Lb~*n~*i2

X¿    X¿     X7     Xg    Xj

I   I   I
X      X->     X ¿

I
X,

X-

X

X
/

x-

X

X

X

Figure 4.1. The computational molecule of the full

system, and construction of the computational molecule

of the reduced system.

To see the entries of the reduced matrix, consider the submatrix of A con-

sisting of the rows for points 3, 6, 7, 8, and 11, and the columns for all the

points of the graph in the center of Figure 4.1.

Column Index:

3
Row 6

Index: 8

11
7

3

(a

\b

6 8 11 7

e

a d
a c

b
a

1

b

4

d

5    9    10    12    13

a

e

e

d

I

Eliminating points 3, 6, 8, and 11 is equivalent to decoupling the first four rows

of this matrix by Gaussian elimination. This modifies and produces fill-in in

the last row. The computations performed for the elimination are shown in the

following table. The new entries of the last row are obtained by summing the

columns.

Column:

Eliminate 3

Eliminate 6

Eliminate 8

Eliminate 11

7

a

-ba'

-ca~

-da'

-ba' -ba    c ■ba~'d
"'£.

-da~xb

-1
ca    c

10

-ca    e

12 13

-da'ld -da    e

—ea    d —ea    e
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Thus, the typical diagonal value in the reduced matrix is

(4.1) a - 2ba~ e - 2ca~ d,

which occurs at all interior grid points. For grid points next to the boundary

(see Figure 4.3 below), some elimination steps are not required. For example,

for a point next to the right boundary, it is not necessary to eliminate d. The

diagonal values for mesh points next to the boundary are

2ba   e ca

(4.2)

for points with one horizontal

and two vertical neighbors,

for points with one vertical

and two horizontal neighbors,

for points with just two neighbors.

After scaling by a, the computational molecule at an interior point for the

reduced system is shown in Figure 4.2.

a - ba   e - 2ca   d

a - ba   e - ca   d

Figure 4.2.   The computational molecule for the re-

duced system.

Further steps of cyclic reduction do not lead to sparse reduced matrices, so

we restrict our attention to one reduction step.

4.2. Symmetrizing the reduced matrix and the block Jacobi splitting. Suppose

the reduced grid is ordered by diagonal lines oriented in the NW-SE direction.

An example of such an ordering derived from a 6 x 6 grid is shown in Figure

4.3.

Figure 4.3.   The reduced grid derived from a 6 x 6

grid, with ordering by diagonals.
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The reduced matrix S then has block tridiagonal form

/•S'il    s 12

S2X    S22   S2J

\

V s,"1,1-1     "11  '

where / = n - 1 is the number of diagonal lines. The diagonal matrices {Sn}

are tridiagonal,
jjj

(4.3) Sn=\ñ[-2ce, *, -2bd),jj

where "*" is defined as in (4.1) and (4.2) (scaled by a). The subdiagonal blocks

{Sj ;_i} have nonzero structure

2de    d2

e2     2de
2

(4.4)

(2de    d2

2de

e2 J

(e¿   2de
2

e

2de   d

V

v
d2

2de    d2

2

2deJ

e-     2de   dÄ J

for 2 < j < 1/2 + 1, j = 1/2 + 1   (/ even), and 1/2 + 1 < j, respectively. The

corresponding superdiagonals {S_x  •} are

/26c    bl

(c    2bc \

(4.5)

2bc    bL

c2    2bc   b2J

2

c2    2bc   b2

\

bL

2bcJ
(b

2bc    bL

c2    2bc

c2

V
2bc

c2 J

The following result gives circumstances under which S is symmetrizable.

This result also follows from the analysis of [16].

Theorem 3. The reduced matrix S can be symmetrized with a real diagonal

similarity transformation if and only if the product bcde is positive.
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Proof. We seek a matrix Q = diag(Q,, ... , Q¡), where 0 is a real diago-

nal matrix of the same order as S.., such that Q~lSQ is symmetric. Let

Qj = diag(q\J), ... , q(rj)). First consider the diagonal block (4.3): Q~xSj¡Qi

is symmetric if and only if

qU) Q?\(4.6) -!L^bd = -^ce,        2<j<r
?•_! Qi

where q\j) may be arbitrary. Thus, the diagonal blocks can be symmetrized

provided

<«> «¡MS)"2*'-
and this recurrence is well defined if and only if ce/(bd) = bcde/(bd)    is

positive. The (equal) quantities (4.6) are the (/', i — 1) and (/— 1, i) entries

of the jth diagonal block of the symmetrized matrix.

For the off-diagonal blocks, we require

(4.8) QJlSJtj.lQj.l=(QjllSj_iJQJ)T.

There are three cases, corresponding to the three sets of indices 2 < j; < 1/2+1,

j = 1/2+1 (I even), and 1/2+ 1 < j (see (4.4)-(4.5)). When 2 < j < 1/2+ 1,
relation (4.8) holds if and only if the following scalar relations hold:

JJ) o0'-l) /^2\1/2

(4.9) -^c2 = %rd2,
Qi Qi

qu\ qu-X)
(4-io)    ^n6c=V^'

** i yí+1

(4 11) SL±^b2 = îi_e2\ ' (7-1) (7) '

Since the {¿7J;)} are arbitrary, (4.9) can be used to define {q\j)} , 2 < j < 1/2+1

(where ¿/¡'' is arbitrary). Once this choice is made, however, (4.7) completely

determines {Q } . Thus, it is necessary to show that (4.9)—(4.11) are consistent

with (4.7). But {¿/;0)} and {q(/~U} both satisfy (4.7), so that (4.9) is consistent.

Moreover, applying (4.7) and (4.9) gives

(«ffo'-sw-s^o'-év^'y"ce d   ( (;-n\2     de

7
and applying (4.7) twice, followed by (4.9), gives

,2

(^-(^(^-(SJ'príO'-píO1-
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That is, (4.10) and (4.11) follow directly from (4.7) and (4.9). The square root

in (4.10) is well defined provided de /(be) = bcde/(bc)   is positive.

For the other two cases, the analogues of (4.9)—(4.11) are

1/2 /   2\ ^l2 /  i2\ ^l2
(j)     (de\       o-i)        (y)      le  \       (j-\)        u)        d  \       o-i)

q> =Ucj   q>    '   9™m[?)   q>    '   q- ={7)   q¡+l '

for / even and j = 1/2 + 1 , and

(j)     I e   \       (7-1)        U)     (de\       o-i)        o)     (d \       o-M

for 1/2 + I < j . Here ¿7,(j) is defined using the first expression of these rela-

tions. Proofs that these are consistent with (4.7) are essentially identical to the

argument above.   D

Let D = diag(S11,..., Stl) denote the block diagonal of S, and let S =

D - C denote the block Jacobi splitting of 5. Let S denote the symmetrized

matrix Q~ SQ (when it exists), and let S = D - C denote the block Jacobi

splitting. Here D = Q~lDQ and C = Q~XCQ. Also, note that S and S are

irreducible.

Corollary 3. If both be > 0 and cd > 0, then S is symmetrizable by a real

diagonal similarity transformation Q. If the diagonal entries of S are positive,

then S is an irreducibly diagonally dominant M-matrix provided

(4.12) ¿z2>(|e| + |c| + |¿/| + M)2,

and S is an irreducibly diagonally dominant M-matrix provided

a2 > 4(\fb~e + \fcd)2.

Proof. The existence of the symmetrizing matrix Q follows immediately from

Theorem 3. The off-diagonal entries of S are negative, and the corresponding

off-diagonal entries of 5 are negative if the positive square root is used in the

recurrences defining Q. Diagonal dominance is established by direct computa-

tion. For rows of S corresponding to interior mesh points, diagonal dominance

holds if and only if

¿z2 - 2be - 2cd > b2 + c2 + d2 + e2 + 2(\bc\ + \bd\ + \ce\ + \de\),

which is equivalent to (4.12). For mesh points next to the boundary, the di-

agonal values are greater than those for the interior points (see (4.2)), so that

strict diagonal dominance applies. The argument for diagonal dominance in S

is the same. That S and S are M-matrices follows from Corollary 1, p. 85,

of Varga [20].   o

Let the nonzero off-diagonal entries of 5 and S be identified as the north,

south, east, and west, and northeast, northwest, southeast, and southwest values,

according to their location in the computational molecule. (See Figure 4.3.) D

and D consist of the center, northwest, and southeast entries.
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-be

-2\/bcdt

-cd

-2\/bcàt -2y/bcde

-be

Figure 4.4.   A computational molecule for the sym-

metrized reduced system.

Corollary 4. // both be < 0 and cd < 0, then S is symmetrizable by a real

diagonal similarity transformation Q. Depending on the choice of Q, any of

the following distributions of signs can occur in S :

(a) the northwest and southeast values are positive and all other off-diagonal

values are negative,

(b) all nonzero off-diagonal entries of S are positive;

(c) the northwest, southeast, northeast, and southwest values are negative,

and the north, south, east, and west values are positive;

(d) the northwest, southeast, north, south, east, and west values are negative,

and the northeast and southwest values are positive.

In cases (c) and (d), D is a diagonally dominant M-matrix.

Proof. The existence of the symmetrizing matrix Q follows immediately from

Theorem 3. The signs of the square roots defining the entries of Q, which are

arbitrary, determine the distributions of signs in S. Without loss of generality,

assume that b < 0 and c < 0, so that the hypotheses imply d > 0 and e > 0.

The arguments for other combinations of signs are identical. If all entries of Q

have the same sign (i.e., the positive square root is used throughout), then S is

as in (a). If all entries of Q within any of its blocks have the same sign (i.e., the

positive square root is used in (4.7)), but neighboring blocks have the opposite

sign (e.g., the negative square root is used in (4.9) when this expression defines

q\J)), then the distribution of signs in S is as in (b). On the other hand, if

the signs within the blocks of Q alternate, then the northwest and southeast

entries (the off-diagonal entries of D) are negative, and the signs in the off-

diagonal blocks of S vary by diagonal. Distributions (c) and (d) are specified

by choosing appropriate signs for the first entries of each block; the choice of

sign does not obey a simple fixed rule, but instead varies with the index j of

the block Q . In the latter two cases, each block of D is irreducibly diagonally

dominant with nonpositive off-diagonal entries (see Figure 4.4), so that D is

an Af-matrix.   D

Figure 4.4 shows a computational molecule for the symmetrized reduced

system. The figure is valid for both Corollaries 3 and 4. When b, c, d, and

e are as in Corollary 3, all off-diagonal entries are negative. When b, c, d,
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and e are as in Corollary 4, the signs correspond to case (c). For the choices of

difference schemes that we are considering, Corollary 3 applies to the centered

difference scheme for small |y| and |<5| (less than one), and to the upwind

scheme. Corollary 4 applies to the centered difference scheme for large |y| and

\S\. The following result summarizes the analysis above for the two difference

schemes.

Corollary 5. If A is constructed using centered differences, then S is symmetriz-

able via a real diagonal matrix Q if and only if either \y\ < 1 and \S\ < 1

both hold, or \y\ > 1 and \S\ > 1 both hold. If \y\ < 1 and \ô\ < 1, then S
is an irreducibly diagonally dominant M-matrix and Q can be chosen so that

S is an irreducibly diagonally dominant M-matrix. If \y\ > 1 and \S\ > 1,

then Q can be chosen so that D is a diagonally dominant M-matrix. If A is

constructed using upwind differences, then S is symmetrizable for all y > 0 and

ô > 0, and S and (for appropriately chosen Q) S are irreducibly diagonally

dominant M-matrices.

Proof. For centered differences with \y\ < 1 and \S\ < 1, and for upwind

differences, the assertions follow from Corollary 3. Diagonal dominance follows

from direct computation. For centered differences with |y| > 1 and |<5| > 1,

the result corresponds to case (c) or (d) of Corollary 4.   D

4.3. Bounds for solving the convection-diffusion equation. We now derive bounds

for the spectral radius of the iteration matrix B = D~ C based on the block

Jacobi splitting of S, in the case where S is symmetrizable. Note that

(4.13) B = QD~lCQ~l,

i.e., B is similar to B = D~ C. Hence, we can restrict our attention to B.

The analysis is essentially based on the result

(4.14) p(D~XC)<\\D~X\\2\\C\\2=   P^

where the equality follows from the symmetry of D and C. Explicit bounds are

obtained by replacing D by a matrix with constant diagonal values (cf. (4.2)).

There are two cases, corresponding to Corollary 3 (be > 0 and cd > 0) and

Corollary 4 (be < 0 and cd < 0). We assume for the second case that Q is

chosen so that D is an M-matrix (e.g. with the sign distribution (c)). Hence, in

both cases, D is symmetric positive definite and can be factored symmetrically

as D = LL  . Consequently,

T— — 1  A     — T —1  A     — T(4.15) L D  lCL     =L    CL     .

That is, B, and therefore B, are similar to a symmetric matrix, and their

eigenvalues are real.

Suppose that be > 0 and cd > 0. The M-matrix D has block diagonal

form diag(T,, ... , T¡), where each block T] is a tridiagonal matrix. Therefore,
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a(D) = ]Jja(TJ),and

(4-16) XmJD) = minX^).

Let T denote one of the tridiagonal blocks T. of D, of order r. T has the

form T+P, where T = tri[-¿>, â, -b] and P = diag(/?,, 0, ... , 0, pr). Here,

¿z = a - 2be - 2cd , b = 2\fbcde . The perturbations px and pr each have the

form abe + ßcd, where a and ß are zero or one, and at least one of a, ß is

nonzero, see (4.1), (4.2). Hence, the perturbations are positive. Consequently,

KJT) = mjn(v . Tv) = m* . Tv) + (v , Pv)]
(4.17) "* v*°

> min(v , tv) = X-(f).
- v¿0 mlnV    '

By Lemma 2, a(T) = {Xk = â - 2bcos(kn/(r + 1))} . The minimum value of

K is

(4.18) Xmjf) = ä-2bcosdx.

The smallest such minimum (over all choices of T = T. from D) occurs with

r = n . Thus, (4.16), (4.17), and (4.18) imply

(4.19) Xmin(D)>ä-2bcos(nh).

In terms of the entries of A , this expression is

â - 2b + 2b( 1 - cos(ää)) = ¿z2 - 2(y/be~ + sfcd)2 + Wbcde( 1 - cos(nh)).

The spectral radius of C is bounded by Gerschgorin's theorem [20]:

p(C) < Wbcde + 2be + 2cd = 2(\fbê + Ved)2.

Hence, from (4.14) we have the following result:

Theorem 4. If be > 0 and cd > 0, then the spectral radius of the block Jacobi

iteration matrix for the reduced system satisfies

{B) <_2(Vbe + siTd)2_

a2 - 2(sfbé + Ved)2 + AVbcdê( 1 - cos(jiA)) '

When be < 0 and cd < 0, the perturbations px and pr are negative.

Consequently, the inequality of (4.17) is not valid and (4.14) cannot be used

directly. For an alternative approach, let C = C(a) + C{b), where C{a) is

the part of C corresponding to the northeast and southwest neighbors in the

computational molecule, and C is the part of C corresponding to the north,

south, east, and west neighbors. Assume that Q is chosen so that case (c) of

Corollary 4 holds. Then C(a) > 0 and C(b) < 0. (See Figure 4.4.) This implies

that the splittings

(4.20) S(a) = D- C{a),        S(b) = D- [-CW]
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are regular splittings [20]. Moreover, S J is an irreducibly diagonally dominant

M-matrix, and S(a) is an irreducibly diagonally dominant M-matrix provided

(4.21) ¿z2/2 + (V^cd - -f^be)2 - 2Vbcde > 0.

In the following discussion, we assume this inequality holds, so that »S(a)_ > 0
and S(b)'l>0.

The similarity transformations (4.13) and (4.15) imply that

p(B) = p(L~lCL~T) = \\L~lCL~T\\2

(422) <\\L-lC{a)L-T\\2 + \\L-lC{b)L-T\\2

= p(L-XC(a)L-T) + p(L-yC{b)L-T)

= p(D-]Cia)) + p(D-iC{b)).

We bound the last two quantities of this expression using (4.20). Let D =

D + P, where D is a block diagonal matrix, each of whose blocks is a constant-

coefficient tridiagonal matrix of the form of T above, and P is block diagonal

with blocks of the form P above. The nonzero entries of P are now negative.

Let C(a) = C(a) - P and C(b) = C(b) + P. Then the alternative splittings

S{a) = D-C(a),        S(b) = D-[-C(b)]

are also regular splittings, and the inequalities C{a) > C(a), -C{b) > -C{b)

hold. Varga's theorem on regular splittings [20, Theorem 3.15] implies that

p(D-lC{a)) < p(D-lC{a)),        p(D-lC(b)) < p(D-{C{b)).

Therefore, from (4.22), we have

p(B) < p(£>-lC(a)) + p(D-xC(b)) < ||ß_1||2(||C(u)||2 + ||C(a)||2)

<p(D-X)(p(C(a)) + p(C(b))).

The spectral radius of D~] is bounded as in (4.19) above; the denominator is

now

2 . », it, i     /7~r^2
a  + 2{yf\be\ - yj\cd\)  + 4Vbcde(l - cos(nh)).

The spectral radii of C     and C( ' are bounded by Gerschgorin's theorem:

p(C(a)) < ma\(4Vbcde, 2Vbcde + \be\, 2\[bcdê + \cd\, \be\ + \cd\),

p(C{b))<2(\be\ + \cd\).
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We summarize this discussion as follows:

Theorem 5. If be < 0, cd < 0, and inequality (4.21) holds, then the spectral

radius of the block Jacobi iteration matrix for the reduced system satisfies

,dx < max(Wbcde,2Vbcde+\be\,2Vbcde+\cd\,\be\ + \cd\)+2{\be\ + \cd\)

^    ' - a2+2(y/\bT\-^/\cT\)2+4\/bcle(\-cos(nh))

Substitution of the expressions of (3.4) and (3.5) into the results of Theorems

4 and 5 gives bounds for the specific difference schemes. Inequality (4.21)

permits us to replace D with (the constant diagonal) D, but the inequality

is not valid for arbitrary matrices. In terms of the expressions of (3.4) for

large cell Reynolds numbers, a sufficient condition for (4.21) to hold is that

y (y2 — 1)(<52 — 1) < 4. We simplify the expression derived from Theorem 5

using the notation

p(y, S) = max(4X/(y2-l)(<î2-l), 2^(y2 - l)(ô2 - 1) + y2 - 1,

2^ (y2 - \)(ô2 - \) + ô2-\,y2-\+ô2-\).

Depending on the values of y and ô , any of the four quantities defining p. can

determine its value.

Corollary 6. For the centered difference scheme, if \y\ < 1 and \S\ < 1, then

the spectral radius of the block Jacobi iteration matrix for the reduced system is

bounded by

_(\l\-y2 + V\-ô2)2_

8 - (\Ji-y2 + Vl-â2)2 + 2yJ(l-y2)(l-ô2)( 1 - cos(nh))

If \y\ > 1, \ô\ > 1, and \J(y2 - \)(ô2 - 1) < 4, then the spectral radius is

bounded by

_y2p.(y,ô) + y2-\+ô2-\      _

8 + (vV - 1 - v^2-l)2 + 2\l(y2 - \)(ô2 - \)( 1 - cos(ttA))

For the upwind difference scheme, the spectral radius is bounded by

_(s/T+2y~ + VT+2Ô)2_
2(2 + y + Ô)2 - (Vï+2y + vTT2¿5)2 + 2^(1 + 2y)(l + 2S)(l - cos(nh)) '

See §4.5 for comparisons of these asymptotic bounds with those for the full

system (Corollary 2).

Although these results are stated only for the unit square, the arguments are

trivially adapted for general rectangular domains with uniform meshes. They

also provide upper bounds for irregular domains. For example, the number of

points in the longest diagonal line determines the inequality of (4.19).
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4.4. Fourier analysis. As we will show in §5, the bounds of §4.3 agree with the

results of numerical computations when be > 0 and cd > 0, but they are

pessimistic when be < 0 and cd < 0. We now present a Fourier analysis of

a variant of the symmetrized reduced operator using the methodology of [2].

Consider the discrete nine-point operator of Figure 4.5. This operator is based

on the version of S of Figure 4.4, except that it is defined on a rectilinear grid

with periodic boundary conditions. The horizontal lines of the rectilinear grid

correspond to the lines oriented in the NW-SE direction of the skewed grid.

(In the figure, the orientation of the skewed grid is indicated in parentheses.)

We refer to this operator as the rectilinear periodic reduced operator.

(N) (NE) (E)

-be -2vWe -cd

(NW)    -2Vbc~de~-a2-2be- 2cd-2Vbc!e~    (SE)

-be

(W) (SW) (S)

Figure 4.5. A computational molecule for the rectilin-

ear periodic reduced operator.

The Fourier analysis is defined as follows; see [2] for a more detailed de-

scription. Suppose the rectilinear grid is contained in a square domain with

n interior points in each direction and periodic boundary conditions. Let

Sp denote the operator defined by the computational molecule of Figure 4.5.

That is, if v is a mesh function with value vk at the (j, k) mesh point,

1 < j, k <n, then

(SpV)jk = (a - 2be - 2cd)vjk - 2VbcdeVj_x k - 2Vbcdevj+x k

-beV]_x k+x-2Vbc~dlvj k+x-cdvj+x k+x

-cdVj_x k_x-2VbcdeV] k_x-bevj+x k_x.

The analogue of the line Jacobi splitting considered above is

O p — Up P '

where Dp corresponds to the horizontal connections of Figure 4.5 (indices

(j - 1, k), (j, k), and (j, k + 1)), and Cp corresponds to the other con-

nections. Let v = v{s' have values Vjk'' = elj se' *', where 6S = 2nsh,

<pt = 2nth , 1 < s, t < n, and h = \/(n + 1). It is straightforward to show by

direct substitution that

(Spv)k = Xvjk ,        (Dpv)jk = y/vk ,        (Cpv)jk = pvjk ,
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where

y/ = y/   = a' - 2be - 2cd - AVbcde cos 6 ,

p = psl = 4Vbcdecos4>t + 2cdcos(6s + <pt) + 2becos(6s - <pt),

and X = y/ - p. The quantities y/ and p are the eigenvalues of Dp and

Cp , respectively, corresponding to the (shared) eigenvector v . The analogous

eigenvalue of DZ Cp is

(4.23)
4Vbcde cos <f>t + 2cdcos(ds + c/>;) + 2becos(6s - <¡>t)

a2 - 2be - 2cd - 4Vbcde cos 6C

The maximal value of this expression over all 6S and <pt, 1 < s, t < n , is a

heuristic bound for the maximal eigenvalue for the analogous Dirichlet operator.

In the following, we will be concerned with asymptotic bounds as h —► 0 (for

fixed y and S). For simplicity we examine (4.23) for all 8S, <pt 6 [0, 27z].

This ignores some 0(h ) effects that are significant only when y = ô = 0.

Lemma 3. For be > 0 and cd > 0, the maximum Fourier eigenvalue (4.23) ¿s

(4.24) K^-e + Vä?
a2 - 2(Vbê + Ved)2

For be < 0 and cd < 0, the maximum Fourier eigenvalue is

(4.25) 22(vW+yW2-
a¿ + 2(V\be\ + V\cd\Y

Proof. When ôe > 0 and cd > 0, the numerator of (4.23) is maximized when

cosc/>( = 1, cos^ + <t>t) = 1, and cos(0s + <pt) = 1. The denominator is

minimized when cos &s = I. These conditions are all satisfied when 6S = <pt =

0, which results in (4.24).

When be < 0 and cd < 0, it is not possible to maximize the numerator

and minimize the denominator simultaneously. Expression (4.25) corresponds

to the values 6 = n and <p = 0. To see that (4.25) is maximal, consider the

change of variables x = \/\cd\ and y = \/\be\. Then we wish to establish the

inequality

2xycos<p-x cos(0 + <f>) - y cos(0 - <f>) (x + y)

a2/2 + x2+y2 -2xycosd a2/2 + (x + y)2'

for x > 0, y > 0, and 6, <p G [0, 27r]. We need only consider the case where

the left-hand side is positive, so that the inequality is equivalent to

(x + y)  - 2xy cos </> + x cos(d + cj))+y cos(ö - 4>)

> (1 + cosd)2xy  .  (*+>?)-r.
a2/2 +(x + y)2
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2 2 ")
Since (x + y) ¡(a ¡2 + (x + y) ) < 1, it suffices to show that

2 2 2 2
x  +y +x cos(9 + <f>) + y cos(0 - c/>) - 2xy(cos 6 + cos c/>) > 0.

For any fixed y, 6, and cp (provided cos(0 + <p) ̂  -1), it follows from

elementary calculus that (considered as a function of x) the expression on the

left of this inequality has minimum value

\2
2

y
., ..     ...     (cosö + cos 4>Y
(1 +cos(0-c/>))-

[l+cos(6 + <P))

which is identically zero. The case cos(0 + <j>) = -1 is covered by minimizing

with respect to y in an analogous way.   o

Substitution of the values of b, c, d, and e from the two difference schemes

yields the following result.

Theorem 6. Fourier analysis of the rectilinear periodic reduced operator yields

the following asymptotic bounds on the Jacobi iteration matrix. For centered

differences with |y|<l, |5| < 1 :

2n2
(a/i - y2 + Vi - s2)

8-(\/l-y2 + Vl-S2)2

For centered differences with |y| > 1, |¿5| > 1 :

(yY^i + v7^^!)2

8 + (yV-i + Vs2-iy

For upwind differences:

(VT+2y + VT+2ÔY
2(2 + y + Ô)2 - (VÏT2y~ + VT+23)2 '

Note that the first and third of these bounds agree with the analogous asymp-

totic results from Corollary 6. The second bound does not depend on any

restrictions on y and ô .

4.5. Comparison of bounds. We compare the asymptotic bounds (as h —* 0) on

the spectral radii for the block Jacobi operators from the full system (Corollary

2) and the reduced system (Corollary 6 and Theorem 6). For the full system, we

consider the minimum of the bounds for the rowwise and columnwise ordered

matrices. We do not have analytic results that cover all cell Reynolds numbers.

Instead, we make a numerical comparison. In each of three cases, we graph the

bounds on four cross-sections of a square region in the (y, ô) plane. These

cross-sections correspond to the four choices ô & 0, S = y, ô & its maximal

value on the region, and ô « its midpoint on the region. The bounds are

symmetric with respect to y and S (since we are using the minimum of the two
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Figure 4.6. Values of y, ô where the full system

bounds are smaller than the reduced system bounds, for

centered differences and small cell Reynolds numbers.

full system bounds), so that the graphs of Figures 4.7-4.9 below also compare

the results with the roles of y and ô interchanged.

1. Centered differences, y < 1 and ô < 1. In this case, neither bound is

uniformly better for all choices of y and ô . In Figure 4.6, the shaded region

shows the values of y and ô where the full system bounds are smaller than the

reduced system bounds. Figure 4.7 compares the bounds on four cross-sections

corresponding to ô = .02, ô = y, S = .98 , and <5 = .48. A significant part of

the bottom left picture corresponds to the shaded region of Figure 4.6. Taken

together, these figures show that the reduced system bound is smaller for most

values of y and â, and the two bounds are very close (and small) when the

full system bound is better.

2. Centered differences, y > 1 and â > 1 . For this case, we consider both

the rigorous reduced system bound from §4.3 and the bound of the Fourier

analysis from §4.4. In our examples, the restrictions on y and ô in Corollary

6 are satisfied whenever the bounds are less than one. As we show in §5, the

Fourier bounds are closer to the spectral radii observed in experiments. Figure

4.8 shows the bounds on four cross-sections in the region 1 < y , ô < 3 . The

figure clearly shows that the bounds for the reduced system are smaller than

those for the full system. For most large y and ô , the latter bounds (which are

These regions were determined by first approximately identifying the shaded region using a

mesh of size .02, and then using a fine mesh in [0, 1] x [.97, 1], with horizontal length .01 and

vertical length .0005. The bounding curve at the top of the figure is a plot of values (y, S) on the

fine mesh such that S is the largest value for each y where the reduced system bound is lower.

The curve on the right comes from symmetry of the bounds.
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Delta=,02 Delta=Gamma

0.5

Gamma

Reduced system Full system

Figure 4.7. Asymptotic bounds for the block Jacobi

iteration matrices on four cross-sections of the (y, Ô)

plane, for centered differences and small cell Reynolds

numbers.

tight) are greater than one, so that the block Jacobi iteration applied to the full

system is divergent.

3. Upwind differences. In numerical comparisons for 0 < y, â < 5 (using

ninety-nine mesh points in each direction), we observed that the bounds for the

reduced system are uniformly smaller than those for the full system. Figure 4.9

graphs the bounds on four cross-sections of 0 < y , ô < 3 .

Note that although we only consider positive y and ô here, the results for

centered differences apply in general when absolute values are used. The analysis

does not apply in cases where one of \y\, \ô\ is greater than one and the other

is less than one; numerical experiments for cases of this type are described in

§5-
We conclude with some remarks concerning acceleration, using either block

SOR or the conjugate gradient method (CG) [10] with preconditioning by the

block diagonal. In the symmetrizable cases, the eigenvalues of the block Jacobi

matrices are real. Hence, Young's SOR analysis [20, 21] applies, i.e., the opti-

mal SOR iteration parameter can be obtained from the spectral radius of the

block Jacobi matrix. Symmetrization is needed only for the analysis; the actual

computations can be performed with the nonsymmetric matrices. In contrast,
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Delta=1.04 Delta=Gamma

1.5          2          2,5          3                  1          1.5          2          2.5

Gamma                                                          Gamma

Reduced system   - Reduced system (Fourier)   - • - • - Full system-

Figure 4.8. Asymptotic bounds for the block Jacobi

iteration matrices on four cross-sections of the (y, ô)

plane, for centered differences and large cell Reynolds

numbers.

CG requires either the explicit computation of the symmetrized matrices C

and D, or (what is equivalent), a change in the inner product used in the CG

iteration. Both schemes require the explicit use of the symmetrizing operator

Q. But, as in the one-dimensional case, the entries of Q may be very large.

(For example, if 0 < y < 1 and S = 0, then (4.7) is identical to the recur-

rence for one dimension.) As a result, CG is not always viable in floating-point

arithmetic. Finally, we note that for the full system, it is shown in [4] that

SOR iteration may be convergent for values of y and ô where the block Jacobi

method is divergent, as well as for values where our analysis does not apply.

5. Numerical experiments

In this section, we present the results of numerical experiments that con-

firm and supplement the analysis of §4. In all cases, we present our results for

the block Gauss-Seidel splitting S = [D - L] - U, where L and U are the

lower and upper triangles of C, respectively. (Since S has block Property A,

p((D-L)~xU) = [p(D~x C)f.) In particular, we compare the bounds of Corol-

lary 6 with computed values for several different mesh sizes, and we also exam-

ine the effectiveness of the block Gauss-Seidel method in cases where the analy-
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Figure 4.9. Asymptotic bounds for the block Jacobi

iteration matrices on four cross-sections of the (y, 3)

plane, for upwind differences.

sis is not applicable (e.g. for the centered difference discretization where |y| > 1

and \S\ < 1). In addition, we present numerical results for constant-coefficient

problems where Dirichlet boundary conditions are replaced by outflow bound-

ary conditions on portions of the boundary, and for several variable-coefficient

problems. All experiments were performed on a VAX-8600 in double-precision

Fortran. The reduced matrices were computed using PCGPAK [17]. The spec-

tral radii p((D-L)~~ U) were determined using the QZ algorithm in EISPACK

[9, 10].
Table 5.1 shows computed values of the spectral radii of the block Gauss-

Seidel iteration matrices derived from the centered difference discretization of

(3.1), for T = 0 (so that ô = 0). For y < 1, the table also shows the asymptotic

bound for these quantities derived by squaring the first expression of Corollary

6, with h — 0. The value for y = 1 is the limit as y —► 1 . Numerical

experiments with y = 0 and varying ô produced the same spectral radii; since

the bounds of Corollary 6 are symmetric with respect to y and ô, Table 5.1

also applies for the case y = 0 and ô taking on the values in the first column.

The results for y < 1 show that the limiting values of the spectral radii tend to

the bounding value as h —► 0 (for y fixed). The analytic bounds for the values

of h in the table are closer to the asymptotic bounds than to the computed
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spectral radii. The results also show that the method is highly effective for

y > 1, where S is not symmetrizable and our analysis does not apply. In this

case, some computed eigenvalues of each Gauss-Seidel matrix are complex.

Table 5.1. Spectral radii and bounds for the Gauss-Seidel

iteration matrices, centered differences, ô - 0.

y h = 1/8 1/16 h= 1/32
Asymptotic

Bound

.2

.4

.6

.8

1.0
1.2

1.4
1.6
1.8

2.0

.50

.40

.26

.13

.01

.03

.04

.08

.10

.10

.79

.62

.40

.19

.02

.03

.05

.08

.10

.10

.89

.69

.45

.21

.052

.04

.06

.08

.11

.15

.92

.72

.46

.22

.02

Table 5.2. Spectral radii and bounds for the

Gauss-Seidel iteration matrices, centered differences, y = ô .

h = 1/8 h= 1/16 h= 1/32
Asymptotic

Bound
Fourier

.2

.4

.6

.8
1.0
1.2
1.4

1.6
1.8
2.0

.46

.30

.13

.03
0

.02

.07

.14

.21

.27

.73

.46

.19

.04
0

.03

.10

.18

.26

.33

.82

.51

.21

.05
0

.03

.10

.19

.27

.35

.85

.52

.22

.05
0

.05

.23

.61
1.25
2.25

.85

.52

.22

.05
0

.03

.11

.19

.28

.36

Table 5.2 shows the computed spectral radii of the block Gauss-Seidel itera-

tion matrices for the centered difference discretization and y = ô. This table

contains both the rigorous bounds from Corollary 6 and the bounds of Theo-

rem 6 derived using Fourier analysis. The two bounds agree when y < 1 and

We suspect that the eigenvalue problem is ill-conditioned when 7=1, and that this is why

this computed spectral radius exceeds the asymptotic bound.
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ô < 1 . The rigorous bounds are pessimistic when y > 1 and ô > 1, and the

Fourier results agree with experimental results. We believe the source of the

pessimism is the inequality of (4.22), which prevents any cancellations due to

the opposite signs of C(a) and Ö ' from being put to use. The Fourier analysis

does not require an analogous inequality. Note that in both Tables 5.1 and 5.2,

for moderate values of y, the more highly nonsymmetric problems are easier

to solve than the nearly symmetric problems.

Our analysis applies only for discretizations of problems with Dirichlet

boundary conditions. However, it is known that the discrete solutions are more

meaningful physically when outflow boundary conditions

ux = 0   if a > 0, = 0   ift>0

are used [4, 13]. (In particular, for centered difference discretizations, when

y > 1 or S > 1, Dirichlet boundary conditions result in oscillatory discrete

solutions at boundary layers, whereas outflow boundary conditions result in

smooth solutions.) In Table 5.3, we compare the spectral radii for the block

Gauss-Seidel iteration matrices arising from Dirichlet problems with those aris-

ing from outflow boundary conditions. The left side of the table is for the case

¿5 = 0 (i.e., x = 0 in (3.1)), and the right-hand side is for ô — y (a - x).

The data is for mesh size h = 1/32. The outflow boundary conditions were

discretized by first-order differences [13]

M1'^)
u     — u    ,

n ,j n-\ ,j

"v(*/>   1)
Ui,n-Ui,n-\

The results show that the behavior for outflow boundary conditions is nearly

identical to that for Dirichlet conditions.

Table 5.3. Comparison of spectral radii of the Gauss-Seidel iteration

matrices derived from centered differences and either Dirichlet or

outflow boundary conditions, h = 1/32.

<5 = 0

.2

.4

.6

.8

1.0
1.2
1.4
1.6

1.8
2.0

Dirichlet

MS
.694
.447
.214
.053
.036
.056
.081
.112
.147

Outflow

WT~
.695
.448
.214
.053
.036
.056
.081
.109
.141

7

.2

.4

.6

.8
1.0
1.2
1.4
1.6
1.8
2.0

Dirichlet

Ü2Ö
.506
.214
.047

0
.032
.103
.188
.273
.353

Outflow

.826

.507

.215

.047

0
.032
.103
.188
.273
.353
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Finally, we describe some results for problems with variable coefficients, of

the form -Au + f(x, y)ux + g(x, y)u =0 on Q = (0, 1) x (0, 1), u = g on

dil. We consider four problems, which are taken from [1, 19]:

1. -Au + ax2ux + ax2uv = 0,

1-/1 . J\..  +I00w^ = 0,-Au + \a(l +x I«.2.

3. -Au + axLux = 0,

4. -Au + a( 1 - 2x)ux + a( 1 - 2y)uy = 0,

with u = 0 on 3ÇI. As in [1, 19], we descretized each problem using centered

differences and mesh size h = 1/20. The spectral radii of the Gauss-Seidel

iteration matrices are shown in Table 5.4. For reference, the table also reports

y = ah/2. For Problems 1 and 3, y represents the maximum cell Reynolds

number on the mesh, the minimum being 0. For Problem 2, it represents the

maximum cell Reynolds number for the .x-coordinate; the minimum is y/2,

and the y-coordinate has constant value ô = 5 . For Problem 4, the coefficients

change sign in Q ; the cell Reynolds numbers in each coordinate vary between

-y and y.

Table 5.4. Spectral radii for the Gauss-Seidel iteration matrices of four

problems with variable coefficients, centered differences, h = 1/20.

10

100
1000
10000

ah
2

.03

.26
2.6

26
263

Problem 1

.91

.91

.78

.96

.998

Problem 2

.23

.23

.40

.94

.999

Problem 3

.91

.92

.83

.89

.994

Problem 4

.90

.80

.18

.95

.999

Although it is difficult to make definitive statements about these results, they

appear to be consistent with the analysis of the constant-coefficient case. In

particular, for moderate a (the three smaller values), the spectral radii are

bounded well below one for all four problems. For Problems 1, 3, and 4,

performance improves as \y\ increases from 0; and for Problem 2 (where

ó = 5) it is very good for moderate y . Performance declines when y gets very

large; in these cases finer meshes will improve both performance of the iterative

solver and accuracy of the discrete solution. We remark that for Problem 2 with

a < 10, the Gauss-Seidel matrices have complex eigenvalues close in modulus

to their spectral radii. In many of the other cases (e.g., all instances of Problem

1), some computed eigenvalues contain small imaginary parts, of order at most

10~2.

6. Conclusions

We have performed an analytic and experimental study of a block iterative

method for solving the reduced system derived from a class of discrete non-

self-adjoint elliptic problems.  The analysis provides rigorous justification for
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the effectiveness of the reduced system methodology previously observed em-

pirically, and it shows that the use of the reduced system often results in faster

convergence than if the full system is solved by analogous iterative methods.

The experimental results show that the method is also effective for problems

where the analysis does not apply. We close with the observation that the com-

putations under consideration are naturally divided into individual subtasks

(corresponding to tridiagonal subblocks), so that they can be implemented very

efficiently on parallel computers.
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