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A DETERMINISTIC ALGORITHM FOR SOLVING

n = fu + gv2 IN COPRIME INTEGERS u AND v

KENNETH HARDY, JOSEPH B. MUSKAT, AND KENNETH S. WILLIAMS

Abstract. We give a deterministic algorithm for finding all primitive represen-

tations of a natural number n in the form fu + gv , where f and g are

given positive coprime integers, and n > f + g+ 1 , (n , fg) = 1 . The running

time of this algorithm is at most

1/4 3
cf(n    (log«) (loglogn)(logloglogn)),

uniformly in / and g .

1. Introduction

Throughout this paper, / and g denote integers such that

(1.1) />1,    8>U        (/,*) = 1,

and n denotes an integer such that

(1.2) n>f+g+\,        (n,fg) = \.

We are interested in the problem of determining all positive integers u and v

(if any) such that

2 2
(1.3) n = fu  + gv ,        (u,v)=l.

If (u, v) is a solution of (1.3) in positive integers, then

(1.4) (u,n) = (v,n)=l,

and

(1.5) u±v.

In view of (1.4), we see that v~ (mod n) exists, and so we can define an integer

y by y = uv~ (modn), 0 < y < n . Clearly, (n, y) = 1, and y is a solution

of fy = —g (mod/z). In particular, we have y / 0, and y ^ n/2 if n is

even. Replacing y by n-y, if necessary, we obtain a solution y of fy = -g

(mod/z) satisfying y = ±uv~    (mod/z) and 0 < y < n/2 .

Received March 14, 1988; revised November 17, 1988 and June 22. 1989.

1980 Mathematics Subject Classification ( 1985 Revision). Primary 11Y16.

The first and third authors' research was supported by Natural Sciences and Engineering Research

Council of Canada Grants A-7823 and A-7233, respectively.

©1990 American Mathematical Society

0025-5718/90 $1.00+ $.25 per page

327



328 KENNETH HARDY, J. B. MUSKAT AND K. S. WILLIAMS

Conversely, suppose y is a solution of

(1.6) fy2 = -g (mod/z),        0<y</z/2.

Note that if (1.6) is insolvable, then so is (1.3). We define the (possibly empty)

set U(f, g, n , y) to be the set of pairs of integers (u, v) satisfying:

{n = fu + gv  ,     (u,v) = l,     uv~] = ±y (modn),

withr ">i,w> i  iffg>2,
I u > v > 1        if fg = 1.

It is easily shown along the lines of the proof given in [18, pp. 332-335] that

either U(f, g, n , y) is empty or contains exactly one pair of integers.  The

main result of this paper is the following theorem which is proved in §2.

Theorem 1. Let y be an integer satisfying (1.6) for which U(f, g, n, y) is

nonempty. Let

(1.8) r0(=y)>rx>--->rs_x (=l)>r,(=0)

be the remainders obtained by applying the Euclidean algorithm to y and n .

Let rk   (0 < k < s) be the first remainder < \Jn/f. Then we have

(1.9) U(f,g,n,y) = {(u,v)},

where

(1.10) u = rk,        v = \J(n-fr2k)/g.

Theorem 1 enables us to give a simple algorithm for finding all the solutions

(if any) of (1.3) in positive integers u and v as follows:

Algorithm. First determine all the solutions y of fy = -g (mod/z), 0 <

y < n/2. For each solution y , apply the Euclidean algorithm to y and n , and

let r = r(f, g, n, y) denote the first remainder < y/n/f. Then all solutions

(u, v) of (1.3) (with u > v if fg = 1 ) lie among the pairs (r, \J(n - fr2)/g).

A deterministic version of this algorithm is described and analyzed in §4, see

Theorem 3.

Theorem 2 below, which is proved in §3, gives an alternative expression for

v to that given in (1.10). We remark that Theorem 2 is not needed in the

algorithm.

Theorem 2.  With the notation of Theorem 1, we have

1 ifk = 0,

rk+l ifk>\,fg=\,

I (rk_x-crk)/g   ifk>\, fg>2,

and c is the unique integer satisfying

(1.12) rkc = rk_x + (-\)kfyrk(modn),        0<c<n.

1.11) v = {
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We remark that Brillhart's modification [3] of the Hermite-Serret algorithm

[8, 15] for solving p = u +v , where p = 1 (mod 4) is prime, is a special case

of Theorem 2. Our algorithm also contains those of Cornacchia [6] and Wilker

[19] as special cases. Our proof is different from that of Brillhart in that the

palindromic nature of the continued fraction used in [3] does not always hold.

2. The integers c¡ and di and the proof of Theorem 1

Let y be an integer satisfying (1.6) for which

(2.1) U(f,g,n,y)ji0.

By the remarks following (1.7), there is a unique pair of integers (u, v) such

that
2 2 — 1

{n = fu + gv ,    (u,v) = l,    uv    =±y (mod/z),

with| u>\, v>\    if fg> 2,

I u > v > 1 if fg = 1 .
We define e  (= ±1) to be the unique integer satisfying

(2.3) y = Euv     (mod/z).

Applying the Euclidean algorithm to y and n , we obtain

' y = q0n + r0,

(2.4) Ï n = qxrQ + rx,

.ri_2 = qiri_x + r¡       (i = 2, ... ,s),

where

(2.5) s>l,

(2.6) r0(=y)>rx > r2 > •    > r,_, (= 1) > r, (=0),

and

% = \y/n] = 0, qx= [n/rQ] = [n/y] > 2,

di = [ri_2/ri_l]>l       (t = 2,...,s).

The continued fraction for y/n is

(2.8) y- = [q0, q{, q2, ... , qs].

The z'th convergent to y/n is

A
(2.9) -± = [q0, qx, q2, ..., q¡\       (i = 0, 1,... , s),

so that, in particular, we have

¿0 = 0, B0 = l,

Ax = 1, B\=Q\,
(2.10) A2 = q2, B2 = qxq2 + \,

As = y<   Bs

(2.7)
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Moreover, we have

,2in A^q^+A^       (i = 2,...,s),
{  ■    ' ß;=^,_1+ß,_2        (Z = 2,...,5).

From (2.4) and (2.11), we obtain, for i= I,..., s - I,

(51+1-ß,_1)/-, = i/,+lJßir; = (^-,-'-i+,)^>

so that

riBM + rt+A =r,-^, + riBi-i     (i- = i,.... i -1),

and so, for i = 1,..., s — 1, we have

r,BM + ri+xBi = rQBx + rxB0 = r0qx +rx=n,

and thus

(2.12) /•;5;+1+/-(+15;. = /z       (i = 0, 1,..., 5-1).

An easy induction argument on z, using (2.4), (2.6), and (2.11), shows that

(2.13) r^i-VfiBp-Ap)       (i = 0, I, ..., s),

so that

(2.14) r1 = (-l)'5/.y(modn)       (z = 0, 1, ... , s).

From (2.2), (2.3), and (2.14), we see that for z = 0, 1, ... , s,

(fr¡u + e(-l)igBiv = 0(modn),

\ r¡v - e(-iyB¡u = 0 (modn).

Hence, we may define integers c¡ and d¡  (i = 0, 1, ... , s) by

í cí = (friu + e(-l)'gB¡v)/n,

l rf, = (r/V-e(-l )'*,«)/«.

Using (2.2), (2.4), (2.11), and (2.16), it is easy to show that

(2 in ici = -1ici-i+ci-2        (i = 2,3,...,s),

1       ] \di = -qidl_x+d,_2       (i = 2,3,...,s),

(2.18) c2 + fgd2 = (fr2 + gB2)/n       (i = 0, I, ... , s),

and

(2.19) c,.¿,.+1-c,.+Irf,. = (-l)'e       (z = 0, 1.....5-1).

We note that

(2.20) c0 = (fyu + egv)/n,        d0 = (yv - eu)/n,

(2.21) cx= fu-qxc0,        dx=v -qxdQ,

(2.22) cs = e(-l)sgv,        ds = e(-l)s+'u.

We emphasize that cs and ds are nonzero.



A DETERMINISTIC ALGORITHM FOR SOLVING n = fu2 + gv2 331

Lemma 1. Suppose that c¿ = 0 for some integer i with 0 < i < s — 1. Set

( 0,    i even, ( 0,    s - i even,

1 1,    i odd, \ 1,    5 - z odd.

Then we have e = (-1)'+   and

(a) ca > ■ ■ ■ > c,_2 > c, = 0 > cl+2 >--->cs_b,

(b) cx_a > ■    > c,_3 > c,_, = 1 = cM < ci+3 <     < cs_(X_b],

(c) ^i_a > " " • > ^,-i > 0 > d¡+x > d¡+3 > ■■■ > ds,x_b), where at most

one of the equality signs holds, and

(d) rfa>"->¿i_2>4=l<4+2<-"<4,-f

Prao/. As c, = 0, appealing to (2.16), we obtain fr¡u = e(-l)'+]gB¡v . Now

ri > 1 , as 0 < / < 5 — 1, and so, as f, g ,u,v, B  are all positive, we see that

e = (-U'+1.

For 0 < / < 5 - 1, from (2.19), we obtain ci+x di = (-l)'+1e = 1. As c(+1

and d¡ are both integers, we must have ci+x = d¡ = ±\ But, from (2.16), we

obtain di = (r¡v + B¡u)/n > 0, so we must have

ci+x=dl = \       (0<i<i-l).

For 1 < / < 5 - 1, from (2.19), we obtain (as c; = 0, d¡= I)

c¡_x = 1       (l</<5-l).

For 0 < i < 5 - 2, from (2.16), we have

ci - ci+2 = (fu(ri - r/+2) + Sv(Bi+2 - B,))/n > 0,

so that ci+2 < 0  (0 < i < s - 2).

For 2 < / < 5 - 1, from (2.16), we obtain

c,_2 - c¡ = (fu(r¡_2 - r¡) + gv(B, - Bt_2))/n > 0,

so that ci_2 > 0 (2< /' <s- 1).
For 2 < / < 5 - 1, from (2.16), we obtain

dj_2 = (r¡_2v + B^^/n > 0,

so that dj_2 > 1 (2 < i < s - 1). Further, for 2 < i < s - \ , appealing to

(2.19), we obtain

ci_2di_x-ci_xdi_2 = e(-l)'~2 = -l,

so that cl2djX = d¡_2 - 1 > 0, and thus djX > 0 (2 < i < s - 1). This

inequality is also true for z = 1 as we now show. When i = 1 we have s = 1 ,

c0 = 1, and so, by (2.20), n = nc0 = fyu + gv and

d = yv -u = fuyv - fu2 = fuyv - (n - gv2)

0 n fun fun

= v(fuy + gv)-n = v - 1 >Q

fun fu   ~

Hence we have d¡_x >0   (1 < i < 5 - 1).
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For 0 < i < s - 2, from (2.16), we obtain di+2 = (r¡+2v + Bj+2u)/n > 0,

so that di+2 > 1 (0 < t < s - 2). Further, for 0 < i < s - 2, from (2.19),

we have c/+1 dl+2 - ci+2dj+x = 1, so that cj+2di+x = di+2 - 1 > 0, and thus

dj+x < 0  (0 < i < s - 2). But the last inequality also holds for i = s — 1, as

di+x =ds = e(-l)s+1z7 = -u < 0. Hence we have dM < 0   (0 < i <s- 1).

For a < t <s-b-2 and / = i  (mod 2), we have, by (2.16),

c, - c,+2 = (fu(rt - rt+2) + gv(Bl+2 - B,))/n > 0,

so that ct > c¡+2   (a <t < s -b -2 , t = i  (mod 2)). This completes the proof

of (a).

For 1 - a < t < i - 3 and t = i + 1   (mod 2), we have, by (2.17) and (a),

C,-C,+2 = Q,+2C,+ l >ai+2Ci_2>0,

so that ct > cl+2  (\-a <t < i-3, t = i+l   (mod2)). For z'+ 1 < t < s-3 + b

and t = i + 1   (mod 2), we have, by (2.17) and (a),

ct-ct+2 = qt+2ct+l<qt+2ci+2<0,

so that ct < ct+2   (i+l<t<s-3 + b, t = i + 1   (mod 2)). This completes

the proof of (b).

For i-a<t<s-3 + b and Z = z + 1   (mod 2), we have, by (2.16),

dt - dt+2 = ((rt - rt+2)v + (Bl+2 - Bt)u)/n > 0,

so that dl > dl+2   (\-a<t<s-3 + b, t = i + 1   (mod 2)). This completes

the proof of (c).

For a < t < i -4 and t = i  (mod 2), we have, by (2.17) and (c),

dt - dt+2 = qt+2 dM > qt+2 d¡_3 > ql+2 rf,._, > 0,

so that dt > dl+2   (a < I < i - 4, t = i   (mod2)).

For i + 2 < t < s -2 - b and / = i  (mod 2), we have, by (2.17) and (c),

d, - dl+2 = qt+2 dt+] < qt+2 di+} < qt+2 di+x < 0,

so that dt < d!+2   (i + 2<t<s-2-b, t = i   (mod 2)). This completes the

proof of (d). The proof of Lemma 1 is now complete.   D

Lemma 2. Suppose that di = 0 for some integer i with 0 < / < s - 1. Set

[ 0,    i even, ( 0,    s - i even,
a = { b = <

{ 1,    i odd, { 1,    s - i odd.

Then we have e = (-1)' and

(a) cx_a > ■ ■ ■ > c(_, > 0 > ci+1 > • ■ • > cs_{x_h), where at most one of the

equality signs holds,

(b) Ca > ■ ' ■ > C,-4 > Ci-2 >C, = l< C¡+2 < C¡+4 <---<Cs_b,

(c) da> ■■■> dx_2 > c7, = 0 > dM >■■■> ds_b, and

(d) dx_a>->di^>di_x =l=di+x <di+3<---<ds,x_b).
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Proof. The proof of Lemma 2 is similar to that of Lemma 1 and will be omit-

ted.    D

c  = 0 with 0<p<q<s-l, then p = q

0 with 0<p<q<s-l, then p = q .

Lemma 3. (a) If cp

(o)Ifdp = dq
(c) // cp = dq = 0 with 0 <p <s - 1, 0 < q < s - I, then either p = q + 1

or p = q — I.

Proof, (a) Immediate from Lemma 1(a), (b).

(b) Immediate from Lemma 2(c), (d).

(c) Immediate from Lemma 1 (or from Lemma 2).   D

We now define the nonnegative integers k and j which are central to the

proofs of Theorems 1 and 2. We let rk (0 < k < s) be the largest remainder

which is less than \Jn/ f, and B (0 < j < s) the largest denominator of the

convergents to y/n which is less than \]n/g. Clearly, rs_x = 1 < sjn/'f,

showing that 0 < k < s - 1. Also we have \Jn/g < sfñ < n = Bs, so that

0 < ;' < 5 - 1.

If k = 0, then y = rQ < sfñjf, fy2 + g = 0 (modn), fy2 + g<2n,

so that n = fy + g\ , showing that (y, 1) e U(f, g, n , y). Hence we have

(y, \) = (u, v), and so in the case k = 0 we have

(2.23) u = y v = \=B, o '

; =

as asserted in Theorems 1 and 2. When k = 0 we also show that

0 iffg>2,

1 if/*=l,
2 2 ?

as follows. From n = fy +g\   and n > f+g+1 , we obtain y   > 1 + \¡f > 1,

so that (as 0 < y < n/2 ) we have y > 2 .

We first treat the case fg > 2.   We suppose that j >  1   and obtain a

contradiction. We have

fy < fy +

Bx < BJ <

fy2 + g n

y\

f¿±g= L + fl
g V S

so that

/V<i + ̂ -
If / = 1, we have g > 2, and the inequality becomes

y2<l + -^ < 1 + y

which is impossible, as y > 2. On the other hand, if / > 2, the inequality

gives

2y2</(/-l)y2<l-/y2(£-l)/g<l,
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which is again impossible. Hence we must have j = 0 as claimed.

Next we treat the case fg = 1, that is, / = g = 1. In this case we have

n = fy + g I = y +1, where y > 2, and the Euclidean algorithm applied to

y and n just consists of three lines, namely

' y = On +y,

<  n = y y + 1,

ly = yi + 0,

so that 5 = 2, rQ = y, rx = 1, r2 = 0, q0 = 0, and qx = q2 = y. Thus we

have

#i = ?i = y < \/ñ < n = B2,

and 7 = 1 as claimed.

This completes the treatment of the case k = 0, and so from here until the

end of §3, we may assume k > 1 . Thus we have

(2.24) rk<xJnTf<rk_x       (\<k<s-\),

and

(2.25) Bj < sJnTg < Bj+X       (0 < j < s - I).

We are now ready to prove Theorem 1.

Proof of Theorem 1. From (2.12) and (2.24), we obtain

\/nffBk < rk_xBk < rk_xBk +rkBk_x =n,

so that

(2.26) Bk < sjffi.

From (2.12) and (2.25), we obtain

Vnjg'r] < r.5.+, < r,5,+1 + r]+xB] = n ,

so that

(2.27) rjKy/gñ.

Then, by (2.18), (2.24), and (2.26), we have

(2.28) c¡ + fgd\ = (fr\ + gB\)/n <\+fg,

and, by (2.18), (2.25), and (2.27), we have

(2.29) c) + fgd2 = (fr2 + gB2)/n <fg+\.

Hence, from (2.28), we deduce

(2.30) dk = 0   or   dk = ±\,    ck = 0,

and, from (2.29), we deduce

(2.31) </. = 0   or   dj = ±l,    Cj = 0.
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We first show that neither of the possibilities

(a) dk = ±l, ck = 0, dj = 0,

(b) dk = ±\, ck = 0, dj = ±l, Cj = 0,

can occur.

(a) dk = ±1, ck = 0, dj = 0.   By Lemma 3(c) we have j = k + I  or

j = k - 1. First, suppose that j = k + 1. By Lemma 1(b), (d), we have

ck = 0,    dk = \,    ck+x = \,    dk+x=0,    e = (-l)k+l.

Appealing to (2.16), we obtain

furk - gvBk = 0,        vrk + uBk = n,

and

furk+x+gvBk+x=n,        vrk+x - uBk+x = 0.

Solving these linear equations for rk , Bk and rk+x, Bk+X, we obtain

rk = gv,     Bk = fu,        rk+x=u,     Bk+X=v.

As rk+x < rk < \Jn/f and Bk < Bk+X < \Jn/g, we deduce that

u<gv <\Jn/f',       fu<v <\fnjg.

Further, as u > v for fg = 1, we see that fg>2. Then we have

i + fg < (fg)2 <^ = f-^r + fg<\ + fg,
V V

which is impossible.

Next, suppose that j = k — 1. By Lemma 1(b), (d), we have

ck = 0,    dk = \,    ck_x = \,    dk_x=0,    e = (-l)+.

Appealing to (2.16), we obtain

furk - gvBk = 0, vrk + uBk= n,

and

furk_x+ gvBk_x=n,        vrk_x - uBk_x = 0.

Solving these linear equations for rk , Bk and rk_x , Bkx , we obtain

rk = gv,     Bk=fu,        rk_x=u,    Bk_x=v.

Appealing to (2.24), we obtain y/njf < u, and so

r  2 2        r  2 .n = ju  + gv   > ju  > n,

which is impossible. Thus case (a) cannot occur.

(b) dk = ±1, ck = 0, d¡ = ±1, Cj• = 0. By Lemma 3(a) we have j = k,

and by Lemma 1(d) we have ck = 0, dk = \, and e = (-1) +l. Appealing to

(2.16), we obtain

furk - gvBk = 0,        vrk + uBk = n.
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Solving these linear equations for rk and Bk , we obtain rk = gv , Bk = fu.

Then, from (2.24) and (2.25), we deduce

gv<xJn/f,        fu<y/h~Jg.

If fg > 2, then we have

-2 2      n        n       2n
n = fu + gv  <-— + —- = —- < n,

fg    fg     fg
which is impossible. Thus we must have fg=l,so that

f = g=l,     rk = v,    Bk = u.

Then, as ck_x = 1 by Lemma 1(b), we obtain from (2.12) (with i = k — 1 )

n = urkx + vBk_x . Thus, as (u, v) = 1, there is an integer t such that

rk_x= u + vt,        Bk  i=v — ut.

As 0 < Bkx < Bk and u > v > 0, we have -1 < v/u - 1 < t < v/u < 1, so

that t = 0, and thus rk_x = u, Bk_x = v. Then, from (2.24) and (2.25), we

obtain the contradiction \/ñ <u,u< \fñ. Thus case (b) cannot occur.

Hence, from (2.30) and (2.31), we see that we must have dk = 0. By Lemma

2(b) we have e = (-1) and ck = 1. Appealing to (2.16) (with i = k), we

obtain

furk + gvBk = n ,        vrk- uBk = 0.

Solving these linear equations for rk and Bk , we obtain rk = u , Bk=v. This

completes the proof of Theorem 1.   □

We finish this section by showing that

._,,. .     jk if fg> 2,

{ k + 1    if fg = 1 .

Equation (2.32) has already been proved when k = 0, so we may assume that

k > 1 . We have shown that

(2.33) ck = 1,     dk = 0,     e = (-l)k,    rk = u,     Bk = v.

Hence we have Bk= v < \/n/g, so that

(2.34) j>k.

From (2.31) we see that either

(2.35) dj = 0

or

(2.36) Cj = 0,        dj = ±l.

If (2.36) holds, we have c = dk = 0, and so by Lemma 2(c) we have j = k + 1

or / = k — 1. The second possibility is excluded by (2.34). Thus, j = k + 1
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and ck+x = 0, dk+x = ±1 . By Lemma 1(d) we deduce dk+x = 1 . Appealing to

(2.16), we obtain

furk+x-gvBk+x=0,        vrk+x+uBk+x=n.

Solving for rk+x , Bk+X , we deduce rk+x = gv , Bk+X= fu. Since rk+x <rk<

\Jn/f and Bk < Bk+X < \Jn/g, we have gv < u < \Jn/f and v < fu <

sjn/g , so that

2 2
r 2 2      r ( 1   íñ~\ ( 1   [h~\        n        n       2n

n = fu +gv <f{ftg) +*UV7J =Tg + Tg^Tg-
But this is a contradiction when fg>2. Hence (2.35) holds when fg>2

and so, by Lemma 3(b), we have j = k as asserted.

Finally, we treat the case fg=\, that is, f = g = 1 . If (2.35) holds, we

have dk = dj = 0, and so, by Lemma 3(b), we have j = k. By Lemma 2(a),

(d), we obtain 0>ck+x, dk+x = 1. By (2.16) we have

urk+x - vBk+x = ck+xn,        vrk+x + uBk+x = n.

Solving for rk+] , Bk+X , we deduce

rM=v + ck+xu,       Bk+l = u - ck+xv.

Since 0 < rk+x < rk and Bk < s/ñ < Bk+X , we have

(2.37) 0<v + ck+xu < u

and

(2.38) v < \/n < u - ck+xv .

But, by (1.7), we have u > v , so that by (2.37)

-1 < -v/u < ck+x < 1 - v/u < 1,

and so ck+x = 0. But then from ( 2.3 8 ) we have u > y/ñ, contradicting w < y/ñ.

Hence, (2.36) must hold, and so j = k + 1 as before.

This completes the proof of (2.32).   D

3. Proof of Theorem 2

In §2 we showed that ck = 1, dk = 0, e = (—1) , u = rk , and v = Bk .

Thus, to prove Theorem 2, we must show that

rk+i ifk>l, fg=\,

Bk      I (rk_x-crk)/g   ifk>l, fg>2.

We first suppose that k > 1 and fg=\. From the analysis at the end of

§2 we have ck , = 0, and rk , = v, Bk+X = u. Hence, Bk = v = rk , as

required.

Next we suppose that k > 1 and fg > 2 . As (u, n) = 1 , we have (rk , n) =

1 , and so the congruence

rkc = rk_x + (-1 ) fyrk (mod n),        0 < c < n,
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has a unique solution c. From (2.16) (with i = k - 1 ), recalling that e = (-1)

and noting that dk_x = 1 by Lemma 2(d), we obtain

furk_x-gvBk_x =ck_xn,        vrk_x + uBk_x = n ,

so that rk_x = ck_xu + gv , Bk_x = fu- ck_xv , and hence

v = (rk_x-ck_xrk)/g.

Next, appealing to Lemma 2(a), we note that

Y><ck_x<ck_xv = fu-Bk_x< fu< fu  <n,

and modulo n we observe that

rkck_x=uv~\vck_x) = uv~\frk-Bk_x) = ey(frk-Bk_x)

= (-l)V/>* - (-l)kyBk_x = rk_x + (-lffyrk .

This shows that

rkck-\ =rk-\ +(-1) fyrk (mod«),       0<c^_, <n,

proving that ck_x = c. The proof of Theorem 2 is now complete.    D

4. The algorithm

Step 1. Use the Adleman-Pomerance-Rumely primality test [1] on the inte-

ger n. This is a deterministic algorithm with a worst case running time of

tf ((log«)" og og °6"), where a > 0 is an absolute constant and the constant im-

plied by the cf -symbol is also absolute. If n is composite, go to Step 2; else set

r = 1, n = px , ax = 1 and go to Step 3.

Step 2. Factor n into primes. The fastest known, fully proven, deterministic

factoring algorithm is the Pollard-Strassen method discussed by Pomerance in

[11, §4]. This algorithm has a running time of

1 /4 3
cf(n    (log/z) log log n log log log n ),

where the constant implied by the cf-symbol is absolute. This step in the al-

gorithm is the dominant one. In practice, one would use one of the following

methods: p method, p - 1 method, elliptic curve method, quadratic sieve, etc.

(see [10, 11, 13]). Set
/ a i \ o,   a, a,
(4.1) n=px'p22--p/,

where ax, a2, ... , ar are r (> 1) positive integers and px,p2, ... , pr are

distinct primes with px = 2 if n is even. Continue with Step 3.

Step 3. Calculate /"    (mod/z) and determine m = f~ g  (modn), 0 < m <

n . Note (m, n) = \ . The congruence (1.6) is equivalent to y  = -m  (modn).

(a) If n is odd go to (b). Else n is even, m is odd, px = 2, ax > 1 . If

ax = 2 and m = 1   (mod 4), or ax > 3 and m^l   (mod 8), the congruence

(4.2) y'x = -m (mod2a')
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is insolvable and the algorithm terminates at this point. Otherwise the congru-

ence (4.2) is solvable and we continue with (b).

(b) For each odd prime pi, compute the Legendre symbol (-m/p¡), using the

Euclidean algorithm. If any of these symbols has the value -1 , the congruence

(4.3) yi = -m (mod//"')

is insolvable and the algorithm terminates, else all the Legendre symbols have

the value +1 and we go to Step 4.

Step 3(a),(b) has a running time of at most

r

cf(\ogn) + \y^cf(\ogpi)=cf(\ogn) + cf(\ogpx ■ ■ -pr) = cf(log2«),

(=1

where the constant implied by the cf-symbol is absolute.

Step 4. For each odd prime pi a solution z(. of the congruence

2
(4.4) z¡ = -m (modp:)

is found. The congruence (4.4) is solvable as (-m/p,) = +1, and a solution z.

can be found in

cf(p^e)'l+e)

steps, where e > 0 and the constant implied by the ¿f-symbol depends only on

e . This is clear, as (4.4) can be solved in time cf(\ogp(), once some quadratic

nonresidue (mod/j>;) has been found (see, for example, [2, 5, 9, 16, 17]), and

it is known [4] that the least quadratic nonresidue (mod/?,) can be found in

! '

steps, where the implied constant depends only on £. The two solutions ±y¡

of the congruence (4.3) are then found by means of the recurrence relation

(4.5)

yl,\ = z,'

i,A--(2^,,r1o
(k = 1,... , a,. -

y i ,k+i=y¡,k- (^i, k ) ' (yi k + m ) (mod pk+' :

where the inverse of 2y(. k is taken modulo pi. Knowing z., yj can be deter-

mined in cf (a i log p¡) steps.

When n is even, it is also necessary to solve the congruence (4.2), which is

known to be solvable from Step 3. For ax = 1 or 2, the solution y, of (4.2) is

given by

fl(mod2)      ifa, = l,

' yi ~ I ±1 (mod4)    ifa  =2.
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For flj > 3 the solutions of (4.2) are computed by means of the recurrence

relation

r^.,3 = 1'

(4.7)
yi,k+i = (yi,k + (m + 2)yi,k)/2(mod2lc)

(k = 3,4,...,a¡-\),

The four solutions of (4.2) are given by

(4.8) y = ±yx,±(yx+ 2a'-1) (mod2a'),

and can be calculated in cf(ax) steps.

Step 4 has a running time of

£^;^r +<ma¡]ogp¡) = tf K>;/^>-+2£
1=1 Vi=i /

= cf U(4^   ^^J^^1   +2£\ogn)=cf(n{

where the constant implied by the tf -symbol depends only upon e . Thus the

time for Step 4 is tf(«(4v/?)   +E) uniformly in / and g.

We remark that if Schoofs algorithm [14] is used for solving (4.4), Step 4

has a running time of tf (log10«) but the implied constant depends (strongly)

on «7.

Step 5. The Chinese remainder theorem is used to find the 2r solutions y

(mod«) of

(4.9) y = ±y¡ (modp°')       (i = 1, 2, ... , r), if n = 1 (mod2);

the 2       solutions y (mod«) of

f 1 (mod 2),
(4.10) y=\

\ ±y( (modpj1)       (z = 2, ...,/•),  if« = 2 (mod 4);

the 2r solutions y (mod«) of

±1 (mod 4),

±yi(modpai')       (i = 2, ... , r), if« = 4 (mod 8);

and the 2r+   solutions y   (mod«) of

,„,,, Í ±y1,±(y,+2a'-')(mod2fl'),

(4.12) y={
{ ±y(. (mod Pi')       (i = 2, ... , r),  if« = 0 (mod 8).

The values y obtained are the solutions (mod«) of y =-m (mod«). Step

5 can be accomplished in tf(2rlog2«) = ff(2^1°8"/'°8log") steps, where ß is a

positive absolute constant, and the constant implied by the tf -symbol is abso-

lute.

(4.11) y = {
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Step 6. For each of the solutions y of y = -m (mod«) with 0 < y < «/2

found in Step 5, we apply the Euclidean algorithm to y and « , and determine

the first remainder r less than y/n/f. By Theorem 1 all the solutions (u, v)
2 2

of « = fu + gv , (u, v) = 1 , in positive integers (with u > v if fg = 1 ) lie

among the pairs (r, \J(n - fr2)/g). They are easily found by checking whether

\J(n - fr2)/g is an integer. Step 6 takes cf(2rlogn) = cf(2ßl°6n/lo&loin) steps,

where the implied constant is absolute.

We have thus proved the following theorem.

Theorem 3. Let n, f, g be integers satisfying (1.1) and (1.2). Then there is a
2 2

deterministic algorithm which gives all the solutions of n = fu +gv in positive

coprime integers u and v , with a worst case running time of

tf(«l/4(log«)3(loglog«)(logloglog«)),

where the constant implied by the tf -symbol is independent of f and g.

We remark that the worst case running time for a rigorous random version

of our algorithm is

cf(2/nog«/.og.OÊ'!) (ß>0),

with the dominant steps being Step 5 and Step 6.

5. Numerical example

This algorithm was implemented in ALGEB on a RAVEN 286/10 IBM AT
clone at Carleton University. The following example illustrates the calculation

of solutions (u, v) to (1.3) in the case

« = 9,198,968,367,101,    f = 4,    g = 61,

using Steps 1-6 as described in §4.

Steps 1,2.   « is composite and the parameters in (4.1) are:

px = 12613,    ax = 1 ;        p2 = 20333,     a2 = 1 ;        p} = 35869,    a} = 1.

Step 3. We have

/"' (mod«) = 6,899,226,275,326,

«7 = 6,899,226,275,341,

(  ~m  \ _ (  ~m  \ _ (  ~m

V126137 " V20333) ~ \35869

Step 4. The solutions y( of (4.3) corresponding to the primes p¡, i = 1, 2, 3 ,

are

y, =4853,        y2 = 9570,        y3= 14037.

+ 1
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Step 5. The four solutions y of y  = -m   (mod«) with 0 < y < n/2 are

382,072,735,980,

1,154,613,726,359,

1,579,334,330,612,

3,116,020,792,951.

Step 6. Applying the Euclidean algorithm to « and each of the solutions y from

Step 5 above, we find the corresponding remainders rk with rk < yjn/f < rk_x .

All four of the values of y give rise to solutions of (1.3) as follows:

\A« - ■/>*)/*
382,072,735,980 717,088 342,175

1,154,613,726,359 577,520 359,071

1,579,334,330,612 1,376,188 163,135

3,116,020,792,951 381,100 375,871

The values of rk_x and c corresponding to the four solutions above are:

k         h-\ c (h-\-crk)ls

10 26,609,379 8        342,175

10 25,368,451 6        359,071
13 55,365,439 33        163,135

9 24,452,531 4        375,871

in accordance with Theorem 2.
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