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A DIFFERENTIAL DELAY EQUATION ARISING

FROM THE SIEVE OF ERATOSTHENES

A. Y. CHEER AND D. A. GOLDSTON

Abstract. The differential delay equation defined by to(u) = l/u for 1 < u <

2 and (uw(u))' = oj(u - 1) for u > 2 was introduced by Buchstab in con-

nection with an asymptotic formula for the number of uncanceled terms in the

sieve of Eratosthenes. Maier has recently used this result to show there is unex-

pected irregularity in the distribution of primes in short intervals. The function

co(u) is studied in this paper using numerical and analytical techniques. The

results are applied to give some numerical constants in Maier's theorem.

1. Introduction

In the traditional sieve of Eratosthenes all the integers 1 < n < x which are

multiples of the numbers 2 < m < x axe removed. What remains after this

process is the number 1 and all the prime numbers p in the range x ' < p < x .

By the prime number theorem there are asymptotically x/logx such numbers

as x —► cx>. Suppose that only the numbers 2 < m < x , for u > 2, axe

sieved. In this case, not only prime numbers, but also numbers with all their

prime factors larger than x are unsieved. It is natural in this case to ask for

an asymptotic formula for the number of elements left unsieved. Buchstab [1]

obtained such a formula. To state his result, define <p(x, y) to be the number

of positive integers < x with no prime factors < y, and further define the

function to(u) for u > 1 by the differential delay equation

(la) co(u) = - ,        1 < w < 2,
u

(lb) -j- {uco(u)) = co{u - 1),        u>2,
(4 l/t

where in (lb) the right-hand derivative of co(u) is taken at u = 2. Buchstab

proved, for x —> oo , that

4>{x, y) ~ xeyw(u)Y\ I 1
p<y ̂
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where y = x '" , and u > 1 is fixed. By Mertens's formula we have

which implies that (2) may be reformulated as

x
(3) (p(x, y) ~ uco(u)

logx'

This result of Buchstab is interesting because it shows that <f>(x, y) is a

somewhat irregular function. The factor xrjp<y(l _ p) 1S the "expected value"

of <f>(x, y), and for y < logx one finds by the Legendre sieve [4, p. 200]

that (j)(x, y) is asymptotic to this expected value. However, for larger sieving

ranges, equation (2) shows that </>(x, y) oscillates from this expected value by

the factor eyco(u). In view of this, it is important to study the function œ(u).

It has been shown by Buchstab [1], de Bruijn [2], and Hua [5] that co(u) ~ e~y

as u —> oo, and further that œ(u) converges faster than exponentially to e~y.

The best result is due to Hua, who proved that

,¿\ \(o(u) - e~y\ < £_"(log"+loglog"+(loglog"/log")~1)+°("/log")

A surprising application of Buchstab's result has recently been made by Maier

[6], Using an ingenious construction, Maier proved that the number of primes

in short intervals [x, x + (logx)  ],   C >  1 , is sometimes larger than, and
c — i

sometimes smaller than the expected number (logx)       .To state his result,

let

(5) M(v) = max(oj(u) - e    ),        M_(v) = min(oj(u) - e~y).
U~>V U">V

We will see later that these functions are well defined. Let n(x) denote the

number of primes < x . Maier proved, for any fixed C > 1 ,

7T(X + (l0gX)C) -7T(X) y
hm sup —- ',-— > 1 +e MAC)

*-oo (logx)0"1
(o) c

liminf^(x + (logx)  )-^(x) <[+e/M
x-*°° (logx)c_1

Furthermore, using a method involving the adjoint equation of (1), due to

de Bruijn, Maier showed that co(u) - e~y changes sign in every interval of

length one. Hence, for all C > 1,

(7) eyM+(C)>0,        eyM_(C)<0.

In this paper we compute oj(u) - e~y numerically for small values of u and

thus provide some numerical constants for Maier's results. We also prove some

new results on œ(u). We start by proving a theorem on M (v) and M_(v)

for the function co(u).



A DIFFERENTIAL DELAY EQUATION 131

Theorem 1. For v > 2, we have

(8) M (v) =    max   (co(u) -e~y),        M_(v) =    min   (co(u) - e~y).
v<u<v+2 v<u<v+2

Theorem 1 indicates that the maxima and minima of co(u) -e~y get smaller

in intervals of length greater than 2. If we examine co(u)-e~Y more closely, we

find it has a regular oscillatory pattern. Let us denote the zeros of oj(u) - e~y

in increasing size by A,, A2, A3, ... . Except for the relative minimum at u = 2

which is a cusp, the relative maxima and minima of œ(u) - e~y occur at the

critical points where oj'(u) = 0. We let c, = 2 and denote the critical points

in increasing size by c2, c3, ... . As mentioned before, for every u > 2, the

interval ( u, u + 1 ) contains a zero A,, and it is easy to prove that it will also

contain a critical point c (see §2). We add to this information the following

result:

Theorem 2. Each interval [u, u+ 1] contains at most two zeros for u>2, and

at most two critical points. Furthermore, we have Àx < cx < A2 < ■ • ■ ; the c2k

are relative maxima with co(c2k) - e~y > 0, and the c2k_x are relative minima

with oj(c2k_x) - e~y < 0.

It is easily proved that the interval [kk, kk + l] always contains two critical

points, while [ck - 1, ck] always contains two zeros.

We prove these theorems in §2. In §3 we provide numerical results on œ(u)

for 1 < u < 11. These results are obtained by solving ( 1 ) iteratively using

power series solutions. A similar procedure has been discussed in [3].

We expect that as n-»oo, An+1 -An -► 1, cn+x -cn —► 1, and cn - An —> 0.

However the convergence is not very rapid. These results are summarized in

Table 2. [Added in proof: These results have now been proved by A. Hilde-

brand.]

2. Proof of the theorems

Suppose u > 2, and let

(9) W(u) = co(u)-e~y.

By (lb) we see that W(u) satisfies

(10) u\V'(u) = W(u- l)-W(u)

or

(11) ^(uW(u))=W{u-l).

We now claim that there is a value c in every interval (u, u+ 1) such that

W'(c) = 0. Note first that (10) implies

12) uW'(u) = -[     W\t)dt.
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Suppose that W'(t) ^ 0 in (u-\ ,u). Then W'(t) is either always positive or

always negative in this interval, since W (t) is continuous for t > 2 . Suppose

W'(t) is positive in (u - 1, w). Then by (12), W'(u) < 0, a contradiction

to the continuity of W'(t). The same argument applies if W'(t) is negative.

If W(t) = 0 in this interval, then this will imply W(t) = 0 for all t < u

contradicting the value of W(u) in the initial range 1 < u < 2. Thus, there is

a sign change in (u - 1, u).

The same result also holds for W(u) (i.e., every interval (u, u+\) contains

a zero of W(u)) because (see [5]), for u > 2,

(13) uh(u-\)W(u) = - [     W(t)h(t)dt,
Ju-\

where

(14) h(u) =       exp l-ux-x-       -dt\ dx,

and h(u) > 0 is a decreasing function, with h(u) ~ \/u as u—>oo. Using (13)

and the positivity of h(u), we find by the same argument just used that every

interval (u, u+ 1 ) has a zero Xk . With this preparation we can now prove the

theorems.

Proof of Theorem 1. To prove the result for M+(v), it suffices to prove that

given a positive relative maximum at c, c > 3 , there will be a value d', c-2 <

d' < c, such that W(d') > W(c). By (13) and the mean value theorem for

integrals there is a value d such that c - 1 < d < c and

W(d)h(d) = -ch(c- l)W(c).

Applying ( 13) to W(d) again, we find a number d', d-\ <d' <d, such that

W(d')h(d') = -dh{d - \)W{d),

and hence

(15)    ^--cdk(c-:Zä'r{c)>-cdw{c)'

since h(u) is positive and decreasing. This proves the result for v > c - 2.

The first maximum is at c2 = 2.7632... and is positive, and the second is at

c4 = 4.2175... and is also positive (see Table 1 and Figure lb). Therefore,

our proof shows that the result holds for v > c4 - 2. But we have M+(v) =

max)1<u<(, (oj(u) - e~y) for 1 < v < c2, and since c4 - 2 < c2, the result holds

for all v > 1 . The proof for M_(v) is similar.   D

Proof of Theorem 2. First note that (10) implies immediately that at critical

points ck > 2 we have

(16) W{ck-\) = W{ck).
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Figure la.      W(u) for 1 < u < 3 .

Figure lb.      W(u) for 2.5 < w < 4.5

Our method for proving Theorem 2 is by induction. We note that the theorem is

true initially for u < 3 , as may be easily verified since co(u) = (log(u- l) + l)/u

for 2 < u < 3 (see also Figure la). Now suppose the theorem is true up to ck ,

a positive maximum of W(u), and consider the interval [ck -1, ck] for k > 2.

Let us suppose further that W(u) is as indicated in Figure 2, i.e., W(u) de-

creases in (ck-1, ck_|), has a negative minimum at ck_x , and then increases in

(ck-\ > ck) ' and hence has precisely two zeros Afc_,, Afc in the interval. Further

suppose that the only critical points in [ck- I, ck] are the relative minimum

at ck_x and the relative maximum at ck  (if k — 2 the relative minimum c,
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Figure 2

Figure 3

is a cusp, not a critical point). We will prove that W(u) will duplicate this

behavior in the next interval [ck, ck+2], i.e., W(u) will decrease, hit a zero

at Xk+X , continue to decrease to a negative minimum at ck+x , then increase

through a zero Xk+2 to a positive maximum at ck+2 (see Figure 3). The only

critical points will be at ck+x and ck+2. Further ck+x - ck_x > 1, ck+2 - ck >

1. Afc , -A¿_, > 1, and kk+2-Xk > 1 . This will prove Theorem 2 for u < ck+2.

The above argument can now be applied to the next interval [ck+2 - 1, ck+2].

Hence, the theorem will hold by induction for all u .
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We first note that if c is a critical point which is not a relative maximum

or relative minimum, then W'(c) = W"(c) = 0. On differentiating (10), we

conclude that W'(c—l) = 0 . Thus, critical points that are inflection points can

only occur at u = c if u = c - I is also a critical point. Since by assumption

the only critical points in [ck - 1, ck] axe at ck_x and ck , the only possible

critical points which are not extrema in [ck , ck + 1 ] are at ck_x + 1 or ck + 1 .

These cases will be treated later.

By equation (11) the sign of W(u) in the interval [ck — 1, ck] determines

whether uW(u) increases or decreases in the interval [ck, ck + 1]. Further,

uW(u) and W(u) have the same zeros and the same sign. Thus uW(u) is

as pictured in Figure 3; i.e., uW(u) has a zero at u = Xk, uW(u) > 0 for

Xk < u < ck, uW(u) increases for ck < u < Afc_, + 1, and uW(u) decreases

for Afc_1 + 1 < u < Xk + l. Since W(u) has a zero in every open interval of length

1, W(u) must have a zero Xk+X in (Xk , Xk + 1 ), and hence W(u) and uW(u)

have a unique zero at Afc , . Note Xk+X > Xk_x + 1, so that Xk+X - Xk_x > 1 .

Also W(Xk + 1) <0.

Next, uW(u) will increase for Xk + 1 < u < Xk+X + 1 . Further, it must hit a

unique zero at Xk+2, since otherwise the interval (Xk+X, Xk+X + 1) would have

no zero. Also Xk+2 > Xk + 1 , so Xk+2 - Xk > 1, and W(Xk+x + 1) > 0.

It remains to prove that W(u) is as shown in Figure 3, and ck+x - ck_x > 1

and ck+2 - ck > 1 . We begin by noting that if uW(u) decreases and W(u) >

0 in an interval, then W(u) also decreases in that interval; and if uW(u)

increases and W(u) < 0 in an interval, then W(u) increases in that interval.

Therefore, W(u) decreases in (Xk_x + 1, Xk+i) and increases in (Xk + 1, Xk+2).

Let ck+x be the next relative minimum of W(u) for u > Xk+X .

We now show W(u) decreases for ck < u < Xk_, + 1 . To see this, let a

and ß be any two numbers in this interval with ck < a < ß < Xk_x + 1 . On

integrating (11), we have

rß-i

(17) ßW(ß)-aW(a)= W{t)dt < {ß - a)W{a - 1),
,/a-l

since by Figure 2, W(t) is positive and decreasing in the interval (a-1, /?-1) C

(ck - 1, Xk_x ). Hence we have

ß(W(ß) - W{a)) = ßW{ß) - aW{a) - (ß - a)W(a)

< (ß-a)(W(a- 1)- W{a)) = (ß-a)aW\a),

which gives

(18) aW'(a)>-J—(W{ß)-W(a)).
ß — a

From (18) we see W(u) decreases in (ck,Xk_x + 1), since W(u) initially

decreases and if there were a value a where W'(a) = 0, then ( 18) would imply

W(ß) < W(a) for all ß > a. Hence a would not be a relative minimum, and

there are no critical points which are inflections in this interval. Furthermore,

W(u) > 0 in (ck , A._, + 1), because uW(u) > 0 in this interval.
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Since ck+x is defined as the next relative minimum of W(u) for u > Xk+X ,

we have that W(u) decreases in (Xk ,, ck+x).

We next consider the interval (ck+x, Xk + 1). We note ck+x ̂  Xk+X , since

equality would imply Xk+X - I - Xk ox Xk_x . The first case is impossible

because this would imply the interval (Xk, Xk+X) of length one has no zeros.

The second case is impossible since Xk+X > Xk_x + 1 .

We now prove ck_x + 1 < ck+x . For if not, then either ck+x < ck_x + 1 , or

ck+\ = ck-\ + 1 ■ ln the first case let ck+x < ß < ck_x + 1 . Then, since W(t) is

negative and decreasing in (ck+i - 1, ck_x ),

ßrV(ß)-ck+xW(ck+l)= [        W(t)dt<(ß-ck+x)W(ck+x-l)

= (ß-ck+x)W(ck+l),

where we used (16) in the last line. Hence, W(ß) < W(ck+X) for any ß > ck+1,

contradicting the fact that ck+] is a relative minimum. In the case ck+x =

ck_x + 1, we have W(ck+{) = W(ck__x), and for Xk+X < ß < ck+x = ck_x + 1,

-ßW(ß) + ck+xW(ck+[) = P       W{t)dt > (ck+x-ß)W(ck+x - 1)
J ß-\

= (ck+x-ß)W(ck+x),

implying W(ß) < W(ck+X), which is impossible if ck+x is a relative minimum.

This argument also shows that ck_x + 1 is not an inflection point as mentioned

earlier.

Next, we prove that W(u) increases in (ck+l, Xk + 1). Let a and ß be

any numbers satisfying ck+x <a<ß<Xk + l. By the same argument used to

prove (18), we have

cx\V\a) < -7A—(W(ß) - W'a)).
ß — a

If W(u) did not increase through this interval, then there is a point u = a in

the interval where W'(a) = 0. Letting a = a implies W(ß) - W(a) > 0 for

any ß > a, which shows that W(u) increases. Let ck+2 be the next relative

maximum of W(u) for u > Xk+2. Then W(u) increases in (Xk+2, ck+2). The

proof that ck+2 > ck + 1 is the same as the previous argument that ck+x >

ck-\ + 1 ' which also shows that ck + 1 is not an inflection. This completes the

proof of Theorem 2.   D

3. Numerical calculations

To compute co(u) numerically, we start with a power series solution in the

initial range and then iteratively obtain new power series solutions by substitut-

ing into (lb) and integrating term by term. Let

(19) co Au) = to(u)     for j < u < j + 1.
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Thus, cox(u) = l/u for 1 < u < 2, and by integrating (1),

(20) toAu) = l0g("~ 1) + 1     for 2 < u < 3.
1 u ~    ~

In general, for j > I,

rU— 1

(21) ucoJ+x(u)= ojj(t)dt + U+l)(OjU+l)    foxj+l<u<j + 2.

We expand œ Au) into a power series about u = j + 1 :

oo

(22) <oj(u) = ^2ak(j)(u-(j + l))k     foxj<u<j+l.
k=0

For j = 2 we have

log(w- 1)+ 1
co Au) =

u

1 + log(2 + (u - 3)))
3 + (m-3)

(oo    ,     ,,m, 0,m \    / oo

E(-"3i:r3)) .+^+e
m=0 J /   V n=l

(-!)'">-3)"'
n2n

= £X(2)(M-3)\
fc=0

where a0(2) = (1 + log2)/3 , and for fc > 1 ,

-,     f   »fc+if   l+log2        1^1       (2A
(23) *l '     [    ]      \      3k+x        3(2*)¿¿(*-w>V3

= (-l)k+lbk(2),      say.

We have bx (2) = -0.02146... , and it is easily shown that bk (2) > 0 for k > 2 .

Since

£^(!)VE(^3-3(f)'<3,m=0 v /   \    / m=0  \    / \    /

¿,(2)<l/2fc     for A: > 2.

we have

An induction argument using (21) shows that in general, for k > 1 and j > 2,

(24) \ak(j)\ < 1/2*.

This shows that the series solutions converge rapidly.

In computing a> (w), we begin by truncating the series for to2(u) and com-

puting the coefficients of the resulting polynomial to a given accuracy. Let this

approximation to co2(u) be denoted by T2(u), and put E2(u) = oo2(u) — T2(u)



138 A. Y. CHEER AND D. A. GOLDSTON

and E = max2<u<i\(o2(u)-T2(u)\. On substituting T2(u) into (21) we obtain,

for 3 < u < 4, a new series T3(u) given by

rU— 1

uT3(u)= T2(v) dv + 3T2(3)

= j"    (co2(v) - E2(v)) dv + 3(co2(3) - E2(3))

= uco^u) - uEy(u),

where

\E,(u)\ = Mr    E2(v) dv + 3E2(3)
<(u-3)E + 3E <E

The same argument clearly applies for each iteration, and thus, if we start with

a given accuracy, we will retain it at each step, aside from round-off and other

computational errors.

Figure 4. W(u) = co(u) -e y for 7.8 < u < 9 .

Our calculations were initially done using MACSYMA on a Vax 780. The

series for co2(u) was truncated at 50 terms and the coefficients were accurate

to 16 digits. This polynomial was then used with (21) to determine the ap-

proximations to ça Au). Later we used Mathematica on a Mac II to redo our

calculations. We first used a series for oo2(u) with 60 terms and did all calcula-

tions with 25-digit accuracy, and then repeated the calculations with 100 terms

and 50-digit accuracy.

The error in truncating co2(u) after the A:th term is less than the absolute

value of the next term since the series is alternating with decreasing coefficients.
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Hence, the error is at worst 1/2 + . For the case k = 50, the error is less

than 2-51 = 4.4 x 10~16, while for k = 60 and k = 100 the errors are

2-61 = 4.3 x 10~19 and 2~101 = 3.9 x 10-31, respectively. The zeros and

critical points of co(u) were computed using Newton's method. Comparing

the results from the different approximations provided a check on the accuracy

of our calculations. The results in Tables 1 and 2 are in complete agreement

between the calculations with k = 60 and k = 100, with the exception of the

last digit in the value of co(cx2) - e~y, where one would expect the accuracy of

the calculation for k = 60 to be at most 10_1  .

Table 1

Point u w(u) - e~

1.78107

2
2.48332

2.76322
3.22700

3.46974
4.00171

4.21753
4.78578

4.99493
5.56650

5.77973
6.35072

6.56115
7.14000

7.34605
7.93400

8.13590
8.73170

8.93036
9.53230

9.72844
10.33550

10.52934

0

-6.14594 x 10~2

0

5.68380 x 10~3
0

-6.36654 x 10"4
0

6.22072 x 10"5
0

-5.01722 x 10-6

0

3.38871 x 10~7
0

-2.03006 x 10"8

0

1.09487 x 10"9
0

-5.33852 x 10""
0

2.36503 x 10"12

0

-9.58198 x 10"'4

0

3.57568 x 10"1S

The results of our calculations are indicated in Tables 1 and 2. Table 1

lists the zeros and critical points of co(u) - e~y, and the values of oo(u) - e~y

at these critical points. These values are truncated at 5 digits. The size of

Maier's constants eyM+(C) and eyM_(C) may be estimated from this table,

since M+(C) > oj(cA - e~y for any c > C, and M_(C) < oo(c ) - e~y for

any c > C. In fact M+(C) = oj(c ) - e~' for even j and A _, < C < c ,

and M_(C) = oo(c ) - e~y for odd j and A._, < C < c . Thus, for exam-

pie, there are arbitrarily large values of x where the interval [x, x + log x]
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Table 2

n ^n+l~^n Cn+\ ~ C n       Cn+\~^n Cn~^n

.70225 .76322 .98215 .21892
1 .70225 .76322 .98215 .21892
2 .74367 .70652 .98642 .27989
3 .77470 .74779 .99053 .24274
4 .78407 .77739 .99322 .21582
5 .78072 .78480 .99395 .20914
6 .78421 .78142 .99465 .21323
7 .78927 .78489 .99532 .21043
8 .79399 .78985 .99590 .20604
9 .79770 .79446 .99636 .20190

10 .80060 .79807 .99673 .19866
11 .80319 .80090 .99703 .19613

will contain more than (1 + e'(2.36x 10 12))log7x > (1 + 4.2 x 10 12)log7x

primes, and other values of x where the interval will have less than

(1 - ^(5.338 x 10""))log7x < (1 - 9.5 x 10"")log7x primes (see Figure

4).

Table 2 summarizes some statistics on gaps between zeros and critical points.

Our results indicate that Xn+X - Xn and cn+x - cn increase. We expect that the

distance will slowly converge to 1 in both cases. The fact that cn+x - Xn <

1 follows from the observation that by (10) W(cn+X) = W(cn+X - 1), and

therefore, since there is a sign change in the interval [cn+x - 1, cn+x], there

must be two sign changes.

Added Comment. The editor has brought to our attention the paper, Numerical

solution of some classical differential-difference equations, by George Marsaglia,

Arif Zaman, and John C.W. Marsaglia, which has since appeared in Math.

Comp. 53 (1989), 191-201. In their paper a numerical scheme similar to the

one in this paper is used to compute co(u) accurately for u < 500. They also

studied other differential-difference equations.
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