CORRIGENDA

Francois Morain, On the lcm of the differences of eight primes, Math. Comp. 52 (1989), 225-229.

On p. 225 it was stated that if

$$
r(Q)=\operatorname{lcm}\left(q_{j}-q_{i}\right)_{1 \leq i<j \leq 8},
$$

where $Q=\left\{q_{1}, \ldots, q_{8}\right\}$ is a set of eight odd primes with $q_{1}<\cdots<q_{8}$, then

- Erdös has conjectured that $5040 \mid r(Q)$ for any Q;
- Theorem 1. For every $Q, 5040 \mid r(Q)$.

Both assertions are wrong. It should have been:

- Erdös has conjectured that $5040 \leq r(Q)$ for any Q;
- Theorem 1. For every $Q, 5040 \leq r(Q)$.

Actually, this is what is proved in the paper. Indeed, it is possible to find examples of sets Q for which 5040 does not divide $r(Q)$. J. Leech has proposed $r(\{210 n+199, n=1(1) 8\})=2^{3} 3^{2} 5^{2} 7^{2}$ and R. A. Morris $r(\{11,17,19,23,29,41,47,53\})=2^{3} 3^{2} \cdot 5 \cdot 7 \cdot 11 \cdot 17$. As a matter of fact, the smallest ρ for which there exists a set Q such that $r(Q)=\rho$ and $2^{3} \| \rho$ is $\rho=2^{3} 3^{2} \cdot 5 \cdot 7 \cdot 11$ with $Q=(\{17,19,23,29,37,41,47,59\})$ for instance.

F. Morain *

Institut National de Recherche en Informatique et en Automatique (INRIA)
Domaine de Voluceau, B. P. 105
78153 Le Chesnay Cedex (France)
\& Département de Mathématiques
Université Claude Bernard 69622 Villeurbanne Cedex (France)
E-mail: morain@inria.inria.fr

[^0]
[^0]: * On leave from the French Department of Defense, Délégation Générale pour l’Armement.

