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TWO-STEP RUNGE-KUTTA METHODS

AND HYPERBOLIC PARTIAL DIFFERENTIAL EQUATIONS

R. A. RENAUT

Abstract. The purpose of this study is the design of efficient methods for

the solution of an ordinary differential system of equations arising from the

semidiscretization of a hyperbolic partial differential equation. Jameson re-

cently introduced the use of one-step Runge-Kutta methods for the numerical

solution of the Euler equations. Improvements in efficiency up to 80% may be

achieved by using two-step Runge-Kutta methods instead of the classical one-

step methods. These two-step Runge-Kutta methods were first introduced by

Byrne and Lambert in 1966. They are designed to have the same number of

function evaluations as the equivalent one-step schemes, and thus they are po-

tentially more efficient. By solving a nonlinear programming problem, which is

specified by stability requirements, optimal two-step schemes are designed. The

optimization technique is applicable for stability regions of any shape.

0. INTRODUCTION

In this paper we consider a class of pseudo-Runge-Kutta methods for the

solution of an ordinary differential system of equations

(0.1) y' = f(y)

which arises from the semidiscretization of a hyperbolic partial differential equa-

tion. In 1982, Jameson [7] initiated interest in the use of one-step Runge-Kutta

methods for the numerical solution of the Euler equations. He applied the

van der Houwen [4] optimal schemes in codes for the solution of the Euler

equations by central differences. These schemes are optimal because they have

regions of stability enclosing a maximal interval on the imaginary axis, as is

required when central differences are used for the semidiscretization. Here we

demonstrate that greater efficiency is achieved by using two- rather than one-

step Runge-Kutta formulae. These Runge-Kutta methods were first considered

by Byrne and Lambert [1] in 1966.

We define an explicit two-step w-stage Runge-Kutta method as

m

(0.2) yn+x = (1 - ß)yn + ßyn_x + h ][>,/(>V.) + V0Í)) »
i=i
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where

i = Í y m .      « = i.

The vector v^ represents a numerical approximation to the analytical solution

y(t) at t - tn, and /z is the step length, iB+1 = tn + h. Observe that the

schemes considered by Byrne and Lambert [1] have ß = 0. It is clear that

the form of the y'n and y'n_x means that no more function evaluations are

required for two steps than for the equivalent one-step formula. This is because

the function evaluations at the time tn_x are the same as those taken at time

tn in the previous step. Therefore, provided that information is stored from

step to step, the two-step schemes are potentially as efficient as the one-step

methods when working with a constant stepsize. Furthermore, the number of

degrees of freedom of the two-step method is \m(m + 3) + 1 as compared to

\m(m +\) for the one-step method. Thus an w-stage two-step scheme has the

same flexibility as an (m + l)-stage one-step scheme. For a large number of

stages, the difference is negligible but typically one only uses a few stages, and

then the extra flexibility is useful. Here we take advantage of this flexibility

to design schemes with optimal stability regions with respect to given domains

in the complex plane. For our analysis we will consider the scalar problem

y = f(y), where y is scalar. The results immediately extend to the case of

systems.

In the next section we develop the order conditions for the two-step formu-

lae using Butcher series. For a given number of stages, higher order is attain-

able than with one-step schemes. Byrne and Lambert [ 1 ] presented a two-stage

scheme of order three and a three-stage scheme of order four. With four stages

no improvement is possible and order four is attained.

In order to design efficient schemes for hyperbolic problems, the stability

properties of these schemes must be studied. This is done in §2, where a review

of results about maximal stability intervals for Runge-Kutta methods is also

presented. We develop criteria for the stability of the two-step schemes and use

these to prove that the maximal interval of stability on the imaginary axis for

a two-step two-stage order-three scheme is 1.0. In other cases, optimal schemes

are found numerically. The strategy to determine optimal schemes is described

in the last section. Further explanation is given by Renaut [14].

The results show that generally two-step schemes are more efficient than their

one-step counterparts. To enable reasonable comparison, we present scaled re-

sults that take into account the number of function evaluations being performed.

With three stages and order three, an improvement of 64% is predicted using

two-step schemes for a centrally differenced hyperbolic problem. The optimiza-

tion procedure is applied not only for intervals of stability on the imaginary axis

but also for stability within regions in the complex left-half plane. This is of

interest when the hyperbolic equation is discretized with forward or backward
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differences instead of central differences. Improvement in efficiency up to 80%

is predicted for the cases considered here.

Observe that this optimization technique may be applied for any regions in

the complex plane and can therefore be used to determine optimal schemes for

any semidiscretizations.

1. Order conditions and Butcher series

First we review the conditions for the convergence of numerical solutions of

(0.2). As in Henrici [3], the method (0.2) is said to be convergent only if, for all

Lipschitz functions /, the solution y(t) of the initial value problem y - f(y),

y(0) = y0, defined on the interval t e [0, t) satisfies

lim yn = y(t).
n—too
nh=l

Now the multistage method (0.2) is associated with a nonlinear difference op-

erator yn+x - Z(yn, yn_x), where Z denotes the operators on the right-hand

side of equation (0.2). The method is said to be accurate of order p , at t - tn,

if p is the largest integer such that

(1.1) y(tn+x) - Z(y(tn), y(tn_x)) = 0(hp+l),        \h\ « 1.

If p > 1, the method is consistent. Further, the method is zero-stable if no

root of the polynomial p(a), defined by

2
p(a) a (l-ß)a-ß,

has modulus greater than one, and if a root has modulus one it must be simple.

Then the method is convergent if and only if it is zero-stable and consistent [3].

Therefore, it is convergent only if -1 < ß < 1 since p(a) has roots ax = 1

and a2 = -ß. Furthermore, if we expand y(t„+x) and y(tn_x) about y(tn),

using Taylor's theorem, we see that

Km[y(tn+l)-Z(y(tn),y(tn_x))]

= h ^+ß)yitn)-Y.ivl+wl)f(yn)
i=\

+ 0(h¿).

Thus consistency requires

and convergence

1 + ß = ¿K + wi)
i=\

X>; + ti;,)/0.
i=i

In general, order of accuracy greater than one is desired. Order conditions

can be derived in a variety of ways. The tensor notation used by Henrici [3]

was applied by Renaut [14] to derive order conditions up to order four. Here
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we use Butcher series and follow the approach of Hairer and Wanner [2] to

get a formula from which order conditions up to any order of accuracy can be

derived. Jackiewicz, Renaut, and Feldstein [6] also used Butcher series to get

the order conditions for implicit two-step methods but without the use of the

composition theorem of Hairer and Wanner [2]. To apply the theory of Hairer

and Wanner [2], we need to write the method (0.2) in the matrix-vector form

y = A(0)y0 + hAWf(y).

A0) iOHere A( ' and Ay ' are fixed (2m+2)x(2m+2) matrices, and y, y0, and f(y)

are (2m+2)-dimensional vectors, where / acts on the vector y componentwise.

In this case,
m m- I

m

A(0) =

m

(0

0

0
o

o
Vo

and

AW =

m

0 1 0

0 1 o
0 1 o
0 0 0

0 0 0
0 ß o

o o

o o
0   0   0
o o

o o

o o 0\

0 0 0
0 0 0
0 1 o

0 1 o
0 l-ß 0)

m

where

A =

V      V

(  0     ...
a2X     0

w

0   0\

0   o
o o

o

o
07

0 \
o

Vaml     •••      am,m-\     °J

vT = (v{,v2, ... , vm)T, and wT = (wx,w2, ... , wm)T. Also, y0 is defined

by

y0 = (y„-c--y„-i> yn---yn)T
m + 1 times        m + 1 times

and y = (y\_., y2n_x,..., j£_,, yn, y\,..., y™, yn+xf . These definitions of

y4(0), Aw , y0, and y are not unique; see [6] for a different definition.
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We assume for y a Butcher series

y = ^$(/)F(/)(y0) = 5(<Dj0),

ter

where T is the set of all monotonically labelled trees, r is the order of the tree,

and

®(t) = (t>x(t),...,cl>2m+2(t))T

is unknown. F(t) is the differential associated with tree t such that

F(x) = f,        t = .,

and

F(t) = fm.(F(tx),F(t2),...,F(tJ)

if t — [tx, U,..., t ] is the rooted tree such that if its root is removed, the

remaining subtrees are just tx,t2, ... ,tm. Here, t = • is the tree of order

1, and the composition F(t) = fm • (F(tx), F(t2), ... , F(tm)) means that the

differential fm acts on each of the differentials F(tx), F(t2), ... , F(tm). The

Butcher series for y0 is given by B(p, y0), where

' (-1)',    i<m,

p¡(t) = <1, i>m + l,t = 0,

0, otherwise.

Forming the Butcher series for the numerical method (0.2) and applying the

composition theorem of Hairer and Wanner [2] gives

7?(<P, y0) = A{0)B(p, y0) + AWB(<S>', yQ).

Comparing terms gives

<t>(t) = A(0)p(t) + A{i)<l>'(t).

For order of accuracy p , the last component of this equation must agree with

the Butcher series of the Taylor polynomial for yn+l up to terms of order p .

Therefore,

WOW; = '{,<„

Application of the Kastlunger Theorem [2] to <S>'(t) gives

O'(0 = K^i, ) . 0>(í2) • • - • . 0(íw))

and thus the order conditions. These are given in Table 1 for order of accuracy

up to p = 4.

The relationship between the number of degrees of freedom and the order

attainable for both one- and two-step Runge-Kutta is summarized in Table 2.

The maximal order of the five-stage, two-step scheme has not been calculated

but we conjecture that it is five. For order six, 37 conditions must be satisfied by

21 coefficients, and our experience with these schemes suggests that this is not
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Table 1

Order conditions for two-step Runge-Kutta

I
v

!

Y

f

Differential

f(t)

f'•/

/'•(/,/)

/•(/•/)

/"•(/,/,/)

/'•(/,(/'•/))

/•(/'•(/,/))

/•(/.(/•/))

Order Conditions

1 = _/i + (t,r + wr)i

1 =j? + 2(t)r4 + wrc)

1 =-,8 + 3(/i)2 + i»V)

= -/J + 3«  1

-r6((vr + wr)^1C-t)r^,l)

1 ̂ /i + ̂ V + wV)

1 = /j + 4t>  (¿>-r2(6»^i))

r
+ 4w  (2c • v4[ c)

1 = £ + 4(-?j7'l + 3t)r/l1è2 + 3w7'^1c2)

1 = /J - 4wrl + 12t/c

24(f   + w  )Axc-24v  Axc

l = (l,l,...,l)reRm, b = (bx,b2,...,bm)T, b. = Ci-\, c = (ci,...,cm)T,

/-i
Ek k

a   ,   (b )i = b¡ ,  and è • c is componentwise multiplication.

/=l

possible. Except with four stages, one order of accuracy higher, using two steps

rather than one, is obtained. In this case there are more remaining degrees of

freedom that can be used in a variety of ways. Renaut [ 14] exploited the degrees

of freedom available to design error control schemes. Byrne and Lambert [ 1 ]

minimized the truncation error.

Table 2

Comparison of order for one- and two-step schemes

Number of

stages

i

1
2

2
3
3
4

4

5
5

Number of
steps

i

2
1

2
1

2
1
2

1

2

Maximal

Order

1
2

2
3
3
4
4
4

4

Degrees of
Freedom

i
3
3
6
6
10
10
15
15
21
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2. Stability and stability intervals

The solution of the linear test equation y - Xy, X e C, by (0.2) yields the

recurrence relation

yn+l=S(z)yn + P(z)yn_x,

where z = hX and S(z) and P(z) are polynomials of degree m, S(z) —

Y^IqSjZ1 , P(z) = Y^LoPi2' • *n terms °f tne variables in (0.2),

m

50=l-p\ S, = £>,-,

i

m     kx-\ k¡_,-

fc,=1^=1-1       fc,=l

m

Po = ß>    Pi = J2v^

m     fc,-l fc,_,-l

*\ = E E ••• E fl*,*,aM,■••\-,*iw*

ktk2   k2k} kj_íkl    kt

(2.1)

(=1

-i

fc,.=i

k, = \

The characteristic equation of (0.2),

(2.2) a  - S(z)a - P(z) = 0,        z = hX,

has roots ax, a2 which determine the stability of the method. The stability

region S is defined by

roots ax, a2 of (2.2) satisfy

and q1 ^ a2 if |q,| = \a2\ — 1

a,I, \a2\ < ll

The numerical solution of a partial differential equation by (0.2) is stable

provided that all points in the spectrum of the infinite Toeplitz operator of

the semidiscretization multiplied by h lie inside S. Since the values of the

spectrum are proportional to 1 /Ax, where Ax is the grid size in the spatial

discretization, the numerical solution is stable provided that the spectral curve

multiplied by h/Ax lies inside S. In order to use large time steps, h , as large

a multiple as possible of the spectral curve must be inside S. Thus, because p

is proportional to h/Ax, we need to find the largest possible Courant number

p for which the numerical method is stable.

Suppose the linear hyperbolic test equation

(2.3) ut = ux,        u- u(x, t)

is solved. A three-point central difference approximation is

duj _     l
("y+i U:

dt  '   2Axv J+l      J~l
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Figure 1

Comparison of spectral and eigenvalue curves

where w approximates u(x¡, t). The spectrum of this approximation is the

curve /' sin 6 , de [-n/2, n/2], which is just the interval [-i, /'] of the imagi-

nary axis. The five-point approximation has spectrum with a larger interval on

the imaginary axis. For efficient integration of these methods, methods with

stability region enclosing a maximal interval on the imaginary axis are desired.

One-step Runge-Kutta methods with this property were first analyzed by van

der Houwen [4].

The construction of first-order one-step Runge-Kutta methods which are opti-

mal in the sense of having a stability region enclosing a maximum interval along

the imaginary axis can be posed as a minimax problem. The maximum inter-

val of stability along the imaginary axis, ß. , is bounded by 2[m/2]. This

bound was refined by Pike and Roe [13] to give ßt < m - 1. Runge-Kutta

methods with an odd number of stages, that attain this bound, are also second-

order accurate.  Third-order methods satisfy ß
imag = J(m - l)2 + 1 and are

fourth-order if the number of stages is even; see Kinmark and Gray [10]. Such

results for two-step schemes are not known. Jeltsch and Nevanlinna [8] proved

that ß- = m sin(n/2m) for order-one two-step schemes and an odd number

of stages. We demonstrate later that a larger value of /3imag can be found by

relaxing the assumptions of their theorem.
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Large intervals of stability on the imaginary axis are, however, not always

desired. If (2.3) is solved using upwinding:

duj     «,., - w,
(2.4) C:-t^ = ^-'-,v    ' dt Ax

the spectral curve is ¿(cos e - 1 + / sin 0), which is shown as curve C in Figure

1. This lies in the left-half complex plane and therefore the stability region

must enclose as large a multiple as possible of this curve. Spectral curves for

the discretizations

(2.5)
2du¡     du¡,,       i   /-i 5       \

A:ir+T = s(T"H-^^»,,).
dUj_x     8duj     5duj+x      \2

(2.6) B: —f±-—rL--r^ = tH«,- - «,.,)y     ' dt dt dt        AxK J      i+v

also lie in C~, as shown in Figure 1. The schemes given by A and B were

chosen as the only two examples of implicit schemes which have order three,

are stable, and are based on a Padé approximation. In fact, the results of Iserles

and Williamson [5] demonstrate that there are only three possibilities for such

maximally accurate schemes of order three. The third scheme is explicit and

also gives a curve on C~ . Obviously, many other discretizations also give curves

in C~ , and thus in each case the stability region must be optimized with respect

to that curve. There are no solutions of this problem in the literature for either

one- or two-step Runge-Kutta methods. Observe that in examples (2.4), (2.5),

and (2.6) the spectrum of the infinite Toeplitz operator is not the same as the

spectrum of the finite-dimensional operator. The two are compared in Figure

1 for discretizations A and B. The discrepancy occurs because the underlying

Toeplitz operator is not normal, and thus the eigenvalues of the Jacobian matrix

do not tend to the spectrum of the infinite-dimensional form.

We seek regions in C in which the roots of the characteristic equation (2.2)

have modulus less than one and attain modulus one on its boundary. By the

maximum modulus principle we only need to determine the roots of the charac-

teristic equation along the boundary of the region. To decide if a root satisfies

stability, the Cohn-Schur criteria may be used. For equation (2.2) they take the

form

(i)    \Piz)\<\,

(ii)    \\P(z)\2-l\<\S(z)P(z) + S(z)\.

With strict inequality the roots of the quadratic equation (2.2) lie inside the

unit circle [12].

These criteria are expressed in terms of the polynomial coefficients {s¡, p¡} .

Therefore, it is convenient to express the order conditions of Table 1 in terms of

{s¡, p¡). Note that the method is of order p only if one root of the quadratic

equation (2.2), the principal root, is an approximation of order p to the expo-

nential:

ax(z)-ez = czp+i+c(\z\p+2).
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This gives

pQ + s0 = 1    order 1,

p. + s. + sn = 2   order 2,
(2.8) '      '      °

p2 + s2 + sx +s0/2 = 2,

p3 + s3 + s2 + sx ¡2 + s0/6 = 4/3   order 3.

Up to order two, these conditions are sufficient, but for p — 3 the coefficient

of the f2f differential,

P,+ s.
(2.9) (p2 + s2)a + ^j-1^ + öf - a(y + 33)) = 0,

L      ¿ da

is also required. For convenience we have set a = a2x, y = aix, and 6 = ai2 .

The solution of these equations for the m = 2 scheme completely defines

the coefficients {s2 , p2} in terms of p0 :

- i _ 3+tj0 _ 5-p0
S0 ~ l     Po ' S\ ~       9      ' S2~      1?'

(2.10) , L U
Po'1

Px - -^Y~ ' P2 = ~S2-

The stability region can thus only be optimized with respect to the variable p0 ,

which is constrained by zero stability to satisfy -1 < p0 < 1.

Theorem. The maximal region of stability attainable on the imaginary axis by

a two-step, two-stage, order-three scheme is given by ßimag = 1. The schemes

achieving this bound have

P(z) = \-\z-\z2   and   S(z) = \ + \z + \z2.

Proof. Set z = iy in the Cohn-Schur criteria and substitute the equations (2.10)

in (2.7). This yields

W    7^(5-^o)V + 7^(l+/a3+/^Ml-Po)^0'

(ii)   y2<24^-^-2.
(5-p0)2

Here, condition (ii) implies (i) when |p0| < 1. The maximum value of y that

satisfies (ii) is y = 1 and occurs for p0 = \ . Therefore, ß- = 1. T'(z) and

S(z) follow by substitution of p0 - ¿ in (2.10).   G

In general, the equations (2.8) determine the number of degrees of free-

dom available for stability. Equation (2.9) is just an extra condition on the

coefficients a, y, and ô . Therefore, the determination of maximal Courant

numbers is a nonlinear programming problem given by the Cohn-Schur crite-

ria subject to the linear order conditions (2.8) and the zero stability condition

-1 < Po - 1 • Note also that the truncation error is normalized by the term

£2™ ,(i;. + w¡), which tends to zero as p0 tends to -1.  Therefore, p0 near
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-1 is not preferred. The optimization procedure described next is unlike that

adopted by Lawson [11] for finding optimal one-step fifth-order schemes with

six stages.

3. Optimal stability regions

Here we present a method for determining optimal stability regions for a

given number of stages and order of accuracy for one- or two-step Runge-Kutta

methods. The same technique could be used for Runge-Kutta methods with

more steps. To do this, the Cohn-Schur criteria for higher-order polynomials

would lead to more nonlinear constraints.

Our aim is to find coefficients of a method which has a stability region en-

closing a given domain Q in C" . In the cases considered here, Q. is either

a wedge bounded by the arc of a circle, or a wedge bounded by a spectral

curve. The domain Q can be uniformly scaled by multiplying each z e C by

a constant, p. We wish to maximize p so that Q still lies in S, but only

just lies in S. The method for which p is largest is optimal. Because of the

maximum principle, we only need to check stability along the boundary of the

domain. Therefore, we discretize the boundary of Q and label the points z ,

1 < j < N. At each point, stability is required, and therefore the Cohn-Schur

criteria must be satisfied. Therefore, from equations (2.7) we get two nonlin-

ear constraints at each point, which gives a total of 2/V nonlinear constraints.

Since stability can be determined completely from the coefficients of the char-

acteristic polynomial, we work with the polynomial coefficients rather than the

{a- , vt, it;,} of the method. The latter can be calculated from the polynomial

coefficients {p¡, sl,, 0 < i < m}. Depending on the order, the polynomial co-

efficients are further linearly constrained by equations (2.8). Zero stability also

imposes -1 < p0 < 1. This leaves M free variables, where M < 2(m + 1).

Then we get an additional variable which is the scaling factor p. The size of

Í2 depends on p, and thus the z. also depend on p . In summary, we have

the following optimization problem:

maximize p

subject to

-1 < P0 < 1.

\P(Zj)\<l,        l<j<N,

\3{Zj)P{Zj) + S(Zj)\ < 11 - |7>(z;)|2|,        1 < j < N.

P(Zj) and S(Zj) are functions of X = (p, Xx ■■■XM)r with {X{ | 1 < i <

M}c{pl,s¡ |0< i< m).

The above problem was solved for the second- and third-order, two- and

three-stage, two-step schemes. For comparison, some optimal one-step schemes

were also found, but the optimization was much simpler. Details of the so-

lution process are given by Renaut [14]. In many cases it was difficult to get

convergence to a solution with a small residual, even using double precision.



574 R. A. RENAUT

Table 3

Runge-Kutta schemes and their degrees of freedom for optimization

Number of

steps

Number of

stages

Order

P

Free Variables

PqP\P2   P
Po   t*
P0P\P2Pîs3    P

P0PlPlP3    P

r3 p

r3r4 P

U    P

Table 4

Maximal radii of wedges

Stages Steps Order 49.1 60" 45" 90" /
1.74

3.02
4.36
2.15

3.13
4.31
2.97
4.91

1.85
2.63

1.99
2.82
4.99
2.52

3.09
4.94
3.39
5.09
1.99
2.57

not

calculated

2.75
5.92
2.06
3.30

1.47
2.29
1.00
2.21

0
2.00

2\/2
v^

2\f2
VT3
1.98
2.93
1.00
2.84

Table 5

Maximal radii of wedges scaled by number of stages

Stages Steps Order 49. 60" 45" 90" /
.870

1.007
1.090
.717

.783

.862
1.485
1.637
.925
.877

.995

.940

.248

.840

.773

.988

.695

.697

.995

.857

not

calculated

1.375
1.973
1.030'
Lino

.735

.763

.500

.737

0
.667
.707
.577
.707

.775

.990

.977

.500

.947
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Table 6

Coefficients of optimal schemes

Region

Si
Imaginary

axis

Wedge

angle 45°

Wedge

angle 90°

scheme coefficient

m

P ■

= 2

2
Po
P\
P-)

.950

.025

.006
.827186
.207100

.178656

.321257

.005268
w = 2

p = 3
Po .2

m

P -

■■ 3

2

Po
P\
Pi

Pi

.9
-.039
-.009
-.001

.295

.949860

.961077

.218305

.018807

.019814

.132890

.186786

.144745

.035683

.179877

77! = 3

p = 3

Po
Pi
Pi

P%

1.00
0
0

0

.73

.59

.14

.018

.378628

.430854

.246454

.078024

Many of the solutions apparently converged to a p0 near to -1. In these cases

we imposed an additional constraint that p0 be greater than some number, for

example, -.9. The optimal schemes then converged to this lower bound for

p0 . In each case, a solution was found for a small value of N, such as N - 5 .

We then increased TV and found a new solution with the old solution as the

starting value. The process was continued until the solutions from successive

problems were the same to the accuracy allowable by the subroutine. Usually

only a few iterations were needed to get convergence. We used a variety of NAG

and Harwell library routines but obtained best results with the NAG routine

E04UBF, for which the results are given here. The schemes investigated are

summarized in Table 3. Note that the characteristic polynomial of the one-step

Runge-Kutta schemes is denoted by R(z). Observe that we have not calculated

results for all the one-step schemes, because differences between the one-step

and two-step schemes are adequately shown by the other results.

We used five different domains Q in the calculations. One of these was the

imaginary axis, the others were wedge shaped regions subtending an angle 2a

at the origin and bounded by a smooth curve. For wedges with a = 45° and

a = 90°, the wedge was bounded by the arc of a circle. The other two wedges

were bounded by the spectral curves of the Jacobians of the semidiscretizations

A and B, equations (2.5) and (2.6). These subtend angles 60° and 49.1° at

the origin, respectively. In Table 4 we give the maximum radius of the wedge

obtained for each scheme. These values, however, do not allow fair comparison,

as there is more work in a three-stage scheme than in a two-stage scheme. Thus,

Table 5 is the same as Table 4 with the radii scaled by the number of stages.

Observe that the wedge with angle 60° apparently allows larger Courant num-

bers than the wedge with angle 49.1°. This is not a problem, as the bounding
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Stability regions for k-2, m = 2, p = 2 schemes
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curves are different in each case, and clearly it is these that have dictated the op-

timization. Indeed, the other results show that the smaller wedges allow larger

maximal radii. We conclude that the optimization procedure is basically suc-

cessful. Currently, we are communicating with Nick Gould of Harwell about

the use of new software, not yet publicly available, which may improve the re-

sults and simplify the optimization procedure. Examples of the stability regions

are given in Figures 2a-2d. Note that we do not use the same scale on both

axes but prefer to compare regions for a chosen method. When both axes have

the correct scale, the wedges fit as required.

As already noted in the previous section, there is a two-step, three-stage

scheme of order of accuracy p = 3 , that has /?■ = 2.84. This appears,

at first glance, to contradict the result of Jeltsch and Nevanlinna [8]. Their

scheme is given by P(z) = 1, S(z) = 2z + j^z and has ß- - 1.5 because

there is a double root at z = 1.5/. Perturbing S(z) slightly gives a third-order

scheme, with

S(z) = 2z + \z\

and ß- = 2.8473. The root locus of z + 6z - 6/sin? = 0 has a branch

point at z = iy/2 for t = cos-'(1/3) and therefore the scheme with S(z) =

2z + z /3 does not satisfy Property C as defined by Jeltsch and Nevanlinna

[9]. Their theory, however, requires that Property C is satisfied. Therefore,

our result shows that there are schemes which fall outside the theory of Jeltsch

and Nevanlinna [9] but still may be useful. For the Jeltsch and Nevanlinna

scheme and the scheme which we propose, the stability region is just an interval

along the imaginary axis.

In conclusion, observe that the two-step schemes are generally more efficient

than the one-step schemes. An increase in order reduces efficiency, as would

be expected. In most cases there is still some freedom left over. Renaut [14]

used this freedom to design efficient algorithms for error control. Numerical

experiments are currently in progress and will be reported later.
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