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VISCOUS SPLITTING FOR THE UNBOUNDED PROBLEM

OF THE NAVIER-STOKES EQUATIONS

LUNG-AN YING

Abstract. The viscous splitting for the exterior initial-boundary value prob-

lems of the Navier-Stokes equations is considered. It is proved that the ap-

proximate solutions are uniformly bounded in the space L°°(0, T; Hs+ (£2)),

s < j , and converge with a rate of 0(k) in the space L°°(0, T; H (ß)),

where k is the length of the time steps.

1. Introduction

Let Q be a domain in the space R . An initial-boundary value problem of

the Navier-Stokes equation is given as

(1.1) — + (u-V)u+ -Vp = uM + f,        xeQ,  t>0,

(1.2) V-w = 0,        xefí,  t>0,

(1.3) u\xeda = 0,

(1.4) «l/=o = "oM-

If Q = E , then the boundary condition (1.3) disappears and the problem

reduces to a pure initial value problem.

Beale and Majda [4] proved the convergence of a viscous splitting scheme

for the initial value problem, where equation (1.1) was split in each time step

into an Euler equation and a linear Stokes equation. This scheme was related to

the vortex method [6], a numerical approach for high Reynold's number flow.

Therefore, it is interesting to consider not only pure initial value problems,

but also initial-boundary value problems. It is known that there is a boundary

layer near the boundary, and that vortices are created and turbulence may de-

velop. From the point of view of numerical analysis, the boundary condition

for the Euler equation is different from that of the Navier-Stokes equation; the

changing of the boundary condition in each time step creates singularities of

the approximate solutions.

Alessandrini, Douglis, and Fabes considered the viscous splitting of the ini-

tial-boundary value problem in bounded domains [3], where the solutions of
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the Euler equation were replaced by polynomials. Convergence was proved, but

it is not known whether this scheme is numerically realizable. Benfatto and

Pulvirenti proved the convergence of a scheme for the initial-boundary value

problem in the half plane [5]. A distribution vortex sheet, whose support is just

the boundary, was inserted as in the vortex method, and a Neumann condition

for the vorticity was introduced to replace the velocity boundary condition. The

combination of those two steps generated an approximate no-slip condition at

the boundary.

The author of this paper considered this problem in bounded domains [13]-

[17]; a correction step was applied to maintain the no-slip condition too, but this

operator was bounded in H , s > 0, the velocity boundary condition for the

diffusion step was exact, and a nonhomogeneous term was added to the Stokes

equation to neutralize the error of the above correction step. Convergence was

proved. Numerical results have been obtained which will appear in a separate

paper.

The purpose of this paper is to study this problem for unbounded domains.

For simplicity we assume that the boundary 9Í¿ of Q is sufficiently smooth,

simply closed, and Q is its exterior. We also assume that flows tend to zero at

infinity. The problem of the physically interesting case of flows having uniform

velocity at infinity is still open. A simplification of the proof would suffice for

the bounded case.

We now briefly summarize our main results. Denote by x = (xx, x2) or

y = (yx,y2) a point in R2. The usual notations HS(Q) and Wm'p(Q.) for

Sobolev spaces, and || • \\s and || • ||m for norms, are used throughout this pa-

per. For the problems (1.1 )-( 1.4), we assume that V-w0 = 0, u0e (H0(Q)) n

(H3(Q))2, f e L°°(0, T; (h\Q))2) n Wl,co(0, T; (/f'(Q))2), and the solu-

tion w€L°°(0, T; (/74(n))2)nH/1'oo(0, T; (HV2(Çl))2), where T is a posi-

tive constant.

We construct a projection operator

O: {u e (H\Çl))2 ;V-u = 0,(u-n,l)m = 0}^{ue (H^Q))2 ; V • u = 0} ,

such that

(1-5) \\eu\\s+x < C\\u\\s+X    Vs>0,

where n is the unit outward normal vector, (•, •)on is the inner product of

L (dSl), and C is a constant depending on s . We will give an example of 6

in §2.

The following scheme is considered: We divide the interval [0, T] into equal

subintervals with length k. Then we construct ùk(t), pk(t), uk(t), pk(t) on

each interval [ik , (i+1 )k), / = 0, 1, ... , according to the following procedure.
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In the first step, we solve the following problem on the interval [ik, (i+l)k):

(1.6) dJ± + (ük.V)ük + lVPk=f,

(1.7) V-ük=0,

(1.8) V"Uan = o>
(1.9) ük(ik) = uk(ik-0),

where uk(-0) = u0 .

In the second step—the projection—we construct Qvtk((i + l)k - 0).

In the third step, we solve the following problem on the interval [ik, (i+l)k) :

(1.10) ^ + hpk = vAuk + j(I-e)uk((i+l)k-0),

(1.11) v-W/t = o,

(1-12) »k\x€aa = 0,

(1.13) uk(ik) = euk((i+l)k-0),

where / is the identity operator. In these formulas the spacial variable x is

suppressed for simplicity.

Our main result is the following:

Theorem.//« is the solution ofproblem (1.1)-(1.4), ük , uk the solutions of

problems (1.6)-(1.13), and if 0 < s < \, then there is a constant k0 > 0 such

that

(1.14) sup (\\uk(t)\\s+x , \\ük(t)\\s+x) < M,
0<t<T

(1.15) sup (||«(0 - uk(t)\\x, \\u(t) - ük(t)\\x) < M'k
0<t<T

for 0 < k < k0, where the constants k0, M, M1 depend only on the domain Q,

the constants v , s, T, the operator 0, the functions f, uQ, and the solution

u o/(l.l)-(1.4).

The existence and uniqueness of the solution uk is known [9, Chapter 4,

Theorem 1 and §2], and using an argument similar to [12], we can get the

existence and uniqueness of ük ; the regularity of uk , ùk is also obtained.

Although the existence in [12] is merely local, we will show that the step length

is independent of i.

2. Preliminaries

In this paper we always denote by C a generic constant which depends only

on the domain Q, the operator 6, and the constants v, s, T ; by C0 a

generic constant which depends only on the domain Q., the operator 6, the

constants v , s , T, the known functions /, u0, and the solution u of (1.1)-

( 1.4); by C{, C2, ... , MQ, M{, ... some other constants which are determined

according to special requirements.
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Let E (Q) be a subset of L (Q.) such that œ e E (Q.) if and only if co e
2 2 2

L (Q) and there is a u e (L (Q)) such that co = -VA«, where VA =

(d2, -dx), dt = d/dxj. We define a norm

Mi = {fa™2 dx]

in C^°(Q). Let El(Q) be the closure of C™(Q.) with respect to the norm [•],,

and let E^(Q) correspond to C^{Q). Letting œ e E (Q), we consider the

boundary value problem

( -Aw = co,

{2A) in

The weak statement of (2.1) is: find cp e EQ(Q) such that

(2.2) (VA<p,VAy/) = {(o,y/) = (u,VAy/)   Vy/eElQ(Q),

where co = -VA«. It is easy to see that

(VAcp,VAcp) = [cp]2x.

By the Lax-Milgram theorem, (2.2) possesses a unique solution. Setting y = cp

in (2.2), we get [tp]x < \\u\\0[w]x , hence

(2.3) [ç»], < IImIIo-

If co e E°(Q) and cp is the solution of (2.2), we define a norm

KD = (Hlo + [rf)1/2

in E (Q). It is easy to see that E (Q) is a Hubert space.

Let Dm be a differential operator of mth order, m > 0, Dm = dm/dx\dx2 ,

i + j = m . We assume that co e E (Q) n Hm(Q.) ; then by the regularity of

the solutions of elliptic equations [2], we have for the solution cp of (2.2) that

cp e /C+2(ß). From (2.2) we get

(VAç», VADmdiy/) = (ta, Dmdiy/)   V^ e C™(£1).

Integrating by parts, we obtain

(2.4) (VADmditp,VAy/) = -(Dmco, d,y/).

We first assume co e C^°(Q); then  cp  is the solution of the Laplace equa-

tion near infinity.  From the expansion of cp at infinity it is easy to see that

VADmdtcp e L2(ÇÏ), hence (2.4) also holds for yi e El0(Q).

Let trace b - Dmdicp\aa ; then [1, Theorem 7.53]

l|£|li/2,ön^cIWU2,n'>

where Q' is a neighborhood of dii. By the Poincaré inequality and the local

estimate of the solution cp ,

\W\\m+2,tí<C(\\C0\\m + [cp]x).
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Let Dmdicp = cpx+ cp2, where cpx e E0(Q) is the solution of

(VA<px,VAy/) = -(Dmco,dly)   V^e£0(fl),

and cp2e E (Q) is the solution of

(VAcp2,VAip) = 0   Vy/eEl0(Q),

<Pi\dçl = b-

cp2 is a bounded harmonic function, hence ||Vç»2||0 < C||è||1/2 díl.  By (2.3),

[tp{]\ < ||Dwft>||0. We have

(2.5) [Dmdtcp]x < C(\\œ\\m + [cp]x) < C(\\co\\m + [co]0).

C™(G) is dense in E°(Cl) ; therefore (2.5) holds for all co e E°(Q) n Hm(Q).

We define [cp]m = ||V^||ml for m > 1 ; then

[V<p]m+l<C(\\co\\m + [co]0).

By the interpolation theorem [10, Chapter 1, Theorem 5.1], we have

(2.6) [V<p]s+[<C(\\co\\s + [co]0)   Vs>0.

We denote by E™(Q.) the closure of C^(cl) with respect to the norm [-]m .

Now we give an example of an operator 8 which satisfies inequality (1.5).

Construct x £ C^°(Q) such that x — 1 near ine boundary dQ. Let fi' be a

bounded domain whose boundary consists of simply closed curves Y and dQ.,

where Y is outside of dQ, sufficiently smooth, and supp# c Q . Let cp be a

stream function of u in Q.'. We consider the following biharmonic problem:

<D|r = 0,

A O = 0,

dn

A<D
an dn oa

0.

Let u — VA(x$>) ; then &u = u + u is the desired operator. In fact, if

u\dSÎ - 0, then cp\dn = §£|ön = 0, and &u = u, so 8 is a projection. By the

estimate of the elliptic problem and the trace theorem,

ll*H,+2 * C Hi+3/2,öf2
+

¿7>

a« s+\/2,dil;
< C\\<P\\s+2 < C\\U lli+1

hence

< C||M|
II" llJ+i - -ll-lls+i >

which proves (1.5).

4> can be obtained by the Galerkin scheme. To show that, we give a weak

formulation of the above biharmonic problem. Let -AO = ip ; then -At// = 0.
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We take a test function v e H](Q'), v\r = 0; then O e Hl(Q'), <D|an =

-'Plan' $lr = 0' and

(v*,vt,)0,-^-,^ = (^)n,.

Let co = -VA« ; then -Acp - co, and

iV<P,Vv)a,-(^,v)aa = (co,v)n,.

Adding up these relations and noting the boundary condition, we have

(2.7) (V<D + Vp, Vv)Q, = (tp + co,v)Q,   MveHl(Q'), v\r = 0.

We take another test function vx e H0 (Q1) ; then we have ip e H (Q1), i//\r —

0, and

(2.8) (V^,V«,) = 0   Vu.eT/^fl').

(2.7), (2.8) is the desired weak formulation.

Finally, we list the definitions and some properties of the Helmholtz operator

P and Stokes operator A. It is known that (L2(Q))2 = X © G, where X =

closure in (L2(f2))2 of {u e (C0°°(fi))2; V-u = 0} and G = {Vp; p e EX(Q)).
2 2

P is the orthogonal projection P: (L (Q))  —► X ; consequently,    .

(2.9) ||Pm||0< ||w||0   \/ue(L2(Q))2.

If ue (HS(Q))2, s > 1, then [9, Chapter 1, §2.4]

u = Vcp + v ,        V-u = 0,        i> •/7.|Ö£J = 0,

and cp is the solution of
-Atp = -V • «,

dip

dn an

Like (2.6), we can obtain

(2.10) [Vtp]s < C\\u\\s   V5>0,

therefore P: (HS(Q))2 -» (//'(fi))2.

We consider the Stokes equation

,~ .., du     1 _ ,.
(2.11) — + -V/j = í/Aí/ + /

and conditions (1.2)—( 1.4). Let u = ev'v , p = e"'q ; then

9V l„ /* x -Vt   r
— +-Vq = v(Av-v) + e     f.
dt      p

The Stokes operator is defined as [7]:   A = -PA + I, with domain D(A) =

X n{u e (H2(Q))2 ; u\an = 0} . The solution v can be expressed as

u-n\m.

v
-VIA f       —v(t — t)A j,    -VX  r,    ,    i

= e      u0+     e Pe     f(x)dx,
Jo
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hence

(2.12) u = e-vt(A-I]uQ+ fte-Ht-T){A-I)Pf(x)dT.
Jo

We have [7]

(2.13) \\Aae~'A\\<Ct~a,        a>0,  t>0,

(2.14) C_1||m|L   < \\Aau\L < C\\u\L     V« e D(Aa), a > 0.v / II    112a —  H "U —       i'    n¿a v        ' ' —

And if 0 < s < ±,  u e X n (HS(Q))2, then u e D(As/2) ; if 1 < s < \,

ueD(A)n(Hs+l(Q))2 .then u e D(A{s+l)/2) [15].

3.  SOLUTIONS OF THE STOKES EQUATION

In this section we consider problems (2.11), (1.2), (1.3), (1.4) and give some

estimates. It is assumed that all functions appearing below belong to L (Q).

Lemma 1. // u is the solution of (2.11), (1.2), (1.3), (1.4), then

(3.1) ll"Wllo<^(ll"ollo + /o'll/Wllo^

Proof. Taking the inner product of (2.11) with u, we get (u, |j) = v(Au, u) +

(f, u). Integrating by parts, we obtain 5^||«||0 + v(Vu, Vu) = (/, u). Thus,

TtWuWo - IMIo + WfWo ■ By the Gronwall lemma, this gives (3.1).   D

Lemma 2. Let co = -VAw, and let u be the solution of (2.11), (1.2), (1.3),

(1.4); then

(3-2) ^|K/)||J<-L||/|¿.
Proof. We apply the operator -VA to equation (2.11) and obtain

(3.3) ^ = î/Aû)-VA/.
v     ; dt

The stream function ip is the solution of (2.1). Thus, the weak formulation is:

find co e E (Q) and y/ e E0(Q) such that

(3.4)   ^-t(co,v) + u(\Jco,Vv) = -(VAf,v) = (f,VAv)   Vu g £¿(£2),

(3.5) (Vy/,Vx) = (co,x)   Vxe£'(Q).

We take x e ElQ(Q) ; then by (3.4) and (3.5),

VcTt ' v*) = Tt^y ' Vx) = dt{(0, x) = if> VAx) ~ I/(VftJ' Vx) ■

Let x = % ; then
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(3.5) also yields

Set x = œ ; then

*%.„)-(%.*]

_ö^   „   \      fdco
vFvTrwl

Substitute this into (3.6) to obtain

vdjp_
dt -(!H^4^>^ ,dj/_

dt

Therefore,

which is (3.2).   D

v d ,.   ,,2_1 „ -„2
2^Hlo^4ll/Ho'

ri+l//-k\\2Lemma3. //w0eD(^)n(//s+,(r2))z, 0<s<§, / e L°°(0, T; (//'(Q))2),

û«î/ « is the solution 0/(2.11), (1.2), (1.3), (1.4), then

(3-7) IIkWIUi < C (ï|tt0||1+1 +   sup  11/(1)11,).
V 0<t<T /

Proof. We estimate the terms of (2.12). According to the statement at the end

of §2, u0eD(A(s+])/2). By (2.13), (2.14),

ll^'</,-/)"olUi < C\\A{s+1)/2e-vtAevtuQ\\Q = C\\e-"tAA(s+l)'2evtu0\\Q

< C||¿(,+I,/V"«0||0 < C||ewu0||i+1 < C||«0||J+1.

Take a positive constant r such that s - I < r < Í; then Pf(x) e D(Ar/2)

Vt e [0, T], and

f e-v('-T)(A~I]Pf(x)dx
Jo

Jo

< C \\v
Jo

s+i
<C fJo

A(^)ße-Ht-r)iA-I)pf dx

A^-r)l2e-v(t-r)(A-,)Arl2pf dx

(t-x))-{s+l-r)V-T)Ar/2Pf(x)\\0dx

<C f(y(t-x))-{s+{-r)l2\\f(x)\\rdx
Jo

<C  sup  ||/(t)||..   D
0<t<T

Now we apply scheme (1.6)—(1.13) to problem (2.11), (1.2), (1.3), (1.4).

Equation (1.6) reduces to

(3.8)
dÜk Irr- f
-dT + -pVp> = f-
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Applying the operator P to (3.8), we obtain dük/dt = Pf, thus

(3.9) ük(t) = uk(ik-0)+ [ Pf(x)dx,        ik<t<(i+l)k.
Jik

By induction and (2.12), it can be proved that

97

,,,. -vt(A-l)        ,   v^    -v(t-ik)(A
uk(t) = e u0 + 2^e

■(i+i)k

(3.10)

i=0

['/*]-!    r(i+\)k

+ T I
/=0    ^

7) /      epf(x)dx
Jik

v(i-z)(A-,)l     [(M)k

Jik
(i-e)Pf(OdCdx

Mt-t)tA-i) 1   /-Œ'/*]*1)*
-r/ (l-e)Pf(r,)dÇdT,

[t/k]k K J[t/k]k

+   I"       e-u(t-r)(A-I)}_   f

J[t/k]k k J[,

where [ ] denotes the integral part of a number.

Lemma 4. //H06 0(/l)n(f/í+1(fl))2, 0<s<¡, f e L°°(0, T; (Hl(Q))2),

then

ii«fcak-o)m,<c(n«0ii;+i+ sup 11/(1)11,).

Proof. We estimate the second term of (3.10); the estimate of other terms is

similar. Let r be a positive constant such that s - 1 < r < j ; then

7-1 , r(i+i)k
y* e-vtj-i)k(A   •

i=0

<C

c

i) r+m
n /      epf(x)dx

Jik

]y^A(s+X)l2e-vU-i)k(A-I)   f['+l)kepf{

J ik

5+1

(i+\)k

x)dx

(=0

j— 1 /.fi + nÂ:
(í+l_r)/2   -vU-i)k(A-l)  .r/2   '¿Z*'

1=0

7-1

-1 / SPf(x)dx
Jik

(i+i)k

< c^iHj-i)k)-{s+l-r)/2 f '  '" Ik1" -'»^ejywiiorfi
i=0 ■/,A"

7-1

<C   sup   11/(1)11, ^(t,a-/)/c)-(i+1-r)/2/c
o<t<j* /=0

rv*
<C   sup   ||/(T)||, r (1/(7*-T))-^'"'

0<r<jk Jo

<C  sup   ||/(t)||,.   D
0<t< jk

1/2
í/t

Lemma 5. // w0 e D(^) n (Hs+l{Q))2, 0<s < \, feL°°(0, T; (H3{Q))2)n

rVl'°°(0, T; (Hl(Q))2), u is the solution ofproblem (2.11), (1.2), (1.3), (1.4),
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ff e L°°(0, T; (Hs+l(Q))2), and uk,  ük are the solutions of problems (3.8),

;i.7)-(1.13), then

(3.11) SUP  (\\u(t) - Uk(t)\\s+X , \\u(t) - Ük(t)\\s+X) < C0k.
0<t<T

Proof. By (2.12), (3.10) we have

[r/*]-l   f(i+i)k

u(t)-uk(t)=   ¿2   ['   '\e-Ht-tKA-I)-e-1/{t-ikKA-I))ePf(x)dx

i=0

+ f   {e-»w-') _ e-*-p/*wn-/>)e/,/(T) ¿T
JUIktkl[t/k]k

(3.12) - f*'*™ e-^M^Wmdx

['/*]-'    Wi+l)*

+
¿/,=o   •/,fc

-v(t-x)'A-I) 1

(i+l )fc

• /       (I-S)P(f(x)-f(C))dCdx
Jik

ft i   /-([t/fei+iiit

+ /      g-«'-™-*)!. / (/-6)P(/(T)-/(C))rffrfT.
J[t/k]k K J[t/k)k

We estimate the terms in (3.12). With regard to the first term,

(i+i)*

h = J2 f   '\e-u{t-t){A-I)-e-,{t-ik){A-I))ePf(x)dx
:       J ¡I

s+\

<c

c

r(i+l)k
A(s+l),2e-,(t-r)(A-l){I _ e-^-ik)(A-I))Qpf{r) dr

,    J ik

(i+l)k

-T-ik

Taking a constant 5, , 5 < sx < \ , we get

/, < c
?/;

/" "■e-"«'1-/'i/f-e/'/(T)rfT
/o

-í/(f-T)/l   .(i, + l)/2   Wi-r)

¡■x-ik

7o    '
~"i{A~ndt;-epf(x)dx

<cTÍ'    (t-x)-l+{s'-s)/2 ¡'   \\A{s'+n/2epf(x)\\0dt;di
¡   Jik Jo

<C  sup  ||8P/(t)||j+,/c ['(t - x)-l+(s>-s)/2 dx

<C/c  sup  11/(1)11,+1
0<r<T '
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With regard to the fourth term, we take a positive constant r, s - 1 < r < j ;

then applying (2.13), (2.14), we get

h =
^   /•('+')*: „     ...    ,. i     r(i+\)k

£/     .-«-^-"J- /     (i-e)P(f(x)-f(0)di:dx
:       *f IK J IK

5+1

Ej.k    e klik    S v-*)pfwKM

_      /•('+
5+1

As+\)l2-u(t-x)(A-I) 1  /■('+»)* r
±j J\l-e)Pf(c;)dÇdÇd<

<c
/•(/+1)*    /-(/+1)*

• /       /      ||(/ -e)7>/(£)||^¿í¿T
7(jfe J/A;

<C i'(t-x)-(s+[-r)/2dx-max[1'   '  ||(7 - 8)7>/(¿)||r^
70 '     /i*

<Ck  sup  11/(011,-
o<í<r

The rest of the terms can be estimated in a similar way, and therefore we get

the desired estimate of \\u(t) - uk(t)\\s+x .

Now we estimate \\u(t) - ük(t)\\s+x . Since UfylL, is bounded, we have

||n(0-w(z'fc)||J+1 <C0k,       te[ik, (i+ l)k).

By (3.9),

\uk(t)-uk(ik-0)\\s+x<Ck sup  ||/(t)||i+,
i*:<T<t

Therefore,

"(0 - MOIL, < C0k + \\u(ik) - uk(ik - 0)\\s+x < C0k.   D

4. Solutions of the Euler equation

We consider

(4.1)

(4.2)

(4.3)

(4.4)

The existence and uniqueness theorem has been proved by several authors. We

apply the result of [12] here. Although only bounded domains were considered

in [12], a slight modification of the proof will yield the result for unbounded

domains. In brief, if u0 6 (Hm(Q))2, feLl(0, T; (Hm(Q))2), m > 3, then

the local solution «eL°°(0, T; (Hm(Q))2).

ô«     ,     _,        1 _       r
— + (u-V)u+-Vp = f,

V-w = 0,

"•"Löi2 = 0>

"Iî=o = moW-
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Lemma 6. If the integer m > max(3, 5+1), s > — 1,  ||w0||m < M,, u0 e X,

then there exists a constant C > 0 such that if

(4"5) k° = C(M,+sup0<,<r||/(0||m + l)

and 0 < t < k0, then the solution u of (4.l)-(4.4) satisfies

(4-6) »«IL, <C,(|KIU, + 1),

where the constant C, depends only on the constant T and sup0<l<T\\f(t)\\m.

Proof. From (4.1), (4.2) we get [12]

-Ap = V-f-V-((u-V)u),

d_p_

dn
= pf-n + ^2'PiJu¡uj,

xeao. '../

where 0.   are bounded functions. Analogously to the proof in [12], it can be

proved that p e Em+l(Q), and

(4.7) ira   <C{||/«IL + N0Ù.

By (4.1), (4.7) we get

¿INL<c(||ii|li + ||/||j.

Therefore, ||w(0llm - y(0 > where y(t) is the solution of the initial value prob-

lem y' = Cy2 + C\\f(t)\\m , y(0) = ||«0||w . We take

KIL + osuprll/(')ll,

and impose the restriction \y\< M. Then

0 < y(t) < \\u0\\m + C f \\f(x)\\mdx + CM f y(x)dx.
Jo Jo

By the Gronwall lemma,

(4.8) y{t)<eCMl(\\u0\\m + C j\f(x)\\mdx^ .

We take t > 0 such that t < I/{CM + C) ; then CMt < 1 and Ct < 1 . (4.8)
yields y(t) < M. Comparing the upper bound of / with (4.5), it will suffice

that / < k0 for a suitable constant C .

We consider the auxiliary linear problem

(4.9) ^ + (u.V)ü + Vñ = f,        V-ù = 0,

"•ML¿>n = 0'       "Lo = "o(*)-
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When ü0 = u0, f = f, then by uniqueness ü = u. In a manner similar to

[12], we get

l|Vft(Ollm<C(||/(í)||m + ||«(í)||m||fi(í)IL);
then we can prove

¿^Wmt < c(\\f(t)\\m + ||u(í)llMl|fi(í)IL)l|fi(í)IL •

But ||«(0llm - M, and by Gronwall's lemma

llfi(OIL<^'illö0IL + c*b sup ll/WII«)-
V 0<t<( /

By (4.5),

(4.10) I|o(0IL<*(Ï|ooIIm+ SUP II/WIl)
V 0<T</ /

under the restriction t < k0.  Taking the inner product of ü with equation

(4.9), we get (|f, fi) = (/, Ü), hence

|û(Ollo < Pollo + /'ll/(T)llo^
7o

The mapping (u0, f) —► ü is linear, and by the interpolation theorem and

(4.10),

l|ß«ILi<c KIL.+ «up ||/(t)iL,
V 0<r</

Letting ü0-u0, f = /, one obtains (4.6).   D

Now, u is assumed to be an arbitrary vector function which belongs to

L°°(0, T; (W2'°°(Q))2), and with u{-, t) e X, uQ e (Hl(Q))2 n X we let

co be the solution of

(4.11) — + u-Vco = -VAf = F,        co\t=0 = -VAu0 = co0.

We denote by Ç(y, t; x) the characteristic which satisfies

—t(y, t;x) = u(t;(y,t;x),t),        ¿!(y, x; x) = y.

Let >p e EQ(Q) be the stream function corresponding to uQ , and

V(y) = V(Z(y,0;t)),       d = -AV.

Then we have the following lemma.

Lemma 7. If u0 e D(A), then

(4.12) \\e(t)-to(t)\\0<C2t\\uQ\\x+ f\\F(x)\\0dx,
Jo
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where the constant C2 depends only on the domain Q and the function u.

Proof. We have

A¥ = ajV ■ |ví,|2 + 2dxd2w ■ {dxt:x • dxi2 + d2nx ■ d2Q + a2V • |v¿2|2

+ dxy/-A¿¡x+d2y/-Aa¡2,

9^ = 0^ + 0(1),        Ai = 0(t),

hence

(4.13) -AV = co0(t:(y,0;t)) + Rx,

where

(4.14) ||7?,||0 = O(i)[^]2.

Integrating equation (4.11) along characteristics, we obtain

co(x,t) = co0(i(x,0;t))+ f F(ax,C;t),OdC.
Jo

Since the mapping x —> £,(x ,x;t) is measure-preserving, we get

IMO-o>0(i(.,0;í))llo=   Í'f(í(.,C;í),C)^C
./0 0

< f\\F(i(-,c;;t),Q\\Qd!;= f'\\F(c:)\\0dC.
Jo Jo

By (4.13), 0(0 = ta(0 + 7?, + 7?2 , and

(4.15) ||7v2||0< f \\F(Q\\0dÇ.
Jo

Then (4.14), (4.15) give (4.12).    D

5. Some estimates for the viscous splitting scheme

In this section we give some estimates for the solutions of the scheme (1.6)-

(1.13). We always denote by h,w the solution of problem (1.1 )—( 1.4), and

by cok , cok the vorticity corresponding to uk, ük. We recall that we assume

u0eD(A)n(H3(Q))2, feLoo(0,T;(H\Q))2)nWl-oo(0,T;(H[(Q))2) and

H6l°°(0, T; (774(Q))2)rWl,oo(0, T; (H5/2(Q))2).

Lemma 8. If 1 < s < |, and if there is a constant MQ such that

(5.1) \\ük(t)\\x<M0,        0<t<T,

and constants C, , kQ > 0 such that

(5.2) \\ük(t)\\s+x<Cx(\\ük(ik)\\s+x + l),        ik<t<(i+\)k,

for 0 < k < k0, then

(5.3) sup  ||fifc(0IL, < M2
0<t<T
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for 0 < k < k0, where the constant M2 depends only on the domain Q, the

operator 8, the constants C,, M0, T, s, v, and the functions f,u0.

Proof. We denote by C3 a generic constant depending only on the domain Q,

the operator 8, the constants C,,  T, s, v , and the functions /, u0 . Set

fx(x) = f(x) - (ük ■ V)ùk ; then by Lemma 4,

\\uk(jk-0)\\5+x<c(\\u0\\s+x+  sup  ||/,(t)||,).

The norm of the nonlinear term has an upper bound

ii(^-v)üji,<c(pji;,4+ii^ii0oopji2).

We take a constant q,   1 < q < s.   Then using the imbedding theorem [ 1,

Theorem 7.57],

ll/,(T)||,<||/(T)||,+C(PJ|2/2 + \\äk\\q\\ük\\2),

and by the interpolation inequality [10, Chapter 1, Remark 9.1],

ll/WII^II/WII. + cdl^ll2-^!!^!!^,
+ 11« \\l~lq~l),'\\ü \\{q~1),2\\ü \\l~ys\\û \\l/s)
+ \\UkWl WUk"s+l \\Uk»l \\UkW       I

\\ ft   mi     ,   /-/il-   i|2-l/5|i-   ni/5    ,   il-   i|2-<7/S|, ..   ,,qls
= ||/(t)||, + C(\\uk\\x      \\uk\\s'+l + \\uk\\x      \\uk\\s'+x.

Hence,

(5.4) ||k*C/*-0)||,+1<C3 + C sup (||öfc||J l,\\ük\\1£i + \\ük\\] "''WüXi'j.
0<x<jk

By (5.2) and initial condition (1.9) we obtain

il-   /.mi ^ /-■    ,   /~i /ii-   ii2—I/Su-   ni/5    ,   n.   ,|2-i7/S||~   ,.q/s ,   ,   ^IKOIL, <c3 + c} sup i\\uk\\x    KlLi + KH.    IKIi;+,) + c,.
0<r</

Taking the supremum of the left-hand side and applying (5.1), we get

•sup^llfi^lL, <C3 + C3 U^~l,s mp^äX^ + M¡~q/S wvjük\\q/+sx) + C,.

Then (5.3) follows.    D

If we replace (Ctk • V)«^  in equation (1.6) by (u ■ V)u, then it becomes a

linear equation

(5.5) ^k + iV^=/-(M.V)M.

The solutions of problem (5.5), ( 1.7)—( 1.13) are denoted by it*, p*, u*, p*.

Let co*, co* be the associated vorticities. By Lemma 5, for any 0 < s' < \ ,

(5.6) sup (||ii(0 - u*(0ll,'+i, ||»W - o*(0lly+1) < C0k .
0<KT
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Lemma 9. If \ <s <\, \\ük\\s+x < M}, then

(5J)\\(I-e)(ü*-ük)((i+l)k-0)\\x<C4kl     sup      \\(ü* - ük)(x)\\x + k) ,
\ik<x<(i+l)k J

where the constant C4 depends only on the domain Q, the operator 8, the

constants s,  v,  T, M3, the functions f,  u0, and the solution u 0/(1.1)-

(1.4).

Proof. We denote by C4 a generic constant which possesses the above property.

By (5.5) and (1.6),

doJ* „        „ dcok     „
— + u-V(o = F,        -jf + uk-Vcok

On subtracting the two equations, we obtain

(5.8) °)k  + u • V(co* -cok) = u- V'(co* - co) - (u - ük) ■ Vcok

By Lemma 7,

\\e-(co*-cok)((i + i)k-o)\\0

(59) <C4k\\(ü*-ük)(ik)\\x
rU+l)k

+ \\u • V(w* - co) - (u - ük) • Vcok\\adx,
Jikik

where 6 = -AV, *¥(y) = ip(£(y, ik ; (i + l)k)), and ip is the stream function

corresponding to (ù* - ük)(ik).

We estimate the integrand. By (5.6),

||m • V(co* - co)\\0 < CA\\u  - u\\2 < C4k.

Let p = 2/(2 - s) and q = 2/(5 - 1) ; then

\\(u-ûk)-Vcok\\0= (J \{u-ük)-Vcok\2dx)

<[] \™kfdx)      [Jju-Ü^dx

< Kill,pH"

Using the imbedding theorem and (5.6),

IKII., P<

ll"-û*llo.? ̂  cll"-"Jli < C0(\\u  -ük\\x+k).

<\\ük\\i.P\\u-ük\\o,q-

Klli,^cIKIL.

Therefore,

(5.10) ||w • V(co* -co)-{u- ük) ■ V<wJ|0 < C4{\\u  -ùk\\x+k).

Substituting (5.10) into (5.9), we obtain

(5.11) ||0-(o*-ôfc)((i + l)*-O)||o<C4*[      sup      ||a*(T)-flk(T)||,+A:
\ik<x<(i+l)k j
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On subtracting equations (5.5) and (1.6), we have

(5.12)

105

d(ü* - ük)      1

dt + -V(p  -pk) = (ük-V)ük-(u-V)u = ^,

hence

(5.13)

(u -ük)(t)-(u  -ük)(ik)

P jik

(u  - ük){t) - (u  -ük)(ik)\\0

[ V(/3* -pk)dx+ [ ^dx,
Jik Jik

<-['\\v(p*-pk)\\0dx+ fm0dx.
P Jik Jik

Similarly as in the proof of Lemma 6, it can be shown that p* - pk  is the

solution of

-A(p*-pk) = V-$-,

d(p*-í>k)

dn xean
= J2(t,iAükhiuk)j-uiuj'

i,.i

= E <t>iAük)Áük - u)j - (« - %),«,) ■
i.j

In weak formulation, p* - pk e E] (Q), and

(V(p* -pk), Vv)Q +    ^<t>l]({uk),(ük - u)j -(u- Ük),Uj),v
i.j an

= (pSr,Vv)a   VveE(Sl).

We may assume that (p* - pk, 1 )aii = 0 ; then

\\P* -PkWo.aci<C[P*-Pkh

Taking v = p* - pk we get

\P  -Pk\ £ S^y((ßft)/(fifc-")y-("-ufc)/"/
i.j

PkWo.ao.

o.asi

thus

[ß* -Pk\ < C

By (5.6),

(5.14)

J2^iAük)iiük - u)j - iu - ük)¡uj)
i.j

+ \\p.no ■

o.ao.

W\\Q < IK"• v)(«, - m)||0 + \mk - u) • v)ük\\0

< c4\\ük - u^ < c4{\\iï - ü^ + k),
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and

Y.^ij^ük)^ük- u)j- iu~ K)iuf
i.j o,an

< C4\\ük - u\\0dQ < C4\\ük - u\\xn < C4(\\u  - ük\\x + k).

Therefore,

(5.15) [p*-pk]x<C4(\\ü*-ük\\x+k).

Substituting (5.14), (5.15) into (5.13), we obtain

(5.16) \\(ü*-ük)(t)-(ü*-ük){ik)\\0<C4k I     sup    \\u  - ûk\\x + k) .
\lik,(i+i)k) J

Let U = VA*F. By definition of the function *F we have

V(y) - V(y) = -j '+    ¿2djW(Ç(y,t; (i+ l)k))^(y, t; (i+l)k)dt

= -[.'     ^djwVXy.r.ii+UkVujG&.t'Ai+iWdt.
J ik

Since u, dxu, d2u, dx¿;, d2¿¡ are bounded, we get

||VA(SF- ^)||0< C0/c[^]2,

that is

(5.17) \\U - (u  - ük)(ik)\\0 < C0k\\(ü* - ùk)(ik)\\x .

By (5.16), (5.17) we have

(5.18) \\U - (u  - ük)((i + l)k - 0)\\Q < C4k (    sup     \\u-ùk\\x+k) .
\[ik,(i+l)k) J

Since 0 = -VAC/, by (5.11), (5.18), and (2.6) we have

\\U-(ü*-ük)((i+l)k-0)\\x<C4k[      sup      \\ü*(x)-ük(x)\\x+k) .
y*<T<(/+i)A /

But we know that U 6 (770'(fi))2, V • U = 0, hence (7 - &)U = 0.   8 is a

bounded operator, thus

IK/ -e)(ü*-ük)((i+i)k- o)||,

= H(/-e)(i/-(fi*-ôJt)((i + i)fc-o))||1

< C4k        sup
V/Ar<T<(i+l)lfc

\Ù*(x)-uk(x)\\x+k).     D

Lemma 10. If 1 < 5 < \ , k < 1, \\uk(t)\\s+x < M2 for ik <t < (i + l)k , then

,5/2-1
(5.19) ||m*(0II3 <C-5(/-/A:r
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on the same interval, where the constant C5 depends only on the domain Q, the

operator 8, the constants s, v, T, M2, the functions f,u0, and the solution

u 0/(l.l)-(1.4).

Proof. Let w = duk/dt, n = dpk/dt. Differentiating equations ( 1.10)-( 1.12)

formally with respect to /, we obtain

dw      1 _ . _ „
_ + -Vtt = vAw ,     V-w = 0,    w\x€dn = 0,

,-m     duk
w(ik) = -jp

i=ik
= -u(A-I)@uk((i+\)k-0)

+ ^p(i-e)ük((i+i)k-o).

It was proved in [9, Chapter 4, §2, Corollary 1] that duk/dt is the weak solution

of it. But the above problem possesses a strong solution

therefore,

By (2.13), (2.14),

,,. -u(l-ik)(A-I)     , ., .
w(t) = e w(tk);

du

01

k. _    -v(t-ik)(A-I)
w(ik).

du.

dt

(5.20)

< C\\Al/2e-H,-mA-nw(ik)\\0

= C\\Ax-sl2e-v('-'k)(A-,U(s-"'2w(ik)^

<C(t-ik)s/2-l\\A{s-1)/2ev{'-ik)w(ik)\\0

<C(t-ik)s/2-l\\w(ik)\\s_x.

Applying the operator P to equation (1.10), we obtain

^l = _v{A _ I)Uk + l.P{I _ e)uk((i +l)k-0).

Consequently,

Wk\\}<c\\Auk\\x

= c

= c

uk + ^-P(I - S)ùk((i + l)k - 0) - ^-^
V   dt

uk(ik) + j ^ dx + ¿7>(7 - e)ùk((i + l)k
v  dt
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Then by (5.20),

\ukh - C uk(ik) + E;P(i-e)ük((i+i)k-o)

+ C(t-ik)5'2 \\w(ik)\\ 5-1

(5.2i;
< c\\uk(ik)\\x + -j-wpy -e)ük((i + i)k - o)||

+ C(t - ik)5/2-1

fcVV   '    »7"       "711,

- v(A - I)Qük((i + l)k-0)

+^P(I-G)ukiii+l)k-0)
5-1

By Lemma 9 and (5.6),

1
-\\p(i-e)üMi+i)k-

l
<_p>(/-e)(û -ük)(d+i)k-o)\\x

+ ±\\p(i-e)(u-û*)((i+i)k-o)\\x

< C5        sup     ||w (t)||, +      sup     \\ük(x)\\x + C0\ <C5.
\ik<x<(i+\)k ik<x<(i+\)k J

Substituting this into (5.21), we obtain (5.19).   D

Lemma 11. If I <s < itk»s+\ < M,, then

(5.22) sup (||«(0 - ^(011,, ||m(0 - ük(t)\\x) < C6k,
0<t<T

where the constant C6 depends only on the domain Q, the operator 8, the

constants s, v, T, MJt the functions f, uQ, and the solution u of (\.\)-

(1.4).

Proof. We denote by C6 a generic constant which possesses the above property.

Taking the inner product of (5.8) with co* - cok and noting that

(u ■ V(co* - cok), co* - cok) = 0,

we obtain

-^||¿/ - cok\\l < \\u ■ V(co* -co)-(u- ük) ■ V<ùfc||0||û>* - cok\\0.

By (5.10), the right-hand side is bounded by

Cr      ^*       „     2       ,2,       1 i. - *       ~    ii2
-fi\\u  -uk\\x+k ) + ^\\co -cok\\0.

By (5.12), (5.14) we get

5^p*-fl*ii;<5(ii^iio+ii»*-**iiî)

<C6(\\ü*-ük\\2x+k2) + \\\ü*-ük\\20.
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Thus we have

[co* - cok]20 < C6([co* - <yj2 + k2).
dt

By the Gronwall lemma,

(5.23) [(co* - cbk)(t)]¡ < eC>k([(cb* - tok)(ik)]¡ + C6k*) .

Using the triangle inequality,

[(co* - cok)(ik)]0 < [(to* - tok)((i +l)k- 0)]0

+ [(co* - cok)((i +i)k-0)-(co*- cok)(ik)]0

<[(u*-cok)((i+l)k-0)]0

+ \\(i-e)(ü*-ük)((i+i)k-o)\\x,

hence, by Lemma 9,

[(co* - cok)(ik)]0 < [(co* - cok)((i +l)k- 0)]0

+ C6k (     sup     \\(u - ük)(x)\\x + k) .
\ik<x<(i+l)k )

By (5.23),

[(co* - cok)(ik)]0 < [(to* - cbk)((i +l)k- 0)]0 + C6k([(cb* - tbk)(ik)]0 + k).

Taking the square of both sides of the above inequality and applying (5.23)

again, we get

(5.24)

[(co* - cok)(ik)]0

< [(co* - cok)((i +l)k- 0)]2 + 2[(co* - tok)((i +l)k- 0)]0

• CM[(co* - tok)(ik)]0 + k) + C6k2([(co* - cbk)(ik)t + k2)6/vm^ "^V'VIfj

< [(co* - tok)((i +l)k- 0)]2 + C6k([(cb* - cok)(ik)]l + k2).

By ( 1.10)—( 1.13), u* -uk, p* - pk is the solution of

d(u* -uk)     1       »

i
= v/\(u   - u, ) +

(5.25,
V -(u* -uk) = 0,

(M*-Mfc)Lan = °>

/tA*'VIo

k>\1'

= vA(u* - uk) + -¿-(I - @)(u  - ük)((i +l)k-0),

(u* - uk)(ik) = e(u  - ük)((i +l)k-0).

By Lemmas 1 and 2,

\\(u* -uk)(t)\\l<ek (\\(u* -uk)(ik)\\l

+ fJik
^(/-e)(û -ùk)((i+i)k-o) dx\ ,
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ito*-cok)it)\\l<\\(co*-cok)(ik)\\2

1
+ 2¡-fl" Jik

Using Lemma 9,

[(co*-wk)(t)]¡<ekl[(co*-cok)(ik)]l

Ä:A"Vllo

2

rft.Ui-e)(ü*-ük)((i + i)k-o)
0

+ Q/C SUP ||(Û*-Oj(T)||î + fc2 .
\ik<x<(i+l)k JJ

By (5.23),

(5.26)  [(to* - cok)(t)]¡ < ek([(co* - cok)(ik)]\ + C6k([(cb* - cbk)(ik)]¡ + k2)).

By (5.26), (5.24), (5.23) we obtain

[(to* - cok)((i +l)k- 0)]2 < (1 + C6k)[(cb* - cok)(ik)]20 + C6k3.

Using the initial condition (1.9),

[(co* - cok)((i +l)k- 0)]2 < (1 + C6k)[(co* - tok)(ik - 0)]2 + C6k3.

Therefore, by induction,

[(co*-cok)((i + l)k-0)]l<C(>k2eCJ,

hence

\\(u-uk)((i+l)k-0)\\2x<C6k2.

Applying (5.23), (5.24), (5.26), and (5.6), we obtain (5.22).    D

Lemma 12. // i > 0, 0 < 5 < \ , and ||wfc(i)||i+1 < M2 for ik < t < (i + l)k,

then \\uk(t)\\s+x < M4 on the same interval, where the constant M4 depends only

on the domain Q, the operator 8, the constants v, s, T, M2, the functions

f, u0, and the solution u of problem (1.1 )-( 1.4).

Proof. We apply Lemma 3 to the initial-boundary value problem (5.25) and

obtain

IK"* - uk)(t)\\s+l < c (||e(û* - ük)((i + i)k- 0)|L,

+ x-\\(i-Q)(ü*-ük)((i+i)k-o)\\xy

It is known that ||w*ILi *s bounded, and by Lemma 9 we can estimate the

right-hand side. The upper bound of \\(u* -uk)(t)\\s+x is given, and ||«*IL, is

also bounded; thus the desired upper bound of ||w¿(0IL, follows.   D

6. Proof of the Theorem

We assume that 1 < s < |. Let M0 - 2max0</<7. ||(w(/)||, • We take m = 3

and determine the constant C,  in Lemma 6; then we determine the constant
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M2 in Lemma 8 and the constant C5 in Lemma 10. By Lemma 6, we take

k0e(0, 1] such that

(6.1) kQ<
0     C(Cskf~l +sup0</<r||/(r)||3 + l)'

that is,

c(C5^/2+rC0oSUPr||/(0||3 + ^o)<l'

which always holds if kQ is small enough. By (5.4) we set

(6.2) M5 = C3 + CM2Q-l/sM2i/s + M¡-qlsMq2ls,

where 1 < q < s . By Lemma 6 we set

(6.3) M3 = max(C,M5 + C,, M2).

We determine the constant C6 according to Lemma 11, and the constant M4

according to Lemma 12, and reduce k0 , if necessary, such that

(6.4) IKIl3<C5^/2-1.

(6.5) C6k0<M0/2.

With the constants so determined, we prove by induction that if 0 < k < k0 ,

then
\\ük(t)\\x<M0,     IK(0II,<M0,      ||MfewiL,<M2,

\\u(t)-uk(t)\\x<C6k,       ||«(i)-flfc(0lli ^cek-

Two cases are considered simultaneously: (a) j = 0 ; (b) j > 0 and the above

assertion is valid for 0 < t < jk . If j > 0, then by (5.4) and (6.2),

(6.6) \\uk(jk-0)\\s+x <M5.

(6.6) also holds for j = 0. If j > 0, then by Lemma 10,

\\uk(jk-0)\\3<C5ks/2-1;

by (6.4) this also holds for j = 0. Using Lemma 6 and (6.1), (6.3), ||m^(0IIí+, ̂

Mi for jk <t < (j + l)k . By Lemma 11,

||«(/)-«fc(í)lli,  ll«vi)-ö*(0ll, <C6k

always holds for 0 < t < (j + l)k; by (6.5), \\ük(t)\\x < M0, \\uk(t)\\x < M0 on
the same interval. By Lemmas 6 and 8, ||u^(0IL, < ^2 for 0 < t < (j + l)k .

Thus the induction is complete.

Applying Lemma 12, we obtain the upper bound of ||«¿WILi •   D

7. Remark

If the Euler equation possesses global solutions, then the conclusion of the

theorem is also true for k > k0; since there are at most 1 + [T/kQ] steps, the

upper bounds in (1.14) and (1.15) are easily obtained.
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A sufficient condition for global existence was given in [8, 11], namely the

initial value u0 and body force / should satisfy, in addition, VAw0 6 Ll(Q),

VA/ e L (Í2x (0, T)). Under that restriction we can prove by induction global

existence for problem (1.6)-(1.9), for any i. In fact, if tok(ik - 0) e Ll , then

cok(t) eL[(Q) for te [ik, (i+l)k) (see [11]). For the operator 8 given in §2,

(I-Q)uk((i+l)k-0) has compact support, so cok(ik) = -VA@ük{(i+ l)k-0) e

L (Q), and cok satisfies

^ = vAtok - VA(7 - e)ük((i +l)k-0),

a)\t=,k = 0)k('k)-

Using the fundamental solution of the heat equation, it is easy to prove that

cok(t)eL[(Q) for te [ik, (i + l)k).
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