NEW SOCIABLE NUMBERS

ACHIM FLAMMENKAMP

Abstract

An exhaustive search has yielded new sociable groups; one of order 9 , two of order 8 , and the others of order 4.

For each natural number n, we write $s(n)=\sigma(n)-n$ for the number of its divisors excluding itself. If this function is iterated by $s^{j+1}(n)=s\left(s^{j}(n)\right)$, it defines the so-called aliquot sequence of $n: s^{0}(n), s^{1}(n), s^{2}(n), \ldots$, starting with $s^{0}(n) \equiv n$. If the sequence for a given n is bounded, either it ends at 0 (since $s(0)$ is undefined), or it becomes periodic. If it is constant, it has reached a perfect number. If it is alternating, it represents a pair of amicable numbers, or in general produces after k iterations a cycle $s^{k+1}(n), s^{k+2}(n), \ldots, s^{k+t}(n)$ of minimal length t, which forms a sociable group of order t.

There is a concise historical survey on the search for perfect numbers in [1], and thousands of amicable pairs are known today [2], but much less is known about groups of higher order. At the beginning of this century, the first two examples, order 5 and order 28, were found by Poulet [3]. In 1969 and 1970, Borho [4] and Cohen [5] discovered some of order 4. This work was extended some years later by Devitt et al. [6] and Root [7], who found five further groups of order 4.

In order to find more examples, I initiated a search for sociable numbers on several computers. Testing the first t iterates of each number n, I used about 10000 cpu hours on HP320/HP330 computers.

limit of n	max order of t
$5 \cdot 10^{4}$	50
$5 \cdot 10^{5}$	40
$5 \cdot 10^{6}$	30
$5 \cdot 10^{7}$	20
$5 \cdot 10^{8}$	10
$5 \cdot 10^{9}$	30^{*}

[^0]The main result is the discovery of 11 previously unknown sociable groups which are shown with their factorization in the following table; in addition, I reproduced the 1100 amicable pairs computed by Riele [2].

```
1236402232=2\cdot2\cdot2\cdot13\cdot41\cdot53\cdot5471
1369801928=2\cdot2\cdot2\cdot11\cdot17\cdot863\cdot1061
1603118392 = 2\cdot2\cdot2\cdot313\cdot640223
1412336648=2\cdot2\cdot2\cdot4967\cdot35543
2387776550=2\cdot5\cdot5\cdot19\cdot31\cdot89\cdot911
2497625050 = 2.5\cdot5\cdot19\cdot31\cdot84809
2550266150 = 2.5\cdot5\cdot31\cdot59\cdot79\cdot353
2506553050=2\cdot5\cdot5\cdot31\cdot59\cdot27409
2879697304 = 2 \cdot2\cdot2\cdot11\cdot19\cdot1722307
3320611496 = 2\cdot2\cdot2\cdot17\cdot71\cdot343891
3364648984 = 2\cdot2\cdot2\cdot31\cdot13567133
3147575336 = 2 \cdot2\cdot2\cdot47\cdot8371211
4424606020 = 2.2.5\cdot41\cdot103\cdot52387
5186286908=2\cdot2\cdot11\cdot1861\cdot63337
4720282996 = 2 \cdot2\cdot11 1 13\cdot1301 \cdot 6343
4993345292 = 2 2 2 13 1291\cdot74381
1095447416 = 2 \cdot2\cdot2\cdot7\cdot313\cdot62497
1259477224 = 2\cdot2\cdot2\cdot43\cdot3661271
1156962296 = 2\cdot2\cdot2\cdot7\cdot311\cdot66431
1330251784=2\cdot2\cdot2\cdot43\cdot3867011
1221976136 = 2\cdot2\cdot2\cdot41\cdot1399\cdot2663
1127671864 = 2 2 2 .2 '11 \cdot61\cdot83\cdot2531
1245926216 = 2\cdot2\cdot2\cdot19\cdot8196883
1213138984 = 2\cdot2\cdot2\cdot67\cdot2263319
2717495235=3\cdot3\cdot5\cdot7\cdot13\cdot19\cdot53\cdot659
3509525565=3\cdot3\cdot5\cdot7\cdot13\cdot857027
3977471043 = 3.3\cdot7\cdot13\cdot1451\cdot3347
3100575933=3\cdot3\cdot7\cdot13\cdot19\cdot19\cdot10487
3705771825=3\cdot3\cdot5\cdot5\cdot7\cdot1019\cdot2309
3890616975 = 3\cdot3\cdot3\cdot5\cdot5\cdot7\cdot503\cdot1637
4298858865 = 3\cdot3\cdot3\cdot5\cdot7\cdot79\cdot89\cdot647
4659093135=3\cdot3\cdot3\cdot5\cdot101\cdot341701
4823923384=2\cdot2\cdot2\cdot7\cdot7\cdot1087\cdot11321
5708253896 = 2\cdot2\cdot2\cdot23\cdot211\cdot147029
5513075704 = 2\cdot2\cdot2\cdot67\cdot97\cdot107\cdot991
5196238856 = 2\cdot2\cdot2\cdot37\cdot743\cdot23627
1276254780=2\cdot2\cdot3\cdot5\cdot1973\cdot10781
2299401444 = 2\cdot2\cdot3\cdot991\cdot193357
3071310364 = 2.2.767827591
2303482780 =2 2. '5 5 67\cdot211\cdot8147
2629903076 =2\cdot2\cdot23\cdot131\cdot218213
2209210588=2\cdot2\cdot13\cdot13\cdot17\cdot192239
2223459332 = 2.2\cdot131\cdot4243243
1697298124 = 2 \cdot2\cdot907\cdot467833
```

```
1799281330=2\cdot5\cdot7\cdot11 1 139\cdot16811
```

1799281330=2\cdot5\cdot7\cdot11 1 139\cdot16811
2267877710 = 2.5\cdot7\cdot32398253
2267877710 = 2.5\cdot7\cdot32398253
2397470866 = 2.7.17\cdot10073407
2397470866 = 2.7.17\cdot10073407
1954241390 =2\cdot5\cdot19\cdot73\cdot140897

```
1954241390 =2\cdot5\cdot19\cdot73\cdot140897
```

$$
\begin{aligned}
805984760 & =2 \cdot 2 \cdot 2 \cdot 5 \cdot 7 \cdot 1579 \cdot 1823 \\
1268997640 & =2 \cdot 2 \cdot 2 \cdot 5 \cdot 17 \cdot 61 \cdot 30593 \\
1803863720 & =2 \cdot 2 \cdot 2 \cdot 5 \cdot 103 \cdot 367 \cdot 1193 \\
2308845400 & =2 \cdot 2 \cdot 2 \cdot 5 \cdot 5 \cdot 11544227 \\
3059220620 & =2 \cdot 2 \cdot 5 \cdot 2347 \cdot 65173 \\
3367978564 & =2 \cdot 2 \cdot 841994641 \\
2525983930 & =2 \cdot 5 \cdot 17 \cdot 367 \cdot 40487 \\
2301481286 & =2 \cdot 13 \cdot 19 \cdot 4658869 \\
1611969514 & =2 \cdot 805984757
\end{aligned}
$$

In particular, a question of Meissner [4] is answered positively, concerning the existence of sociable groups of order 8 and 9 .

Acknowledgment

The author wishes to thank the Fakultäten für Chemie, Linguistik \& Literaturwiss., Pädagogik, Psychologie and HRZ at the University of Bielefeld for supporting this work by giving the necessary computing capacity.

Bibliography

1. H. J. J. te Riele, Perfect numbers and aliquot sequences, Computational Methods in Number Theory, Part I (H. W. Lenstra, Jr. and R. Tijdeman, eds.), Mathematisch Centrum, Amsterdam, 1982, pp. 141-157.
2. ___, Computation of all the amicable pairs below 10^{10}, Math. Comp. 47 (1986), 361-368.
3. P. Poulet, Question 4865, Interméd. Math. 25 (1918), 100-101.
4. W. Borho, Über die Fixpunkte der k-fach iterierten Teilersummenfunktion, Mitt. Math. Ges. Hamburg 9 (1969), 34-48.
5. H. Cohen, On amicable and sociable numbers, Math. Comp. 24 (1970), 423-429.
6. J. S. Devitt, R. K. Guy, and J. L. Selfridge, Third report on aliquot sequences, Research paper no. 327, Dept. of Math. and Stat., The Univ. of Calgary, Dec. 1976.
7. S. C. Root, Artificial Intelligence Memo \#239 (M. Beeler, R. W. Gosper, and R. Schroeppel, eds.), M.I.T., 1972.

Fakultät für Mathematik, Universität Bielefeld, Postfach 8640, D-4800 Bielefeld 1, Federal Republic of Germany

E-mail address: umatf126@unibi.unibi

[^0]: Received November 30, 1989.
 1980 Mathematics Subject Classification (1985 Revision). Primary 11A25.
 Key words and phrases. Sociable numbers.

 * In order to save cpu time, I broke off the search in the range over $5 \cdot 10^{8}$ if the iterate exceeded six times the starting value of the sequence.

