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LINEAR COMBINATIONS OF ORTHOGONAL POLYNOMIALS
GENERATING POSITIVE QUADRATURE FORMULAS

FRANZ PEHERSTORFER

Abstract. Let pk(x) = x +■■■ , k e N0 , be the polynomials orthogonal on

[-1, +1] with respect to the positive measure da . We give sufficient condi-

tions on the real numbers p , j = 0, ... , m , such that the linear combina-

tion of orthogonal polynomials YfLo^jPn-j has n simple zeros in (—1,-1-1)

and that the interpolatory quadrature formula whose nodes are the zeros of

Yfj=oßjPn-j has positive weights.

1. Introduction

Let a be a positive measure on [-1, 1] such that the support of da contains

an infinite set of points. In this paper we consider interpolatory quadrature

formulas with positive weights, i.e., quadrature formulas of the form

(1.1) /+ f(x)da(x) = Ycjf(xj) + R„(f),
J~l i=i

where -1 < x, < x2 < < xn < 1 , c. > 0 for j — 1, ... , n , and R„(f) = 0

for / g P2n_x_m , 0 < m < n (Pn denotes as usual the set of polynomials of

degree at most n ). As in [6], such a quadrature formula is called a positive

(2/1 - 1 — m, tí, da) quadrature formula. If a is absolutely continuous on

[-1, 1], with ff'(x) = w(x), we write also (2/7 - 1 - m, n, w) instead of

(2n -l-m , n, da). Furthermore, we say that a polynomial tn g ¥n generates

a positive (2/z - 1 - m, n, da) quadrature formula if tn has n simple zeros

x, < x2 < • • • < xn in (-1, +1) and the interpolatory quadrature formula

based on the nodes x is a positive (2n - 1 - m, n, da) quadrature formula.

Since the degree of exactness is 2n - 1 - m, we get with the help of (1.1)

the well-known fact that such a polynomial tn is orthogonal to P„_,_m with

respect to da , and hence is of the form

m

(1.2) tn(x) = Y,PjPn-j(x),
7=0
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where /c G R and pk(x) = x -\— , k G N0, denotes the polynomial of degree

k orthogonal with respect to da. For that reason we are interested in condi-

tions on the numbers p. such that tn generates a positive (2/7 -l-m, n, da)

quadrature formula. For small m , m = 1, 2, 3, necessary and sufficient con-

ditions on the numbers p. can be obtained from the general characterizations

of positive quadrature formulas given by the author in [7, 8] (see in particu-

lar [8, Theorem 2(b)]), by Sottas and Wanner [10] (note that the conditions

given there do not imply that the nodes are in (-1, +1) ), and recently by

H. J. Schmid [9]. But for larger m the computational work increases rapidly,

and the conditions become very complex (see the examples given in [9, 10]).

Thus, the problem arises to find "simple and applicable" sufficient conditions on

the numbers Pj suchthat Yl'jLoPjPn-j generates a positive (2/z-I-ttz, n , da)

quadrature formula. This problem is studied and partly solved in this paper by

giving first a general sufficient condition on the p. 's, from which simpler con-

ditions are derived.

2. Preliminary results

In order to state our results, we need some known facts on polynomials or-

thogonal on [-1,1], resp. orthogonal on the circumference of the unit circle

\z\ = 1 . Let us recall that the polynomials pn — x" -\-, n G N, orthogonal

with respect to da on [-1,-1-1] satisfy a recurrence relation of the form

(2.1) Pn(x) = (x-an)pn_x(x)-Xnpn_2(x)    for/zeN,

where p_x =0, p0 = 1 , an € (—1, +1) for n G N, and Xn > 0 for n>2.

p(X), n G N0 , denotes the so-called associated polynomial, defined by

(2.2, ,>)-!/''-(X»-f"'"W
«o J-i X — I

where d0 = /*, da(t). Note that the pn 's are polynomials of degree /z with

leading coefficient one, which satisfy the following recurrence relation (see e.g.

[2, Chapter 3, §4])

(2.3) P(n)(x) = (x-an+x)p(X)_l(x)-Xn+ip(X)_2(x)   for/zeN,

where the an 's and Xn 's are determined by (2.1).

We are now ready to state the first simple characterization of positive quadra-

ture formulas.

Lemma 1. Let n , m G N0, n > m, and let p. G R for j = 0, ... , m , p0 ^ 0.

Then Y^JL0PjP„_¡ generates a positive (2n-l-m, n, da) quadrature formula

if and only if Yl"j=oPjPn-j has n simple zeros in (-1,+1) and the zeros of

¿Zj^P-jPn-j and Y!j=oPjPnX)-\-j separate each other.

Proof. Setting
m m

7=0 7=0
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we get for the weights c , using relation (2.2),

f+x-tnix)-da{x) = dß^A   f0r7=i, ...,„.
>       J-l    (x-Xj)t'n(Xj) °   t'n(Xj)

Hence the conditions c > 0 for j: = 1, ... , n are equivalent to the interlacing

property of the zeros of tn and tn_x.   D

Next, denote by P„(z) = z" + ■ ■ ■ , n G N0, the polynomial orthogonal on

[0, 2n] with respect to the positive measure

-a(cos (fi)   for tp e [0, n],

1 a(coscp)      fortpG(n,2n],

i.e.,

f Ke~MPÄe^)d\p(<£) = 0   fork = 0,...,n-l.
Jo

Note if a is absolutely continuous on [-1, +1] and a'(x) = w(x), then y/ is

absolutely continuous with i//'(<p) = itj(cos(T7)| sin<t5| for 0 e [0, 2n]. It is well

known (polynomials orthogonal on the unit circle are studied extensively in [3])

that the Pn 's satisfy a recurrence relation of the type

(2.5) Pn(z) = zPn_x(z)-an_xP*n_x(z)   for/zeN,

where an e (-1, +1) for n G NQ, and where P*(z) = z"Pn(z~ ) denotes

the reciprocal polynomial of Pn . The reason that the parameters an are real

and have absolute value less than one consists in the facts that y/ is odd with

respect to n and that tp has an infinite set of points of increase (see [3, p. 5]).

Furthermore, let ß„(z) = z" -\-  be defined by the recurrence relation

(2.6) nn(z) = zQn_l(z) + an_lQ*n_x(z)   for/zeN.

£ln is called the associated polynomial of Pn . It is well known that both

polynomials Pn and Qn, n > 1 , have all their zeros in the open unit disk

\z\ < 1 . The following relations hold between polynomials p orthogonal on

[-1, 1] with respect to da and polynomials Pn :

(2.7) /j„(x) = 2-"+1Re{z-"+iP2„_1(z)},

(2.8) p(X)_x(x) = 2~"+X lm{z-n+Xci2n_x(z)}/smcf>,

where x = \(z + z~~ ), z = e , tp e [0, n]. The parameters (an) are given

by [3, (31.4)]

(2.9) a2n_i = l-(un + vn)   and   a2n = ^^ ,

where

P„(l) P«(-l)
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Moreover,

(2.10) a2n = 0   for/zeN0, if a(x) = -a(-x) a.e. on [-1, 1].

For example, we obtain for the Jacobi polynomials p{°     (x) — x" H-  which

are orthogonal on [-1, 1] with respect to the weight function wt'a,ß\x) =

(1 - x)"(l + x) , a, ß > -1 , that the corresponding parameters #„ ap-

pearing in the recurrence relation of Pf     (z) = z" + ■ ■ ■  are given by

n in      ¿a<V a + ß + 1 (cß) ß - a fnr „ ^ ^
(z.ll)     a. x, =-—--,    a,      =-   tor n e JNn.
v       ;        2n+l a + ß + 2n + 3 ln a + ß + n + 2 °

Hence we get for the ultraspherical case p(n \x) '-=Pn       '        '(x) and u>(  (x)

= (l-xY"'/2 that

(2-12)       aïï+. = -^n and ^) = 0 for«eNo'

and in particular for the Chebyshev case, i.e., for the case where X = 0 and

î7j(x) = (1 -x2r1/2,that

(2.13) an = 0   for/zeN0,        Qn(z) = Pn(z) = zn   for«eN0.

Finally, we shall need

Lemma 2. Let n G N a/zd / e Z wz7/z 2|/| < n . Assume that the real polynomial

tn(z) = z" -\- has all its zeros in the open unit disk \z\ < 1. Then the cosine-

polynomial Re{z~ tn(z)}, resp. the sine-polynomial Im{z_ tn(z)) , z = e"^,

(p G [0, n], has n - I zeros 4> in (0, 7t), resP- n - I - I zeros \p■ in (0, 7t),

and their zeros separate each other, i.e, 0 < <px < \u~x < <p2 < ■    < *pn_i_x <

<t>n-l<n'

Proof. Since Re{z~ tn(z)} (respectively Im{z~ tn(z)}) is zero at z = e1^,

4> G (0, 2?r), if and only if

z      "      = -1    (respectively + 1),

which is equivalent to

argz"     + arg "      — (2k - l)n    (respectively 2kn),
t„(z)

k G N0, we get, taking into consideration the fact that argtn(e )/t*n(e"t>) in-

creases from 0 to 2nn if cp varies from 0 to 2?r, that both Re{z~ tn(z)} and

Im{z~ tn(z)} have 2(n-l) zeros in [0,27r) and that their zeros separate each

other. Observing that Im{z~ tn(z)} has a zero at cj> = 0 and <fi = n, the

assertion follows by the symmetry of trigonometric polynomials.   □

3. Main results

First, let us introduce the following polynomials, which play a crucial role in

this paper.
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Definition. For given n e N let the polynomials Qv 2n_x(z) = zv -\-, v e

{0,..., 2/7-1}, be defined by the recurrence relation

(3 1) ^,2n-l(Z) = ZQv-l,2n-liZ) ~ ü2n-l-vQv-l ,2n-l

for v = 1, ... , 2/7 - 1,

where Q0 2n_x = I  and the a2n_x_l/'s are the parameters appearing in the

recurrence relation (2.5) of the Pn 's.

The polynomials Qv 2n_, have the following important properties.

Lemma 3. Let «eN. The following propositions hold:

(a) lXZo'd - K-2-J) < l(£.2-i(*)l S n«:0(l + l«2„-2-J) /or W < 1.
w/zere i/ e {0, ... , 277 - 1}. Moreover, Qv 2n_, has all zeros in \z\ < 1.

(b) Let ve{0,...,n- l};then(z = e"t',x = cos<p, <pG[0, n])

pn(x) = 2'n+X Kc{z-n+xQ2v2n_x(z)P2(n_v)_x(z)}

and

tf1(x) = 2-"+1Im{z-"+,C22,,2n_1(z)Q2(n_I/)_1(z)}/sin(A.

Proof, (a) follows immediately from (3.1) and [3, (26.6)].

(b) We first note that the recurrence relations (2.5), resp. (3.1), imply (see

[3, (3.6)]) that

(2.5') P*n(z) = P*n_x(z)-an_xzPn_x(z)   for/zeN,

and

{3A>) Ql.2n-liZ) ^ ô*-,,2«-|(Z) - a2n_x_vzQp_x   2n_x(z)

for v = 1, ... , 2« - 1.

With the help of all these recurrence relations it follows by induction arguments

that

zJp2n_1(z)+Jp2;_,(z) = zc2,,2„_1(z)p2n_1_,y(z)+c2;.2n_1(Z)Jp2;_,_.,(Z),

which, in view of (2.7) and taking into consideration the fact that for z = e

2Rc{z-n+XP2n_x(z)} = z-n(zP2n^(z) + P;n_x(z)),

gives the first relation.

Analogously as above, one demonstrates that

zf22n_,(z)-Q^_1(z) = zt2F.2„_1(z)Q2„_1_(z)-ß;,2fl_1(z)Q;n_1_,/(z),

which in conjunction with (2.8) gives the second relation.   G
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The main result is now the following

Theorem 1. Let n, m e N0,   m < n,  p0, ... , pm e R and p0 ^ 0.   Then

Yl7=oPjP„-j generates a positive (2n - 1 - m,n, da) quadrature formula if

J2'J'=oßjzJQ2m-2j 2(/i-7)-i(z)' where p] = 2Jpjt has all its zeros in the open

unit disk \z\ < 1.

Proof. Putting

m m

tnix) = Y^jPn-jix)   and   Îl.W = E¥Î-.-iW.
1=0 7=0

we get with the help of Lemma 3(b) that (z = e   , x = cos <f>, <p e [0, 7t])

(3.2) t„(x) = 2        Re{z     q2Jz)z P2(n-m)-iiz)}

and

.(1)   /   \       ~-n+l T     ,   -m        .   .    -(n-m)+lr^ /   \i i   ■
tnLi(x) = 2        Im{z     q2m(z)z Q2(„_m)_,(z)}/sin0,

where

(3-3) <?2m(Z) = YïjzlQ2m-2i,2(n-i)-liZ)-

7=0

Assume now that q2m has all its zeros in \z\ < 1 . Since the same is true for

^2(n-w)-i ' *l f°ll°ws fr°m Lemma 2 that tn has « simple zeros in (-1, +1).

Thus, by Lemma 1, it remains to demonstrate that the zeros of tn and tn_x

separate each other.

Using the relation

Re a Re b + Im a Im b = Re{ab},

where a, b G C, we get for z = e'

Re{z-(n-1)^2m(z)P2(„_m)_1(z)}Re{z-('I-%2/„(z)Q2(„_m)_1(z)}

(34 +Im{z-(',-\2m(z)P2(„_m)_1(z)}Im{z-(',-1,^m(z)Q2(tt_m)_1(z)}

= \q2m(z)\¿Rc{P2{n_m)_l(z)Q2{n_m)_l(z)}

= c\q2m(z)\2,        c€R+,

where the last equality follows from the known relation [3, (5.6)]

/J2(«-m)-l(Z)Q2(«-m)-l(Z) + i22(«-m)-l(Z)/,2*(«-m)-l(Z)

.   2«-2m-l , .      _ +
= cz ,    where c e R  .

Considering relation (3.4) at the zeros x , -1 < x, < x2 < < xn < 1 ,

of fn(x) and taking into account that by Lemma 2 the zeros of tn(x) and

r„_t(x) := lm{z-{n-X)q2m(z)P2{n_m)_x(z)}/sin4>, x = \(z + l/z), z = e1*,
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4> G [0, n], separate each other, we obtain

(-1)" '*!;_!,(*,)> 0   for y = l,...,/z,

which proves the interlacing property of tn and tn_, and thus the theorem.   D

Remark 1. From the general characterization of positive quadrature formulas

given by the author in [7, Theorem 2] it follows with the help of relation (3.2)

that the sufficient condition of Theorem 1 is also necessary if 2m < n .

From Theorem 1 we obtain, using some ideas of Cauchy and Kojima on the

location of the zeros of polynomials (see [4, §30, in particular Exercise 6]), the

following sufficient conditions which are easy to verify.

Corollary 1. Let n, m e N0,   m < n,  p0, ... , pm G R and p0 ^ 0.   Put

Ao = \f*o\ >

(3-5) A, = 2V,|n»V,        y"""':     fl-U....m.
11k=0    yl       \a2{n-l)-K\>

and let jv e {0, 1, ... , m), j0 := 0 < jx < ■ ■ ■ < jm. be those indices for which

Aj ^f) for v = 1, ... , z/z* and Aj = 0 for j G {I, ... , m}\{j0,jx, ...,jm>}.

Then each of the following two conditions is sufficient that Y™=0 PjPn-¡ generates

a positive (2n - 1 - m, n, da) quadrature formula:

(i) e:1iA^<a0.
(2)Al>2Ai     for v = 0, ... ,m*-2 and A.       > A.    .

Proof. First let us note that condition (2) implies condition (1). In fact, apply-

ing successively the inequalities given in (2), we obtain

m"-l

A    >A, +A¡  > A. +A. +A. > ■•• >  V A. +A.    ,
h J\ 7,   -      7, 72 72 ¿-^i       K Jm'

v=l

which is condition (1).

Next we show that condition (1) implies that

m

<hmiZ) ■= E¥J^-2j.*-j)-l(Z)' h = 2JP-j>
7=0

has all zeros in \z\ > 1 , which is equivalent to the fact that

m

YïjzJQ2m-2j,2(n-j)-\iZ)
7=0

has all zeros in \z\ < 1 and proves the corollary. Assume, to the contrary, that

q2m has a zero Ç in \z\ < 1 . Then it follows, using from Lemma 3 the fact

that O*    ,    .  has no zero in Izl < 1 , that
^-¿m, 2n—l '    ' —     '

(3.6) |/in| =
E~   yj^-2m-2j,2(n-j)-\i^)

PjC
ö2/„,2„_i(C) 7=1 7=1
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where the first inequality follows with the help of Lemma 3, which is a contra-

diction to (1).    a

Let us give an illustrative

Example. Let n, m G N0 , n > m , and suppose that the parameters av satisfy

0 < 1/7 < 1 - \av\   for v = 2(n -m) - 1, ..., 2/7 — 2.

Then we get by Corollary 1 that

■       |       ,~   2.— m

Pn-PmPn-m,        \pm\<(2y)     ,

generates a positive (2/7 - 1 - m, n, da) quadrature formula, where because

of (2.10) the condition on \pm\ can be replaced by \pm\ < (2y)~m if a is

odd. In particular, we obtain for the Jacobi weight by a rough estimate of the

parameters aj,     ' from (2.11) that

[a, 8) (a,B) ,        ,       ~-3w

p\ P,-Pmp„:„,     \pj<2    .

generates a positive (2/z - 1 - m, n, (1 - x)"(l + x) ) quadrature formula

for each n > m + max{2, a + ß + 1 + 2\ß - a\}. In the ultraspherical case

a = ß = X - 1/2, X G (-1/2, oo), the conditions on \pm\, resp. n , can be

replaced by \pm\ <2~ m and n > m + max{A, -3X}.

Let us note in this connection that the conditions of Corollary 1 are in general

too rough to get the known results (see [1]) on the positivity of (n - 1, n,

(1 -x)a(l +x/) quadrature formulas generated by Pna'b), a, b > -I. But

this is not surprising because the proof of such results requires very special

properties of Jacobi polynomials.

In order to weaken the sufficient conditions of Corollary 1, a better estimate

for max0^2;r \Q*2m_2j^n_])_x(e^)IQ*2m^2n_x(e'4')\ than that one used in (3.6)

would be needed.

In the following, let  Tn , resp.    Un, denote the Chebyshev polynomial of

the first, resp. second, kind of degree n and Tn(x) = 2~"+ Tn(x) = x" H-,

resp. Un(x) = 2~"Un(x) = x"h— . For the case of the Chebyshev distribution

da(x) = (1 -x2)~x/2 dx we get in view of (2.13) particularly simple conditions,
2   1/2

which hold also for the distribution da(x) = (1 - x )     dx .

Corollary 2. Let n, m e N0, m < n, p0, ... , pm e R, p0 ^ 0, and put

p. = 2JPj for j = 0, ... , m. Then the following propositions hold:

(a) YlJ=r)Pjfn_j generates a positive (2n-l-m, n, (l-x )~x/2) quadrature

formula if YT^p^'^ has all its zeros in the open unit disk |z| < 1. In

particular (besides conditions (1) and (2) of Corollary I), the condition

(3) p0> px>-> pm>0

is sufficient that Z)J=o'u/^n-7 generates a positive (2n-l-m, n, (l-x2)~l/2)

quadrature formula.
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(b) The sufficient conditions given in (a) (including conditions (1) and (2) of

Corollary 1 with an - 0 for n e N0 ) are also sufficient for Yl7=oPjÛn-j to
1    1 II

generate a positive (2/z -l-m,n,(l-x)') quadrature formula.

Proof, (a) The first statement follows immediately from Theorem 1.   Since

by the Kakeya-Eneström Theorem (see, e.g., [4]) condition (3) implies that

X^lo^/z",~J nas a^' zeros m lzl < 1 > Part (a) is proved.

(b) We shall demonstrate, independently from Theorem 1, that J2"7=0PJUn_j

generates a positive (2n-l-m, n, (l-x )    ) quadrature formula if X^"L0p¡•

zm~] has all zeros in \z\ < 1, which also implies all other statements of (b).

Setting
m

rniZ) = Z Y»JZ

7=0

and

2\(*) = HlfijUn-M) = Im{z/-n(z)}/sin0,
7=0

we obtain, since, as is well known, the associated polynomial of Uk is Uk_x ,

k G N0 , that the associated polynomial t(X)_x of tn with respect to (l-x )1/2

is of the form

m

2"~'í-i W = I>A-i-/(*) = Im{/-n(z)}/sin0.
7=0

Observing that

we deduce with the help of Lemma 2, by considering relation (3.7) at the n

zeros of tn, that tn an<

assertion is proved.   D

zeros of tn, that tn and tn_x have interlacing zeros. In view of Lemma 1 the

2   _1/2
The sufficiency of condition (3) for the Chebyshev weight (1 - x ) is

due to C. A. Micchelli [5], who derived this result in order to demonstrate

that the ultraspherical polynomials pn , 0 < X < 1 , generate a positive

(tj-1,7i,(1-x)-1') quadrature formula. Let us mention in this connec-

tion (for a different approach see [5]) that for -1/2 < X < 0 the positivity

can be demonstrated with the help of condition (1), using the simple fact that

7^.(1) = 1 for k G N0 . Proceeding similarly as in the proof of Corollary 2(b),

it could also be demonstrated that Corollary 2(b) holds for the more general

weight (1 -x)"(l + x) , a, ß G {-1/2, 1/2}, a result which has been given

by the author in [8, Corollary 2], using different methods.
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Using the fact that the sufficient condition of Theorem 1 is also necessary if

2m < n (see Remark 1), we get

Corollary 3. Let n, m G N0, 2m < n , p0, ... , pm G R and p0, pm e R\{0} .

} put 4
r2m-l-2/',

For k g {0, ... , m) put Ak] = 2'\pk\ and

J "y1 -¡-\2m-l-2k

l + \a2(«-;-I) J)
icr'"Ä(i-i«2(,-fc-i,-j)

for j = 0, ... , m, j ¿k.

If there is a k G {1, ... , m} such that Ak ] > £™=0 ,■-# ̂ ' » then 5wlo V-i '

P„-j does not generate a positive (2n - 1 - m, n, do) quadrature formula.

Proof. In view of Remark 1 it is sufficient to demonstrate that

m

<hmiZ) •=Y.fíJzJQ*2m-2j,2(n-j)-li2)' ßj = 2V, '
7=0

has at least one zero in  \z\ < 1 .   With the help of Lemma 3 we get on the

circumference \z\ = 1

\fikzkQ:

2m-l-2k

2m-2k.2(n-k)-l iz)\>\~Pk\       J!      iX~Kn- ■Zt-D-K-I

K=0

m 2m-1-2)

>D^I    II    (1+ !««.-;.1)-kI

7=0 K=0

> E^Z'ô2m-27,2(„-7)-l(Z)
7=0

Using the fact that Q*m_2k 2,n_k)_x has no zero in \z\ < 1 , this implies by

Rouché's Theorem that q2m has k zeros in \z\ < 1 , which proves the asser-

tion.    D

If one is interested only in such linear combinations of orthogonal polyno-

mials whose zeros are simple and are in (-1, +1), conditions (1) and (2) can

be weakened in the following way.

Theorem 2. Let n, m G N0,   m < n ,  p0, ... , pm G R and p0 ^ 0.   Put

l5ol = <"o>
2n-2

BJ = 2j\pJ\f      n      (l-KI)   forj=l,...,m,
K=2(n-j)-\

and let j G {0, 1, ... , m}, j0 := 0 < jx < • ■ ■ < jm- be those indices for which

Bj^ 0 for v = 1, ... , m* and B} = 0 for j G {1, ... , m}\{j0,/,..., jm-}.

Then each of the following two conditions is sufficient that Y^1=qPjP„-¡ has n
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simple zeros in (-1, 1 ) :

(i') e£,\<v
(2')   5,  >2B.     for v = 0, ... , m* - 1 and B, .    >B..

J v -'iv-t-1 J m    — I J m

Proof. Since by (2.7)

m Im

YHjPn-M) = 2~"+1 Re   YïjzJp2(n-n-iiz)    .
7=0 (7=0 J

where ¿   = 27u., we deduce with the help of Lemma 2 that Y^=oPjPn-jix)

has n simple zeros in (-1, +1) if J2j=oP¡zJP^tn-n-i has all zeros in |z| > 1.

Observing that by relation (26.5) of [3]

max
|z|<l

^(„-»-.W
< —z—=-    for j = I, ... , m,

"ifiï^-.ii-KI)P2n-liZ)

the assertion can be proved in the same way as Corollary 1.   D
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