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LINEAR COMBINATIONS OF ORTHOGONAL POLYNOMIALS
GENERATING POSITIVE QUADRATURE FORMULAS

FRANZ PEHERSTORFER

ABSTRACT. Let p,(x) = P , k € Ny, be the polynomials orthogonal on
[-1, +1] with respect to the positive measure do . We give sufficient condi-
tions on the real numbers My, J= 0, ..., m, such that the linear combina-

tion of orthogonal polynomials Z;":O HiD,_; has n simple zerosin (=1, +1)
and that the interpolatory quadrature formula whose nodes are the zeros of
Z;’;O M;p,_; has positive weights.

1. INTRODUCTION

Let o be a positive measure on [—1, 1] such that the support of do contains
an infinite set of points. In this paper we consider interpolatory quadrature
formulas with positive weights, i.e., quadrature formulas of the form

+1 n
(1.1) / | f(x)da(x):_Z;c,ﬂxj)m,,(f),
Jj=
where —1 <x, <x,<---<x,<l,¢;>0for j=1,....,n,and R, (f)=0
for feP,, ,_,,» 0<m<n (P, denotes as usual the set of polynomials of

degree at most n). As in [6], such a quadrature formula is called a positive
(2n — 1 — m, n, do) quadrature formula. If o is absolutely continuous on
[-1, 1], with ¢'(x) = w(x), we write also (2n — 1 — m, n, w) instead of
(2n—=1-m, n, do). Furthermore, we say that a polynomial ¢, € P, generates
a positive (2n —1-m, n, do) quadrature formula if 7, has n simple zeros
X, < X, < -+ <x,in (=1, +1) and the interpolatory quadrature formula
based on the nodes X; is a positive (2n — 1 —m, n, do) quadrature formula.
Since the degree of exactness is 2n — 1 — m, we get with the help of (1.1)
the well-known fact that such a polynomial ¢, is orthogonal to P, _ with
respect to do , and hence is of the form

1—-m

(1.2) ()= wp,_(x),
Jj=0
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where u ;€ R and p, (x) = X , k € N, , denotes the polynomial of degree
k orthogonal with respect to do . For that reason we are interested in condi-
tions on the numbers u j such that 7, generates a positive (2n—1-m, n, do)
quadrature formula. For small m, m =1, 2, 3, necessary and sufficient con-
ditions on the numbers u ; can be obtained from the general characterizations
of positive quadrature formulas given by the author in [7, 8] (see in particu-
lar [8, Theorem 2(b)]), by Sottas and Wanner [10] (note that the conditions
given there do not imply that the nodes are in (—1, +1)), and recently by
H. J. Schmid [9]. But for larger m the computational work increases rapidly,
and the conditions become very complex (see the examples given in [9, 10]).
Thus, the problem arises to find “simple and applicable” sufficient conditions on
the numbers u; such that ET:O I4;p,_; generates a positive (2n—1-m, n, do)
quadrature formula. This problem is studied and partly solved in this paper by
giving first a general sufficient condition on the u i ’s, from which simpler con-
ditions are derived.

2. PRELIMINARY RESULTS

In order to state our results, we need some known facts on polynomials or-
thogonal on [-1, 1], resp. orthogonal on the circumference of the unit circle

|z| = 1. Let us recall that the polynomials p, = x" 4+ ..., n €N, orthogonal
with respect to do on [—1, +1] satisfy a recurrence relation of the form
(2.1) p,(x)=(x—-a,)p,_(x)=4,p,_,(x) forneN,

where p_, =0, py=1, a, € (-1, +1) for neN,and 4, >0 for n > 2.

pL” , n € Ny, denotes the so-called associated polynomial, defined by

(n _ 1 HD”H(X)—-[),H_]([)
(22) P = g | P dot),

where d, = f_+,’ do(t). Note that the pf,” ’s are polynomials of degree n with
leading coefficient one, which satisfy the following recurrence relation (see e.g.
[2, Chapter 3, §4])
1 1 1

(23) P = (x =y )P, (X) = 4,,,p, 5(x) forneN,
where the «, ’s and 4, ’s are determined by (2.1).

We are now ready to state the first simple characterization of positive quadra-
ture formulas.
Lemma 1. Let n,meN,, n>m, and let ,ujeRforj:O,... ym, py #0.
Then Z;’;O 1;p,_; generatesa positive 2n—1—m, n, do) quadrature formula
if and only if Z;.":O H;P,_; has n simple zeros in (=1, +1) and the zeros of
E;":O up,_; and E;":O U jpf,'_),_ j separate each other.
Proof. Setting

m m
(1) (n
I, = § :‘ujpn—j and ¢,°, = § :'ujpn——l—j’
j=0

J=0
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we get for the weights ¢ using relation (2.2),

H g (x 0 (x,
c.= ¢a’a(x)=d 1)) forj=1,...,n.
I = x)i(x) O (x)
J7nig ny
Hence the conditions ;> 0 for j =1, ..., n are equivalent to the interlacing
property of the zeros of 7, and tf,'_)l .0
Next, denote by P (z) = 2"+, ne N, , the polynomial orthogonal on

[0, 27] with respect to the positive measure

—a(cos¢) for ¢ €[0, n],
vio)={

(2.4)
o(cos¢) for ¢ e (m, 2n],

1.€.,

2n . i
./ e_'k¢Pn(€'¢)d‘//(¢)=0 fork=0,...,n-1.
0

Note if ¢ is absolutely continuous on [—1, +1] and ¢'(x) = w(x), then v is
absolutely continuous with y'(¢) = w(cos)|sin¢| for ¢ € [0, 2x]. It is well
known (polynomials orthogonal on the unit circle are studied extensively in [3])
that the P, ’s satisfy a recurrence relation of the type

(2.5) P(z)=zP, (z)—a, P, (z) forn€eN,

where a, € (~1, +1) for n € N,, and where P;(z) = z"P,(z”") denotes
the reciprocal polynomial of P, . The reason that the parameters a, are real
and have absolute value less than one consists in the facts that ¥ is odd with
respect to 7 and that y has an infinite set of points of increase (see [3, p. 5]).
Furthermore, let Q,(z) = z" + .- be defined by the recurrence relation

(2.6) Q,(z)=2zQ,_,(2) +an—lQ;—l(Z) forneN.

Q, is called the associated polynomial of P, . It is well known that both
polynomials P and Q, , n > 1, have all their zeros in the open unit disk
|z| < 1. The following relations hold between polynomials p, orthogonal on
[-1, 1] with respect to do and polynomials P, :

(2.7) p,(x)=2"""Re{z"""'P, _(2)},
(2.8) pV (x)=2"""Im{z7""'Q, (2)}/sing,
n—1 2n—1
where x %(z + z_') , z=¢e", ¢ € [0, n]. The parameters (a,) are given

by [3, (31._4)]

v —U
(2.9) a,, ,=1-(u,+v,) and a, = W
where (a 1)
pn+] pﬂ+l -
Uy =—>— and v =-—"""——".
" p,(1) " p,(—1)
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Moreover,
(2.10) a,,=0 forneN,, if 6(x) = -0(-x)a.e. on[-1, 1].

For example, we obtain for the Jacobi polynomials pfl‘”ﬂ )(x) =x"+--- which

are orthogonal on [—1, 1] with respect to the weight function w'? )(x) =
(1 —x)*(1 + x)ﬂ, a, B > —1, that the corresponding parameters aif"ﬂ) ap-

pearing in the recurrence relation of P,(,‘"ﬂ "(z)=z"+--- are given by

2.11) doh = _at B+l ap_ B-a

’ = - s = - forneN.
n+l a+f+2n+3 2n a+f+n+2 0

Hence we get for the ultraspherical case pi,“(x) = pff‘l/ 2.4=1 2)(x) and wu)(x)
= (1 -x)*"* that
(2.12) a(;n)ﬂ = A and a;'” =0 forneN,

n+1+4 n
and in particular for the Chebyshev case, i.e., for the case where 4 = 0 and
w(x) = (1 —x*)""? that
(2.13) a,=0 forneN,, Q,(z)=P(z)=z" forneN,.

n
Finally, we shall need

Lemma 2. Let n € N and | € Z with 2|l| < n. Assume that the real polynomial
t,(z)=z"+-- has all its zeros in the open unit disk |z| < 1. Then the cosine-
polynomial Re{z"[tn(z)}, resp. the sine-polynomial Im{z_ltn(z)}, z=e",
¢ €10, ], has n—1 zeros ¢; in (0, m), resp. n—1—1 zeros y; in (0, m),
and their zeros separate each other, i.e, 0 < ¢, <y, < ¢, < - <y, ;| <
G, <T.

Proof. Since Re{z"tn(z)} (respectively Im{z_[tn(z)}) is zero at z = ',
¢ € (0, 2n), if and only if

_t .
27 n(2) = —1 (respectively + 1),
t,(z)
which is equivalent to
n—=21 t,,(z) .
argz + arg ) = (2k — 1)m (respectively 2kn),
n

k € N, we get, taking into consideration the fact that arg tn(ei‘j’)/t;(eid’) in-

creases from 0 to 2nn if ¢ varies from O to 27, that both Re{z”[t (z)} and

n
Im{z_ltn(z)} have 2(n—1) zeros in [0, 27) and that their zeros separate each

other. Observing that Im{z_/t (z)} has a zero at ¢ = 0 and ¢ = &, the

n
assertion follows by the symmetry of trigonometric polynomials. O

3. MAIN RESULTS

First, let us introduce the following polynomials, which play a crucial role in
this paper.




LINEAR COMBINATIONS OF ORTHOGONAL POLYNOMIALS 235

Definition. For given n € N let the polynomials Q, ,,_,(z) = '+, vE

{0, ..., 2n — 1}, be defined by the recurrence relation

*
Q:/,Zn—l(z) = ZQu—l,2n—l(Z) - a2n—|—qu/—l ,2n—1

(3.1)
forv=1,...,2n-1,

where @, ,,_, = 1 and the a,, ,_,’s are the parameters appearing in the
recurrence relation (2.5) of the P, ’s.

The polynomials Q have the following important properties.

v,2n—1

Lemma 3. Let n € N. The following propositions hold.

(@) TI20(1 = 1ay, s D) <10} 51 (2] S TIZo(1 +1ay, 5 ) for |z] < 1,

where v € {0, ..., 2n — 1}. Moreover, Q, ,. | hasall zeros in |z| < 1.

(b) Let v€{0,...,n—1};then(z=¢", x =cos¢, ¢ €[0, n])

p,(x)=2"""Re{z7""' 0y, 50 1(2)Pyyy_1(2)}
and '
P () =27 im0y 51 (2, (2)}/ si0 B

Proof. (a) follows immediately from (3.1) and [3, (26.6)].
(b) We first note that the recurrence relations (2.5), resp. (3.1), imply (see
[3, (3.6)]) that

(2.5") P (z)=P _/(z)-a,_zP,_|(z) forneN,

and

* *

Q, i (2) =0, ) gy i(2) =y, 20, 5,_4(2)

(3.1")
forv=1,...,2n-1.

With the help of all these recurrence relations it follows by induction arguments
that

* *

ZPZn—l(Z) + PZn—l(z) = ZQV.Zn-l(Z)P2n—I—u(Z) + Q:.Zn—l(Z)PZn—l—-u(Z) ’

which, in view of (2.7) and taking into consideration the fact that for z = e'’

— 1 —_ *
2Re{z ""'P, (2)} =z "(zPy,_(2)+ P},_,(2)),
gives the first relation.
Analogously as above, one demonstrates that

* *

ZQZn—I(Z) - QZn—l(z) = ZQ:/.2n—l(Z)Q2n—l—u(Z) - u.Zn—I(Z)Q;n—l—:/(Z)’

which in conjunction with (2.8) gives the second relation. O
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The main result is now the following
Theorem 1. Let n,m € Ny, m < n, uy,...,u, € R and uy, # 0. Then
Z;" 0HiPn_; generates a positive (2n — 1 —m, n, do) quadrature formula if
2, 0tz Qi 2 2in—jy—1(2) where ji; = ’uj, has all its zeros in the open
unit disk |z| < 1.
Proof. Putting

m
1
t,(x) =Y wp,_;(x) and 1, (x) Zu Dy (x
j=0

we get with the help of Lemma 3(b) that (z = e, x = coso, p €[0, n])
(3.2) 1,(x) = 27" Re{z "y, (2)2” " Py (2))
and

tﬁ,l_)l(x)=2_"+llm{z dyn(2)2” (- m)HQM m—1(2)}/sing,

where
m .
~ )
(33) qzm(z) = Z/‘J‘Z Q2m—-2j,2(n—j)—l(z)'
j=0
Assume now that g, has all its zeros in |z| < 1. Since the same is true for
P, , it follows from Lemma 2 that ¢, has n simple zeros in (-1, +1).
Thus, by Lemma 1, it remains to demonstrate that the zeros of ¢, and tf,'_)l
separate each other.
Using the relation

(n—m)—1

ReaReb + Imalmb = Re{ab},
where a, b € C, we get for z = e'

(n—

‘qz,,,(zm snemy1(2)}
qu(Z)PZ(n—m)—l z }Im{z qu(z)Q2(n—m)—l(Z)}

= |qzm(z)| Re{PZ(,,_m)_1(Z)Qz(n_m)_1(z)}

Re{z " (= 1q2m(z)P2( _(2)}Re{z"

+Im{z" (=1
(3.4)

2
= clg,,,(2)]", ceR’,

where the last equality follows from the known relation [3, (5.6)]

PZ(n—m)—l(Z)Q';(n—m)—l(z) + QZ(n—m)—I(Z)P;(n—m)—I(Z)

s~ 2n=2m—1 ~ +
=¢z"7"™ where¢eR".

Considering relation (3.4) at the zeros x,, -l<x <x, < <x, <1,
of ¢,(x) and taking into account that by Lemma 2 the zeros of ¢,(x) and

q2m(z)P2(n_m)_l(z)}/sin¢, X = 2 (z+1/z), z=¢e

(n—1)

ro_(x) = Im{z" ¢
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¢ € [0, ], separate each other, we obtain
(=) (x)>0 forj=1,...,n,
which proves the interlacing property of ¢, and tf,l_)l and thus the theorem. 0O

Remark 1. From the general characterization of positive quadrature formulas
given by the author in [7, Theorem 2] it follows with the help of relation (3.2)
that the sufficient condition of Theorem 1 is also necessary if 2m < n.

From Theorem 1 we obtain, using some ideas of Cauchy and Kojima on the
location of the zeros of polynomials (see [4, §30, in particular Exercise 6]), the
following sufficient conditions which are easy to verify.

Corollary 1. Let n,m € Ny, m < n, uy,..., u, € Rand py, # 0. Put

A0=|ﬂ0|'
. =1=2j(y g )
(3.5) Aj=2jluj\HK=°2m_l 2n=j= 1) forj=1,...,m,
HK=0 (l_|a2(n—l)—xl)
andlet j,€{0,1,...,m}, j,:=0<j, <---<j,. bethose indices for which
A, #0forv=1,... ,m and A; =0 for je {1, ..., mPN\{jg, jys s jpe}-

Then each of the following two conditions is sufficient that Z;.":O ;P,_; generates
a positive (2n—1-m, n, da) quadrature formula:

(1) oy 4; < 4.

(2)Aj22Ajlf0ru=0 m—2andA .>AJ-
Proof. First let us note that condition (2) implies condltion (1). In fact, apply-
ing successively the inequalities given in (2), we obtain

A 24, +4, 24, +A4, +4, > > > A+ 4

which is condition (1).
Next we show that condition (1) implies that

~ J
qu Z‘ujz QZm 2j.2(n—j)— (Z) ‘uj=2‘uj’

has all zeros in |z| > l , which is equivalent to the fact that
m )
~ )
D157 Qo g ain gy (7)
j=0

has all zeros in |z| < 1 and proves the corollary. Assume, to the contrary, that
q;m has a zero ¢ in |z| < 1. Then it follows, using from Lemma 3 the fact
that Q5 ,, , hasnozeroin |z| <1, that

m

(36)  lugl= Z oGzl ZAm <ZA

Q’m 2n— l(
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where the first inequality follows with the help of Lemma 3, which is a contra-
diction to (1). O
Let us give an illustrative
Example. Let n, m € N, n > m, and suppose that the parameters g, satisfy
O<1l/y<l-la| forv=2n-m)—1,...,2n-2.
Then we get by Corollary 1 that
D= Py Il < (207",

generates a positive (2n — 1 — m, n, dg) quadrature formula, where because
of (2.10) the condition on |u,| can be replaced by |u, | < (2y)™"™ if o is
odd. In particular, we obtain for the Jacobi weight by a rough estimate of the

parameters a'®'? from (2.11) that
n
(a, B) (a, B) -3
p " =yl <27

generates a positive (27 — 1 — m, n, (1 — x)"(1 + x)”) quadrature formula
for each n > m + max{2,a+ f + 1 + 2|8 — a|}. In the ultraspherical case
a=p=41-1/2, € (=1/2, 00), the conditions on |u,|, resp. n, can be
replaced by |u,,| < 27 and n>m+ max{A, —34}.

Let us note in this connection that the conditions of Corollary | are in general
too rough to get the known results (see [1]) on the positivity of (n — 1, n,
(1 —x)"(1+ x)B) quadrature formulas generated by pff'b), a,b>—-1. But
this is not surprising because the proof of such results requires very special
properties of Jacobi polynomials.

In order to weaken the sufficient conditions of Corollary 1, a better estimate
for maxg 5, IQ;m_zj,z(n_j)_1(el¢)/Q;m,zn-|(eld))| than that one used in (3.6)
would be needed.

In the following, let 7, , resp. U, , denote the Chebyshev polynomial of
the first, resp. second, kind of degree n and Tn(x) = 2_"+1Tn(x) =x"4+ -,
resp. U (x)=27"U, (x)=x"+ . For the case of the Chebyshev distribution
do(x) = (1 —xz)_l/2 dx we get in view of (2.13) particularly simple conditions,
which hold also for the distribution dao(x) = (1 — xz)l/2 dx.

Corolla_ry 2. Let n,me Ny, m<n, py,...,un, €R, uy #0, and put
Bj= 2u j for j =0, ..., m. Then the following propositions hold.
a) " u. T . generatesa positive (2n—1—m, n, (l—xz)—l/z) quadrature
j=0Hjtn_;

Sformula if Z;’;O [tjzm_j has all its zeros in the open unit disk |z| < 1. In
particular (besides conditions (1) and (2) of Corollary 1), the condition

(3) gg>p, >-->p,>0
is sufficient that Z;"zo 1, fn—j generates a positive 2n—1—-m, n, (1 _xz)-n/z)
quadrature formula.
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(b) The sufficient conditions given in (a) (including conditions (1) and (2) of
Corollary 1 with a, = 0 for n € N,) are also sufficient for Z;’;O Y to

n—j
2,172

generate a positive 2n—1—-m, n, (1 —x°)'%) quadrature formula.

Proof. (a) The first statement follows immediately from Theorem 1. Since
by the Kakeya-Enestrom Theorem (see, e.g., [4]) condition (3) implies that
Y o#;z" "7 hasall zeros in |z| < 1, part (a) is proved.

(b) We shall demonstrate, independently from Theorem 1, that Z;."zo I (7n_ j
generates a positive (2n—1-m, n, (1 —xz) 1/ 2) quadrature formula if E;."zo i

2"/ has all zeros in |z| < 1, which also implies all other statements of (b).
Setting

m .

_ _h—-m ~ _J

r(z)=z E itz
Jj=0

and

2"1,(x) =Y _ U, ;(x) =Im{zr,(2)}/sing,
j=0

we obtain, since, as is well known, the associated polynomial of U, is U, _,,

k € N, , that the associated polynomial tle_)l of ¢, with respect to (1 - xz)' /2

is of the form
1.(1) =z
20 () =Y aU, () = Imi{r,(2)}/ sing.
j=0

Observing that

Im{zr, (z)}
sin ¢

Im{r,(z)} .2
~sing =@r

(3.7) Re{r,(z)} ~Re{zr,(2)}

we deduce with the help of Lemma 2, by considering relation (3.7) at the »
zeros of ¢, , that ¢, and ti,l_)l have interlacing zeros. In view of Lemma 1 the
assertion is proved. O

The sufficiency of condition (3) for the Chebyshev weight (1 — xz)_l/ 2 s
due to C. A. Micchelli [5], who derived this result in order to demonstrate
that the ultraspherical polynomials pff), 0 < 4 < 1, generate a positive

(n=1,n,(1- xz)_l/z) quadrature formula. Let us mention in this connec-
tion (for a different approach see [5]) that for —1/2 < 4 < 0 the positivity
can be demonstrated with the help of condition (1), using the simple fact that
T, (1) =1 for k € N;. Proceeding similarly as in the proof of Corollary 2(b),
it could also be demonstrated that Corollary 2(b) holds for the more general
weight (1 — x)*(1 +x)?, @, B € {~1/2, 1/2}, a result which has been given
by the author in [8, Corollary 2], using different methods.
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Using the fact that the sufficient condition of Theorem 1 is also necessary if
2m < n (see Remark 1), we get

Corollary 3. Let n,me Ny, 2m<n, ug, ..., pu, €R and uy, pn, € R\{0}.
For ke {0, ..., m} put ALk) =2klak| and
2m—1-2j
k o Ile=o (1+a, «l) . .
AT =2 |u| ;,,,_,_Zk MK for j=0,....m, j#k.
Hx=0 (1—1a Dn—k-1)-k |
Ifthereisa k € {1, ..., m} such that Ak >Zj —o.juA; " then Z, oM

Pp_; does not generate a posztzve 2n—-1-m,n,do) quadrature formula.
Proof. In view of Remark 1 it is sufficient to demonstrate that

m

* o = _J* Y
qzm(z) = u;z sz_zj‘z(,,_j)_.|(z), :Uj—z M
j=0

has at least one zero in |z| < 1. With the help of Lemma 3 we get on the
circumference |z| =1
2m—1-2k

N k ~* -
12" Qymak 2in—tey—1 (D) 2 i | H (I =lay_g—1)—l)
k=0
m 2m—-1-2j
>y il T (T +lag,j_y )
j=0 k=0
J#k

m

~ _J*
Z#,Z Qom-2j.2n-j-1(2)] -

j=0
J#k
Using the fact that Q] _,, ,,__; has no zero in |z| < I, this implies by
Rouché’s Theorem that q;m has k zeros in |z| < 1, which proves the asser-
tion. O

If one is interested only in such linear combinations of orthogonal polyno-
mials whose zeros are simple and are in (-1, +1), conditions (1) and (2) can
be weakened in the following way.

Theorem 2. Let n,m € Ny, m < n, uy,..., 4, € R and p, # 0. Put
‘Bolz.uov
) 2n—-2
B =2ul/ [I (-lah forj=1,....m,
k=2(n—j)—1
andlet j,€{0, 1, m} Jo=0<j, <<, bethose indices for which
B, £0forv=1,...,m" andB—Oforje{l MmN\ Sy dr )

Then each of the fol[owmg two condztzons is suﬁiczent that S =0 M;Py_; has n
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simple zeros in (-1, 1):

(1) X)L, B, <B.

(2) B, >2B,  Jor v=0,...,m" -1 and B, >B
Proof. Since by (2.7)

m- -1 Im*

m m
— 1 N j

Zlujpn—j(x) =2""Re ,tlijPZ(n_j)_l(Z) s

j=0 J=0
where [ i = 2 1, we deduce with the help of Lemma 2 that E;n:o WD, j(x)
has n simple zeros in (=1, +1) if 327", ﬂijP;(n-—j)—I has all zeros in |z| > 1.
Observing that by relation (26.5) of [3]
Pinjy-1(2)

P;n—l(z)

1
<
- 2n-2
HKZZ(,,_j)_l(l - |ax‘)

the assertion can be proved in the same way as Corollary 1. O

max
|zI<1

forj=1,...,m,
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