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ON THE COMPUTATION OF A TABLE OF COMPLEX

CUBIC FIELDS WITH DISCRIMINANT D > -106

GILBERT W. FUNG AND H. C. WILLIAMS

Abstract. A method for finding all the nonisomorphic complex cubic fields

with discriminant D > -10 is described. Three different methods were used

to find the class number of each of these fields. The speed of these techniques is

discussed and several tables illustrating the computational results are presented.

These include tables of the distribution of the fields and the class numbers and

the class group structures of these fields.

1. Introduction

Recently Ennola and Turunen [8] and Llórente and Quer [10] have produced

large tables of totally real cubic fields. However, since the work of Angelí [ 1 ]

little work seems to have been done on the tabulation of complex cubic fields.

The purpose of this paper is to describe an algorithm which was used to produce

all the nonisomorphic complex cubic fields with discriminant D > -10 . The

previously mentioned table of Angelí (see also [12]) only dealt with fields with

D > -20000.
We also discuss three different techniques for evaluating the class number

of each of these fields. Two of these methods involve the use of the Euler

product to estimate the Artin L-function at 1, and the third makes use of a

transformation of the Dirichlet series. These techniques were implemented and

run on a computer. Each obtained the same results, but with rather different

timings. Finally, we provide several tables illustrating some of the results of

these computations. These tables describe the distribution of the various fields,

their class numbers, and their class group structures.

2. Construction of the complex cubic fields

Any cubic field J? can be generated by the zero of an irreducible (over the

rationals Q ) polynomial

(2.1) f(a, b, c; x) = x  -ax  + bx - c,

where a, b, c eZ. The discriminant of the polynomial f(a ,b,c;x) is given
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by

(2.2) D(a,b,c) = a2b2 + \Ubc - 4b3 - 4a c - 21c2.

Further, the discriminant D of the field 3¡f is given by

(2.3) D(a,b,c) = DI2,

where / = I(a, b, c) is the index of the polynomial f(a, b, c; x). We fur-

ther point out that a field generated by the polynomial f(a, b, c; x) is also

generated by the polynomial

f(a , b ; x) = x - ax + b',

where a' = 3a - 9b and b' = 9ab -2a - 27ac. The discriminant D(a , b')

of this polynomial is given by

D(a , b') = 4a'3 - 21b'2 = Dl'2 = D(21I)2

for / given by (2.3).

It should also be mentioned (see [10]) that

(2.4) D = dT2,

where d is the fundamental discriminant of the quadratic field Q(\fD), T =

3mTQ  (0 < m < 2), and T0 is a square-free integer such that gcd(F0, 3d) = 1 .

The basis of our construction of the complex cubic fields is the following

theorem of Angelí [1] (misprint corrected).

Theorem 2.1. Let 3f be a cubic number field with discriminant D < 0. There

is at least one polynomial which generates 3? such that if the zeros of the poly-

nomial are a, ß ± iy   (a, ß, y real), then 0 < a < 1, ß > 0 and

S = S(a,ß,y) = (a- ß)2 + 3y2 < s/\D\.

Since a, b, c are given by

a = a + 2ß,        b = 2aß + ß2 + y2,        c = a(ß2 + y2),

it is easy to deduce the following lemma from Theorem 2.1, (2.2), and (2.3).

Lemma 2.1. Let .3? be any cubic field with discriminant D < 0. Then J? is

generated by some polynomial f(a, b, c; x) such that for a, b, c eZ,

0<a<3 + 2|D|'/4,        0<b<(a2 + y/\D\)/3,

0 < c < (a2 - 3 + 2s/\D\)/6.

Also, the index I = I(a, b, c) must satisfy

3\Í3I < \J\24a2 + 432a + 4y/\D\ + 729.

As a consequence of this lemma we see that if we wish to determine all the

possible complex cubic fields with discriminant D satisfying \D\ < B, where
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B is some bound, we need to examine only a finite number of triplets (a, b, c)

as possible coefficients of the generating polynomials of the form (2.1). The

integers in these triplets must satisfy

i 0<a<3 + 251/4.

(2.5) Q<b<(a2 + s/B)/3,

{ 0<c<(a2-3 + 2y/B)/6,

and the index /(a ,b,c) must satisfy

(2.6) I(a,b,c)<IB= (V 124a2 + 432a + 4\ÍB + 729 J /3>/3.

We are now able to present Algorithm 2.1 for determining all the complex

cubic fields with discriminant D satisfying \D\ < B. This algorithm is, with

minor modifications, very similar to that employed in §3 of [10].

Algorithm 2.1. For each triplet (a, b, c) satisfying (2.5) perform the following

steps:

(i) Compute a = 3a2 -9b, b' = 9ab - 2a3 - 27ac, and S(a , b') = 211B ,

where 27/ß is given by (2.6), as the bound on the index of f(a , b' ; x).

(ii) In the case of a = 0, determine whether or not the pure cubic field

3£ = Q(v/zV) has its discriminant in the correct range.

(iii) If a ^ 0, execute steps 1-7 of the algorithm given in [10], incorporating

the following changes.

(a) Change step 1(a) so that, instead of eliminating the pair (a , b') when

there is a prime p with v (a) > 2 and vp(b') > 3, we replace a'

by a /p , and b' by b' /p and then return to the beginning of step

1 of [10]. In the case considered by [10], the pair (a /p2, b'/p3) will

already be among the finite number of pairs being considered; hence,

(a /p , b'¡p ) would be duplication. In our case, however, we do not

have the same situation, as (a , b') is obtained via the transformation

in step (i).

(b) In step 2, when determining the irreducibility of f(a , b' ; x) over Z, if

none of ( 11), (12) or ( 13) in part A of [10, §2] holds, then if f(a , b' ; x)

is reducible it must have a zero m e Z such that m\b' and  \m\ <

\l\a'\ + \b'\. This change must be made because a and/or b' here can

be negative. This is not the case in [10].

(iv) If the pair (a , b') has not been eliminated by the preceding steps, then

f(a , b' ; x) is a generating polynomial of a complex cubic field with discrimi-

nant D satisfying \D\ < B .

After this algorithm has been performed, we will have all the fields with

\D\ < B \ however, for any given D we may have several fields which are

isomorphic. To eliminate these isomorphisms, we used the algorithm given in

§13 of Delone and Faddeev [7].
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This entire procedure was programmed in FORTRAN with some assembly

language subroutines and run on the Amdahl 5870 computer in the University

of Manitoba Computer Centre. Indeed, all the computations described here and

in the sequel were performed on this machine. We first tested our programs by

putting B = 20000. In about 30 CPU seconds we produced a table of fields

which agreed with that of [1]. When we put B = 10 , it required 4 hours and

11 minutes of CPU time to find all the nonisomorphic complex cubic fields

with discriminant D > -10 . Of this time, about 63 seconds was needed to

eliminate the isomorphisms. In §5 we give a more detailed description of our

results.

3. Computation of the class number via the Euler product

The next step in the creation of our table of complex cubic fields was the

evaluation of the class number for each of the fields. In order to do this, we

made use of the analytic class number formula

(3.1) 2nhR=s/\D\<Y>(\),

where h is the class number, R is the regulator, and D is th ; discriminant of

X. Further,

<D(l) = limC^(5)/C(5),
s—>l

where C,j¡>(s) is the Dedekind zeta function and Ç(s) the Riemann zeta func-

tion.

We adapted the algorithm of Voronoi as modified in Williams, Cormack, and

Seah [15] to the general (negative D) cubic case. Since \D\ is small (< 10 ), we

found that a double-precision FORTRAN program was sufficient for the evalu-

ation of a very good approximation to R . All of the regulators were evaluated

in about 89 minutes of CPU time. In the case where a particular discriminant

had more than one associated field, we compared the corresponding regulators

as a check that these fields were indeed nonisomorphic.

From (3.1) we see that in order to evaluate h, we need to find an approxi-

mation to 0( 1 ) which is sufficiently good that we can evaluate h (an integer)

unequivocally. There are two basic approaches that can be used: 0( 1 ) can be

estimated by using the Euler product formula, or it can be estimated by using

the Dirichlet series. In this section we will briefly discuss the Euler product

techniques.

We first remark that we can write 0( 1 ) as the Euler product

(3.2) <t>(i)=nf(p),
p

where the product is taken over all the rational primes, and for each such prime

p the value of f(p) depends upon how the principal ideal (p) splits in 3?.

These values are given in Table 3.1.
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Table 3.1

Type     Factorization of (p) f(p)

~T~                pp'p" pl/(pl-2p+\)

B                       (P) p2/(p2+p+\)

C                        pq P2/(P2-1)

D                       p2q Pl(p-i)
3

Here we use p, *>', p", q to denote distinct prime ideals in 3Í .

In order to determine the splitting type of p , we used the method of Llórente

and Nart [9]. However, in the case where it was necessary to distinguish whether

or not the factorization of (p) was of type A or B, we used the Lucas function

technique mentioned in Williams and Zarnke [16], the algorithm for determin-

ing the value of the appropriate Lucas function (mod/?) being that of Williams

[14]. This routine was written in assembly language.

Set

F(Q,D)= ]Jf(q),
Q<Q

where the product is evaluated over the rational primes. Since O(l) in (3.2) is

given as an infinite product, we must determine how large to make Q such that

H(Q,D) = s/\D\F(Q,D)l(2nR)

is within 1/2 of h. When this occurs, h = Ne(H(Q, D)), where by Ne(x)

we denote the nearest integer to x . One way to do this is to use the heuristics

of Shanks mentioned in [3]. We evaluate H(Q, D) by using the first 500, then

1000, 1500, 2000, etc. primes until H(Q, D) is within .1 of the same integer

H for six successive evaluations. When this occurs we declare h = H. This

heuristic is easy to implement and executes fairly rapidly; but, unfortunately, it

is not a mathematically rigorous method of computing h .

Another method which can be used is that of Buchmann and Williams [4].

The details of the method are discussed in [4]; we only mention here that in our

case we have D^ = \d\3T4 for D given by (2.4), n^. = 6, C(t) = 2C(/)/3 , and

cx+2c1 = 3 . Given a known divisor h* of h , this technique makes use of the

Euler product to determine h in 0(\D\ +£/(h*R) ) elementary operations for

any e > 0. However, we need to assume the truth of the Riemann Hypothesis

on £_/ , where ¿2? is the normal closure of -3Í, in order to be able to assert

that our class number is correct.

Further, in cases for which R is small, we must find a value for h* which is

large enough that our technique does not take too much time in executing. To

do this, we simply produce (by trial) a nonprincipal ideal a in .?? such that

the least value of m   (> 0) for which

(3.3) om~(l)
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is sufficiently large. We then put h* = m . In order to do this, we started m at

1 and increased it until we found that value for which (3.3) holds. This process

was not very time-consuming because the fairly small value of \D\ guarantees

us that h will not be large. We used the algorithm of Voronoi to find all

the reduced principal ideals in 3f and the reduction technique described in

Williams [13] to determine whether or not (3.3) holds for a particular m-value.

In our application we found that a value of h* could be found such that h* >

h/6, where h is our first approximation to h (using 500 primes in the Euler

product, say).

Both of these methods of utilizing the Euler product to compute h were

implemented in FORTRAN (again with some assembly language subroutines)

and run. The Shanks heuristic method required 8 hours and 16 minutes of CPU

time to find all the class numbers, whereas the Riemann Hypothesis technique

required 14 hours and 10 minutes. The large difference in these times is a result

of the fact that the Shanks heuristics usually (80% of the time) required that no

more than 3000 primes were needed for the evaluation of H, and only rarely

required that more than 5000 primes be used. On the other hand, the use of

the Riemann Hypothesis demanded that 5000 or more primes be used in most

cases.

4. Determination of h from the Dirichlet series

As noted in [3], we can write

oo

(4.1) <D(l) = J]a(;);-1,

7=1

where a(j) is a multiplicative function, q(1) = 1 , and a(p"), where p is any

rational prime, is given in the Table 4.1 (see Barrucand, Loxton, and Williams

[2]).

Table 4.1

Type n ce(p")

A any n + 1

B n = 0 (mod 3) 1

B n = \ (mod 3) -1

B n = 2 (mod 3)        0

C n = 0 (mod 2) 1

C n=\ (mod 2)        0

D any 1

E any 0

Notice that a(p") < d(p"), where by d(k) we represent the number of divisors

of k . It follows that a(k) < d(k).
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Also, formula (4.1 ) can be transformed into

oo oo

<¡>(l) = ^U)fXe~lC + C^U)E(jC),

7=1 7=1

where C = 2n/\/\D\ and E(y) = J°° e~xx~ dx. Thus, if we put

m m

A(m) = Yta(j)j-ie-jC + C^a(j)E(jC),
7=1 7=1

then by using the reasoning of [3] we get

-mC

(4.2)
O(l)     A(m)

C C

2M(m)e

C(ec'-!)

where

(4.3) M(m) = max{d(j)j~ \j > m}.

Thus, by (4.2) and (3.1) we get

-mC

(4.4)
A(m)

CR

2M(m)e

C(ec - l)R

It follows that if m is sufficiently large that

(4.5) 2M(m)e~mC <C(eC -\)R/2,

then

(4.6) h = Ne(A(m)/CR).

In order to ensure that (4.5) holds, we must find a bound on M(m). To do

this, we first prove

Lemma 4.1. Given any integer n > 2, there exists an integer m  such that

n/3 < m < n/2 and d(m)/m > d(n)/n .

Proof. If p is the least prime which divides n, and k = [p/2], then it is an

easy matter to show that our result holds for m = kn/p .   □

From this result it is a simple matter to deduce

Theorem 4.1. For M(m) defined as in (4.3) we have

M(m) = max{d(j)j    \m < j < 3m}.

Under the assumption (later verified) that we would never require a value

for m in (4.5) that exceeds 2000 (for values of \D\ < 10 ) we found, by using

Theorem 4.1 to tabulate M(m), that

M(m) < 1.4(\ogm)/m       (m < 2000).

Thus, in order to determine h , we can use any value of m in (4.6) such that

(4.7) c~mC/7z"1log/7z<.0338CÄ(cC- 1),
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provided that such a value of m is < 2000. In fact, for the range of D-values

that we considered we never needed a value for m which exceeded 1109 in

order to have (4.7) hold.

This technique is not only mathematically rigorous but, surprisingly, is very

much faster than either technique based on the Euler product. To find all

the class numbers by this method required only 60.8 minutes of CPU time,

once our program was written in FORTRAN and supplemented by assembly

language routines for evaluating a(k) and E(y). In view of the complexity

of the Dirichlet series method (0(D )) one would expect the methods of

§3 to be faster; however, these complexity measures have more relevance when

|D| is large rather than the small values of |D| which we were considering. It

turned out that for these values the asymptotically faster method was actually

considerably slower than the Dirichlet series method. For much larger values

of \D\, of course, this situation would be reversed.

5. Computational results and tables

A large table, giving the values of D, a, b, T, R, h for each of the 181748

nonisomorphic cubic fields with negative discriminant > -10 , has been de-

posited in the UMT file. In this table we use the symbols a, b to represent the

coefficients of a generating polynomial of the form x - ax + b for the field

.5f . Also, T is the value of the largest square which divides the discriminant

D of X (note that this is not the same T as in (2.4)), R is the regulator,

and h is the class number of X . In this section we will give a brief discussion

of some of the information provided by these computations.

In Table 5.1 we give the number of fields that were constructed for values of

\D\ within certain intervals and the number of these that were nonisomorphic.

In Table 5.2 we present the number of the discriminants in our range for which

there are exactly k nonisomorphic fields having that discriminant.

Table 5.1

Number of
Interval for \D\       Number of Fields     XT ,.   ,-.. ,,

1   ' Nonisomorphic Fields

1-100489 67735 17137

100490-200704 45563 17927

200705-300304 41373 17964
300305-400689 40846 18268
400690-501264 40111 18425

501265-600625 38429 18237

600626-700569 37963 18346
700570-801025 38104 18521

801026-900601 37259 18367

900602-1000000 37620 18556
181748
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Table 5.2

Number of Disciminants

1

2

3

4

5
6

7

8

9

>9

148709

1762

5438
3189

7

49

0

1

12

0

Table 5.3

L Density Density

100489 .170536 600625 .179743
200704 .174705 700564 .180288

300304 .176581 801025 .180780
400689 .177934 900601 .181203

501264 .178989 1000000 .181748

Table 5.4

Range of h      Number of Fields

1-10

11-20

21-30

31-40
41-50
51-60
61-70
71-80

81-90
91-100

101-110

111-120

121-130

131-140

141-150

151-160

161-162

172152

6355
1894

688
324
148
90
36

29

14

8
1

3
1

3
1

1

In Table 5.3 we exhibit the density of the nonisomorphic cubic fields for

which -L< D <0.
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Table 5.5

Number of Fields h      Number of Fields

1

2

3
4

5

6
7

8
9

10

97069
26273
22491

7730
4461

5919
2122
2096
2913

1078
172152

11

12

13

14

15

16

17

18

19

20

843
1644

600
514
841
477
312
633
270
221

6355

Table 5.6

A*n 1 10
100000
200000
300000
400000
500000
600000
700000
800000
900000
1000000

0.73495
0.71319
0.70303
0.69636
0.69046
0.68578
0.68250
0.67954
0.67701
0.67518

0.16052
0.16951
0.17211
0.17325
0.17507
0.17718
0.17788
0.17929
0.18006
0.18073

0.03838
0.04398
0.04582
0.04845
0.04961
0.05035
0.05105
0.05165
0.05204
0.05229

0.02770
0.02738
0.02803
0.02863
0.02917
0.02914
0.02943

0.02943
0.02942
0.02945

0.01209
0.01253
0.01323
0.01359
0.01390
0.01372
0.01398
0.01395
0.01394
0.01381

0.00833
0.01019
0.01059
0.01141
0.01178
0.01248
0.01282
0.01306
0.01337
0.01341

0.00423
0.00532
0.00572
0.00590
0.00607
0.00634
0.00642
0.00648
0.00651
0.00675

Table 5.7

n      /z-Rank     Number of Occurrences

2
2

3

3
4

5

6

2

3
2

3
2
2

2

3043
12

861
3

16

4

_5
3944

Davenport and Heilbronn [6] have proved a theorem which says that this den-

sity should approach the asymptotic limit of (4Ç(3))_1 « .20798 . If, however,

the reader were to plot the density versus L, he would be somewhat astonished

to see that this density is increasing so slowly that his first impression would

be that it will not make it to the Davenport-Heilbronn (D-H) limit. Thus, it
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Table 5.8

D a b     Class Group Structure
-300551
-421423
-542251
-588191
-841304

-864023

-344411

-379591
-433243

-612263
-562123
-694543
-894348
-936684
-936684
-280468
-393828
-532463
-555976

-655483
-716131

-751819

-787663
-898175

-989156
-359131

-375387
-653971

-749723
-804443
-865851
-173287

-304196

-383827

-746287

-641196
-782648
-864243
-914683

-939843

49
453

-276

19
741

91

139
-159

-229

31

228
473

0

84
-42

795
-285

37

899
-28

-133

98
-267

175
-149

44

498
-46

40
52

516
-55

2307
-240

1443
-6

19

60
-28

30

-169
-5015
-3395

151
-9110

-379

1914

3107
1526

606
4115

-4272

182
-350

154
-9056

2684
-165

-10626

145

2538
-409

-4295

1275

310
-161

-10465

99
-193
-225

-6613

32
-43508

22489
41650

154

342
-253

175

197

C<y  a C-y   X C'j

C-^ A C'y    A C'y

Lr-y   A C-y   A L--y

C'y A Ci XCt

C'y A C^ A\ C'y

C-> A C "y A C-}

C'y A C'y A Ca

C'y A C'y A Ca

C'y A C'y A Ca

C'y A C'y A Ca

C-^ A C-n A Cf

C'y A C'y A Ce

C-i XC-i aCt

C-j A Li A Li

Ci A Ci A Li

c4 xc4

C4 XC4

c4 xc4

c4 xc4

c4xc4

c4xc4

c4xc4

c4 xc4

c4xc4

c4 xc4

c4 X cg

c4 x c8

c4 X cg

c4 X cg

c4 X cg

c4xc8

c5 x c5

c5 x c5

c5 x c5

c5xc15

C6XC6

C6XC6

C6XC6

C6XC6

C6XCfi
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remains a challenging problem, assuming that the D-H limit is not in error, to

explain the origin of this very slow convergence. This problem was indicated

by Shanks in [11, 12], and on the real side in [11, 10], where the problem is

further aggravated by even slower convergence. To date, and to our knowledge,

no good quantitative explanation of this phenomenon has been given.

In Table 5.4 we present the number of nonisomorphic fields we found with

class number h within a certain range. The largest class number found (162)

was for discriminant -885871 . Table 5.5 provides a more complete picture

for values of h < 20. In Table 5.6 we give the density of fields with \D\ < L

and class number h = 3"h0, where 3 \ h0 and h0 < 10. According to the

heuristics of Cohen and Martinet [5] we would expect the asymptotic densities to

be .518642, .259321, .086440, .025932, and .012349 for A0 = 1, 2, 4, 5, 7
respectively. If, once again, the reader were to plot these densities given in Table

5.6, he would notice in the case of /z0 = 1, 2, 4 an aggravated case of what

occurred for the D-H theorem, and he might reasonably conjecture that the C-M

heuristic limits are inaccurate. However, in view of the fact that we do not have

an explanation of the similar situation with D-H, we do not consider it wise to

invalidate the C-M heuristic limits. We do not know where they are going or

how fast in the case h0 = 1, 2, 4. We are pleased to put these facts before the

reader and urge him to conduct his own investigation. However, note that the

columns for h0 = 5, 7, which seem to be increasing, have already passed the

C-M prediction; this also is a problem which needs further investigation.

Once we had calculated the class numbers of our 181748 fields, it was a

relatively simple matter to determine the structure of each class group. Only

3944 of these class groups are noncyclic. In Table 5.7 we give the number of

these noncyclic class groups for a given /z-rank.

Finally, in Table 5.8 we present those fields that have the most interesting

class group structures. Here, cn denotes the cyclic group of order n , and the

values of a and b are those for which f(a ,b;x) generates the corresponding

cubic number field.
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