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SOLVING DEFICIENT POLYNOMIAL SYSTEMS
WITH HOMOTOPIES WHICH KEEP THE SUBSCHEMES

AT INFINITY INVARIANT

T. Y. LI AND XIAOSHEN WANG

Abstract. By a deficient polynomial system of n polynomial equations in n
unknowns we mean a system that has fewer solutions than that predicted by

the total degree, or the Bézout number, of the system. If the system is m-

homogeneous, the Bézout number can be considerably reduced. In this paper,
we introduce a homotopy for numerically determining all isolated solutions of

deficient m-homogeneous systems. The initial polynomial system Q is chosen

which keeps the subschemes of H(x, t) = (1 - t)aQ(x) + tP(x) at infinity
invariant when / varies in [0, 1 ).

1. Introduction

Let P(x) = 0 denote a system of n polynomial equations in n unknowns.

Denoting P = (px, ... , pn), we want to find all solutions to

(1.1) px(xx,...,xn) = 0,...,pn(xx,... ,x„) = 0,

for x = (Xj,..., xn) G C". The homotopy continuation method for solving

this system is to define a trivial system

(1.2) Q(x) = 0

and then to follow the curves in the real variable t which make up the solution

set of

(1.3) 0 = H(x, t) = (I - t)Q(x) + tP(x).

More precisely, if Q(x) = 0 is chosen correctly, the following three properties

hold:

1. (Triviality) The solutions of Q(x) = 0 are known.

2. (Smoothness) The solution set of H(x, t) = 0 for 0 < / < 1 consists

of a finite number of smooth paths, each parametrized by t in [0,1).

3. (Accessibility) Every isolated solution of H(x, 1) = P(x) = 0 is reached

by some path originating at t = 0. It follows that this path starts at a

solution of H(x, 0) = Q(x) = 0.
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When these three properties hold, the solution paths can be followed from

the initial points (known because of property 1) at í = 0 to all solutions of the

original problem P(x) = 0 at t = 1, using standard numerical techniques [1].

It is important to realize that even though properties 1-3 imply that each

solution of P(x) = 0 will lie at the end of a solution path, it is also consistent

with these properties that some of the paths may diverge to infinity as the

parameter t approaches 1. (The smoothness property rules this out for t -*

t0<l.)

This method has the virtue of locating all isolated solutions of the system

P(x) = 0. A typical choice of Q that satisfies the three properties [9, 14, 17] is

qx (x) = c l[(xx -aXi),..., qn(x) = c Y[(xn - ani),
1=1 i=i

where dx, ... , dn are the degrees of px (x), ..., Pn(x), and c, a}i are random

complex numbers where c ^ 0 and a.. are distinct. In this case, the number

of paths which need to be followed to arrive at all solutions of P(x) = 0 is

the product d = dx---dn. This number, often called the Bézout number, or

total degree, of the system, is a classical upper bound on the number of isolated

solutions, counting multiplicities. However, in most practical cases we have

seen, the number of solutions of ( 1.1 ) can turn out to be smaller than d, and in

some cases only a small fraction of d . Such systems are called deficient. When

applying homotopy continuation methods to a deficient system, sending out d

paths in search of solutions, the paths which do not converge to solutions of

(1.1) will go to infinity, representing wasted computation.

For deficient systems, various homotopies have been introduced [10, 11, 12,

15, 16]. In [15], the w-homogeneous structure of (1.1), when it is available, is

used to reduce the Bézout number and hence the number of paths needed to be

followed. Given a polynomial p of degree d in the n variables xx, ... , xn,

we can define its homogenization

p(xQ, ... ,xn) = (xQ)dp(xx/xQ, ... ,xx/x0).

For the polynomial system P = (px, ... , pn) we use P to represent (px, ... ,

Pn) ■ A typical suggestion in [10-12] for deficient polynomial systems is to

choose Q(x) so as to share a similar type of deficiency as P(x), with the

basic assumption that the zeros of Q(x) at infinity, i.e., the zeros of Q(x)

with x0 = 0, are nonsingular, so that the accessibility is guaranteed with a

considerably reduced number of solution paths needed to be followed.

In reading [16], we discovered a flaw in the theorem which formed one of

the bases in the article. The authors basically claimed a general result that the

nonsingularity of the zeros of Q(x) at infinity can be replaced by the following.

Let the common zeros of P and Q in (1.3) at infinity be denoted by S. If for

each s e S the multiplicity of 5 as a solution of Q(x) = 0 is less than or equal

to that of s as a solution of P(x) = 0, and all other zeros of Q(x) are isolated
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The four solution paths

and nonsingular, then for generic a e C, by following the solution paths of

(1.4) H(x,t) = a(l-t)Q(x) + tP(x) = 0,

starting from the isolated zeros of Q(x) outside S, one can obtain all isolated

zeros of P(x) = 0 outside S. This assertion can be shown to be in error, as

the following example indicates.

Example. Let P = (px, p2) and Q = (qx, q2) be defined by

(1.5)

(1.6)

px(x 1 > X2) — X2 + Xj p2(x\ •V-} J   —   .A-^   —T .\-}  ,

qx (Xj, x2) = x^ 1 j •/? \    1 '     ?/ —     7       JiiJíj •

The common solution set of P(x0, x,, x2) = 0 and Q(x0, x,, x2) = 0 at

infinity is (0,1,0) with multiplicity 2. However, for any nonzero a e C

which is not a negative real number, by following the solution paths of (1.4)

starting from the two zeros of Q in affine space ( 1, -1, 1 ) and (1,1,-1),

one can only find one of the isolated zeros of P(x), (1,-1,-1), in affine

space. For a = .59032965 + .15799344/ the computed results are shown in

Figure 1. The solution path starting with (1, -1, 1) can reach (1, -1, -1)

and the solution path starting from ( 1, 1, -1 ) goes to infinity as t tends to 1.

A theoretical proof of this assertion for general a is given in the Appendix.

In view of this counterexample, we suggest in this paper an alternative which

guarantees the accessibility of the homotopy for deficient polynomial systems.

In our homotopy, we choose Q(x) in such a way that its subscheme at infinity

contains the subscheme of P(x) at infinity. Then, for generic a e C, the

subschemes of H(x, t) in (1.4) at infinity remain the same for all t e [0, 1).

Consequently, solution paths of (1.4) originated at zeros of Q(x) in affine space

stay in affine space for all / € [0, 1 ). As a result, the typical assumption of

nonsingularity of Q(x) at infinity in [10-12] can be dropped.

Our main results are stated in §2 and proved in §3 for general w-homogeneous

deficient polynomial systems. When m = 1 the conditions given in Theorem 2.1
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and Proposition 2.1 are equivalent to condition (2.4) of Theorem 2.3 in [12].

However, our condition is much easier to verify. In §2, we also give several

examples to which our main results apply.

2. Theorems and applications

The complex «-space C" can be naturally embedded in complex projective

space

P" = {(x0,...,xJeC'1+1\(0,...,0)}/~,

where the equivalent relation "~" is given by x ~ y if x = cy for some nonzero
k k

c 6 C. Similarly, the space N = C ' x • • • x C m can be naturally embedded in

M = P*' x • • • x Pfc* . A point (yx,..., ym) in N with yi = (y[, ... , y[) , i =

I, ... , m, corresponds to a point (z,, ... , zm) in M with z¡ = (z'Q, ... , z'k)

and zl0 = 1, i = I, ... , m . The set of such points in M is usually called the

affine space in this setting. The points in M with at least one z'0 = 0 are called

the points at infinity.
Given a polynomial p in the n variables xx,..., xn, if we divide the

variables into m groups yx = (x\,..., xxk ), y2 = (xx,... , xkJ,... ,ym =

(x,m,... ,xk) with /c, + • ■ • + km = n and let d¡ be the degree of p with

respect to y¡, then we can define its w-homogenization as

P(zx ,...,zm) = (zl0f x... x (z")S(y,/*¡.yw/0,

i i k
which is homogeneous with respect to each z( = (z0, ... , zk) e P ',  / =

I, ... , m. Here, z'. = x', for j ^ 0. Such a polynomial is said to be m -

homogeneous. To illustrate this definition, let us consider the polynomial

p(k,xx, ... ,xn)= k2(axxx + ■■■ + anxn - a)

+ k(bxxx + ■■■ + bnxn -b) + (cxxx + ■■■ + cnxn - c).

We may let yx = (k), y2 = (xx, ... , xn) and zx = (kQ, k), z2 = (x0, xx, ... ,

xn). The degree of p is 2 with respect to y, and 1 with respect to y2 . Hence,

its 2-homogenization is

p(k0 ,k,xQ,xx,... ,xn) = k2(axxx + ■■• + anxn - ax0)

+ kk0(bxxx + --- + bnxn-bx0)
2

+ /^(CjXj + • ■ • + cnxn — cx0),

which is homogeneous with respect to (k0, k) and (x0, xx, ... , xn).

For zi = (z'0,...,zik)ePk', i=l,...,m,let S = C[z\, z\, ..., z^] be

the ring of polynomials in the variables z, with complex coefficients. If A is

an ideal and T is a prime ideal of 5, then denote by A    the ideal

AT = {fe S\hf 6 A for some h i T).
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For a point z = (zx, ... , zm) e P ' x • • • x P m , let Iz denote the maximal

ideal {/ e S\f(z) = 0}. If /j, ... , fn are m-homogeneous polynomials in

the variables (z,, ... , zm) e Pki x ■■■ x Pkm , we denote by V(fx, ... , fr)

the common zero set of fx, ... , fr in P ' x • • • x P m . We say a point y €

V{f\, ■■■ , fr) is nonsingular if

rank ^fi'""ff\ = codim (V(fx, ... , fr), Pk' x ■ ■ ■ x Pk"),

where codim denotes complex codimension. We denote by (/,,..., fr) the

ideal generated by fx, ... , fr. To be more precise, (fx, ... , fr) is the set of

all polynomials of the form

1=1

where the g;'s are polynomials in S.

Given the system P(x) = (px(x), ... ,pn(x)) in (1.1), let Q(x) = (qx(x),

... ,qn(x)) and

(2.1) H(a, x, t) = (I - t)aQ(x) + tP(x),       aeC.

Here, we consider x € C*' x C*2 x • • • x &"• with kx+k2 +■■■+ km = n , t

real and dcgpi = dcgqi, i = 1, ... , n . Let

H(a,z,t) = (l-t)aQ(z) + tP(z),
(2.2) k k

te[0, 1], zeM = P ' x---xPkm,

which is the m-homogenization of (2.1). Let (Q) = (qx, ... , q„) and (?) =

(px, ... , pn). Our main results are the following.

Theorem 2.1. Suppose that the polynomial system Q in (2.2) has the following

properties:

(1) for every point z at infinity, (Q)1* D (P)'2 ;

(2) the set  T = {the points of V(qx, ..., qn) in affine space)  consists of
1 r

nonsingular isolated points x , ... , x .

Then there exists an open dense subset D of C with full measure, such that for

a"   chosen from D, we have

(a) (Smoothness) For each isolated zero x e T, k = I, ... , r, there is

a function x (t): [0, 1] -> M which is analytic and contained in affine

space for all t in [0, 1) and satisfies H(a,xk(t), t) = 0.

(b) (Accessibility) Each isolated solution of P(x) = 0 is reached by x (t)

for some k at t = 1.

Remark 2.1. If z £ V(px, ... , pn), then there exists an h e (px, ... ,pn)

such that h(z) ¿ 0, i.e., h i Iz. Thus, (P)1* = [f e S\fh e (P) for
some h  $  I } — S.   Hence, condition (1) above implies that every point
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of V(qx, ... , qn) at infinity is also a point of V(px, ... , pn). By the same

argument, if z £ V(qx, ... ,qn), then (Q)'z = S, and (1) is obvious. So,

in order to check condition ( 1 ) of Theorem 2.1 one only needs to check this

condition for those points at infinity which lie in V(qx, ... , qn). Consequently,

condition ( 1 ) implies that the subscheme at infinity of the polynomial system

Q(z) contains the subscheme of ?(z) at infinity. (For general definitions and

properties of scheme and subscheme, see [7, pp. 60-190].)

Remark2.2. By a straightforward verification one can easily see that ((Q)'z)¡z =

(Q)Iz. Hence, if (Q)'> D (?), then (Q)'z D (?)Iz.

Remark 2.3. In the counterexample (1.5), (1.6) of §1,

2 2
P\ \   0 '    1 '    2' —    2 10 ' ^2^0 '    1 '    2> —    2      X2X0 '

,, \-    2 _    2 ~ t \ _    2  ,
"1 v   0 '     1 '    2' —    2 0 ' ^2^0 '     1 '    2' —    2      XjX2 .

At z = (x0, x,, x2) = (0, 1,0), (Q)Iz ^> (?)Iz. This can be shown as follows.

Since P2-px = x0(x2 -xx) e (?)Iz and x2-x, ^ 0 at z = (0, 1, 0), we have

x0 e (?)'z. Thus, x2 e (?)'z. So (?)'z = (x0, x2). Since (q2 - ^!)x2 - qxxx =

x{2(xx + x2) e (Q)'z and xx + x2 ^ 0 at z, we have x2 e (Q)'z. Therefore,

(Q)Iz = (x2, x02). Evidently, (Q)Iz ¿> (?)'z.

The following proposition indicates that Theorem 2.1 is a generalization of

the main result in [10].

Proposition 2.1. Suppose that the polynomial systems Q, ? in (2.2) have the

following properties:

(1) every point of V(Q) at infinity is also a point of V(P) ;

(2) the set T = [the set of points of V(Q) in affine space} consists of

nonsingular isolated points.

Then for a nonsingular point z of V(Q) at infinity, (Q)'z D (?)'z.

Example 2.1. Suppose we want to solve the system

(2.3)        px(x,y) = xy + y+1=0,       p2(x, y) = x3y2 - xy + 1 = 0.

By considering (x, y) e Cx x Cx, we may 2-homogenize (2.3) as

px(x0 ,x,y0,y) = xy + x0y + x0y0 = 0,

p2(x0, x, y0, y) = x3y2 - *-*oW0 + ^o = ° »

where (x0, x, y0, y) e P1 x P . Then this system ? = (px, p2) has one solu-

tion (0,1,1,0) at infinity with multiplicity 2, and three affine solutions. Our

starting system Q = (qx, q2) can be chosen as

(2.5)        <?,(x,y) = xy + y+ 1 =0,        q2(x, y) = xV - xy = 0.
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Its 2-homogenization is

qx (x0, x, y0, y) = xy + x0y + x0y0 = 0,

Q2(x0, x, y0, y) = x3y2 - xx^ = 0.

The system Q has three nonsingular solutions (x,y) = (0, -1), (-1/2 +

V3i/2, -1/2 + ^72) and (-1/2 - V3i/2, -1/2 - \/5//2), and its solution
at infinity is the same as that of P. Write q2 = xg with g = x2y2 - x2y0y .

Since x/0 at z = (0, 1, 1,0), we have x £ I2, so, g e (Q)Iz. Further,

qxxy - g = x0y(x0y0 + xy + xy0) e (Q)'z and x0y0 + xy + xy0 ?i 0 at z imply

^ e (ß)/z • since -Wo^i e (Ö)7, ' we^ve xlyl -xtfifli-x^xy^ + x^) e

(Q)'z and thus p2 = q2 + x0(x¡yl) e (Q)'z. Along with px = qx e (Q)'z, we

have (Q)Iz 2 (?)'* ■ So Theorem 2.1 applies. It provides a homotopy and three

paths, beginning from the roots of (2.5), which lead to all roots of (2.3).

Table 2.1 shows the computed results.

Table 2.1

Solutions to (2.3)

Parameter a = -.13960695 - .6281187/

_Starting Point_Solution Reached_

x y _x_y_~ 0 ~ -1 -.4301591 -1.7548765

2. -1/2 +y/3i/2       -1/2 +V3//2        -.78492+1.3071381 -.1225614 + .7448609/

3. -l/2-%/3¡/2       -l/2-y/3i/2       -.78492- 1.3071413)       -.1225611 -.7448618/

The notion of m-homogeneous, when m = 1, is the same as homogeneous.

For homogeneous polynomials fx, ... , fr we use (/,,..., fr)e to denote the

subset of (fx, ..., fr) consisting of homogeneous polynomials of degree e.

In [12], the following condition on ?, Q in (2.2) is used to guarantee the

accessibility of the "random product homotopy" paths: For each positive integer

k,

(2.6) (qx,...,qn, xk)e 2(pl,...,pn, xk)e

for all sufficiently large e.

The following proposition shows that condition (2.6) is equivalent to condi-

tion (1) in Theorem 2.1 when m = 1 . However, we shall illustrate in Example

2.2 that condition (1) in Theorem 2.1 can be much easier to verify.

Proposition 2.2. Suppose that the polynomial systems ? and Q in (2.2) are

homogeneous. Then for every point z at infinity, (Q)'z D (?)Iz if and only if

for each positive integer k,

(qx,...,qn,xk)eD(px,...,pn,xk)e

for all sufficiently large e .
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Example 2.2. The following system is the mathematical model of a lumped-

parameter chemically reacting system [2]:

(2.7)

px(xx,x2,x},x4) = -axxx(l - x3 - x4) + a2x3 - (Xj -bx),

P¿\X\ ' X2 ' "^3 ' XA' —       ^3^2^        Xi      ^4'      ^4-^4      \X2      02) ,

P^\XX , X2 , X3 , X4J = fljXj ( 1 — Xj      X4J      @2Xs      ^5XJX4 '

p4(xx, x2, x3, x4) = ß3x2(i — x3 — x4) — a4x4 — £ZjX3x4.

While the Bézout number of the system P = (px, p2, p3, p4) is 16, for generic

a,'s and bj's there are only four zeros of (2.7) [2]. Define Q = (qx,q2,q-i, qA)

by

qx(Xj, x2, x3, x4j = (Xj — l)(l — x3 — x4),

<72(Xj , X2 , Xj , X4J = (X2 — l)(¿ — Xj — X^) ,

^3\^1 , X2 , Xj , X4J = Xj (Z      Xj      X4J + XjX^ ,

^4(^1 > ̂ "2 ' "^3 ' X4' ~ ^X2 )\        ^3      ^4/   '  ^3^4 •

The homogenization Q of Q is

qx(Xq , Xj , x2, Xj , x4j = (Xj — XqJ(Xq — Xj — X^J ,

^2*-   0 '    1 '    2 '    3 '    4/ — v^"2 0'^     0        3        4/ '

^3*.   0 '     1 '    2 '    3 '    4'       -^1 \   -^0 3 4'      X^X4.

?4\^0 '     1 '    2 '    3 '    4' = \^2      ^O'^O — "^3 — "^4'      ^3-^4 ■

(2.8)

(2.9)

The points of V(Q)  at infinity are  (x0, xx, x2, x3, x4) = (0,0,0,0,1),

(0, 0, 0, 1, 0) and a line / = (0, Xj, x2, 0, 0). The rank of

d(qx, q2, g3, g4)

C\.Xn , X,  , X2 , Xj , X.) (0,0,0,0,1)

1-1      0   0   0

/      0-100
0-1      0    10

-1      0-110

is 4 and hence, (0,0,0,0,1) is nonsingular; similarly for (0,0,0,1,0).

These two points also belong to V(P). Further, the system (2.8) has four

nonsingular isolated zeros: (xx, x2, x3, x4) = ( 1, -1, 0, 2), ( 1, -1, 2, 0),

(0,1,0,1), and (0, z, 1,0). So, Proposition 2.1 applies. That is,

(àx ,q2,q3, q4)'z 2(px,P2,P3, À»)'2

for z = (0,0, 0,0, 1), (0,0,0, 1,0). For ze/ = (0, x,, x2, 0, 0), either

X, t¿ 0 or x2 t¿ 0, say x¡ ^ 0. Then x, - x0 ^ 0 at z. So, from qx,

(2.10) x0 - x3 - x4 e (Q)

It follows from q4, that x3x4 G (Q)'z and hence x,(2x0 - x3 - x4) G (Q)'z,

from #3. Since xx ^ 0 at z, we have 2x0 - x3 - x4 G (Q)Iz. Comparing with

(2.10) yields x0 G (Q)'z. Accordingly, it is easy to see that (Q)'z 2 (?) ■ Thus
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by Remark 2.2, we have (Q)'z 2 (?)'' • So Theorem 2.1 provides a homotopy

and four paths which lead to all roots of (2.7).

Table 2.2 shows the computed result.

Table 2.2

Zeros of (2.7) in CA

Parameters

a, = .76771879 + . 32820278; as = .89248163 + .45296562;

a7 = .54890949 + .1093949; ¿>, = .04796080 + .88868678;

a, = .33010021+ .890584171 b, = .82915151 + .66987747;

a4 = .11129092+ .67177492; a = .59527814 + .71154547/

Starting Points Solution Reached

*■ = ' *7 = -l xx =-.731938+ .3453089/ x, = .049258 + .1264814;

x^ = 0 x4 = 2 x% = 2.9605355 + 7.79467; .0547949 - .0998576;

*■ = ' -1 x, = -2.214090+1.074372; x,= -1.43290 + .8555617;

*T = 2 x4 = 0 x^ = .6873539 - 1.0286067; x4 = 1.6660806+ .7643948;

x, =0 x, = 0.433732 + .750366; x7 = .8245659 + .5315566;

x, = 0 x, = .1027011 +.2787743; .4602318-.0694782;

x, =0 jc, =.8908184 .8041871; xv = 1.6720086 1.0229946;

x, = 1 x7 = 0 x, = 1.6573049- 1.607046; x4 = -.5652349 + .591969;

Example 2.3. For generalized eigenvalue problems (or A-matrix problems), the

system P has the following form:

(2.11)
kkB0x + kk lBxx + + Bkx = 0,

1 +axxx +--- + anxn =0,

where x = (xx, ... , xn), k > 1, and B0, ... , Bk are n x n matrices. Consider
1 n

(k, x,, ... , xj G C  x C . With 2-homogenization, (2.11) becomes

(2.12)
kkB0x + kk  xk0Bxx + --- + (k0)kBkx = 0,

0,x0 + axxx + + anXn

with (k0, k, x0, ... , xn) G P x P" . If B0 is a nonsingular matrix, it is quite

obvious that (2.12) has kn solutions for generic q('s. In [4], a homotopy is

given for nonsingular B0, which provides kn paths leading to all roots of

(2.11).
Here, we give an example to which Theorem 2.1 can be applied when BQ is

singular. For n = 3 and k = 2, let

*o =

0 1 0
0 1 0
0   0    1

*.=
0    1   0
0 0   1
1 0   0

B2 =

1 0 0
0 0 1
0   1   0
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and a. = • • • = a  = 1. Then (2.12) becomes

P x    —  Á   X2  + ÁÁr,X2  + Ár,X,   —  U ,

(2.13)

-LfTM

pj — A X-y H~ AAçJC-i ~v ArJC'i = U,

pï = A X-i ~r AAnXt ~r AnXy = U,

(2.14)

p4 = x0 + xx+x2 + x3 = 0,

and the solution set at infinity is v = {(X0, X, x0, xx, x2, x3)|A0 = 0, X = 1,

x2 = 0, x0 + xx = 0, x3 = 0} . Define Q = (qx,q2,qi, q4) by

g, = (A-l)(A-2)x2 = 0,

Î2 = (A-3)(A-4)x3 = 0,

q7> = (X- 3)(X - 4)x3 + Xxx = 0,

q4= 1 + x, + x2 + x3 = 0.

It is easy to check that the zero set at infinity of

qx = (A-A0)(A-2A0)x2 = 0,

q2 = (X - 3XQ)(X - 4X0)x¡ = 0,

q3 = (X - 3X0)(X - 4X0)xi + XXQxx = 0,

q4 = x0 + xx + x2 + x3 = 0

is the same as that of (2.13). The system (2.14) has five nonsingular solutions

(A,x,,x2,x3) = (0,-1,0,0),(1,0,-1,0),(2,0,-1,0),(3,0,0,-1),
and (4,0,0,-1).   For any  z G v, we have X0 = 0 and X = 1, hence

(X - 3Xq)(X - 4X0) t¿ 0 and (X - X0)(X - 2XQ) ̂ 0. From qx and q2, both x2

and x3 are in (Q)'z, and from q3, X0xx G (Q)¡z. In summary, (Q)Iz ~D (?)Iz,

and Theorem 2.1 applies.

Table 2.3 shows our computed results.

(2.15)

Table 2.3

Solutions to (2.13)

Parameter a = -.74127114 + .70628309;

LL
-4.0795970 3.075972 .7548779

.4602-.1825814; .5397982 + .1825814; .8774412+ .7448597;

-.4602 + .1825814; -.5397982-.1825814; 0 -.8774414-.7448597;

-.33333333 -.333333333 -.3333333 -.5 - .866025;

-.33333333 -.333333333 .3333333 -.5 + .866025;

3. Proofs of the theorems

In this section we prove Theorem 2.1, Proposition 2.1, and Proposition 2.2.

Some fundamental results in algebraic geometry are necessary.
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k k
We recall the notations introduced in the last section: M = P ' x ■ • • x P m

with rCj H-h km = n , and S = C[zx, ... , zm], the polynomial ring, where

zi = [z0, ... , zlk] G Vk>', i = I, ... ,m. Let R be a ring of polynomials

(perhaps a quotient of S) and # a prime ideal of R. We denote by R, , the

localization of R at q. The local ring R, , is made up of "formal fractions"

< — |/ G R, g £ q, degf = degg with respect to each z(., i = 1,..., m >

such that f- = f- if and only if fxg2 = f2gx in R.

Lemma 3.1. Let A and B be two ideals of S, and z e M. If A1 = B z, then

Adz) = \) ■

Proof. For |e5(/))we have b € B and f(z) ¿ 0. Since AIz = BIz D B,

there exists g e S such that g(z) ^ 0 and gb G A. Thus, |4 G A(I,, so,

A,, ) 2 -#(/ ) • By the same argument, B(I jC^,.   D

Given a system of polynomials P(x) = (px(x), ... ,pn(x)), let Q(x) =
k k

(qx(x), ... , qn(x)) with degp( = deg^;. Here we consider x G C ' x ■ • • x C m

with kx H-(- km = n . Define the homotopy

(3.1) H(a, x, t) = (I - t)aQ(x) + tP(x),       /g[0,1], ûgC,

with m-homogenization

(3.2) H(a, z, t) = (I - t)aQ(z) + t?(z),        t G [0, 1], a G C,  z G M.

Lemma 3.2. If

(3.3) (ß)7' D (£)''

yor a«y po/«í y ai infinity, then there exists a subset Dx of C,

Dx = {reW G C|ÖG[0, 2re)\F, F a finite set , r > 0},

such that for any y at infinity and c e Dx

(3.4) (q1+cpx,...,qn + cpn)I> = (Q)I>.

Proof. From (3.3), for any y at infinity we have

ayipi = bynql + --- + byinqn,       i=l,...,n,

where a\, by¡ G S and ay (y) ¿0, i = 1, ... , n , j = I, ... , n. Thus,

ay(qx +cpx) = (ay + cbyxx)qx + ■■■ + cbyXnqn ,

(3.5) :

<(i„ + c^«) = cè«i^i + ••• + « + c^„)i„,
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for any c G C. For f e (qx+ cpx,

that h(y)¿0 and
,<in + cßn}Iy there exists an h e S such

(3.6) fh = Y^di(qi + cpi),
1=1

where d¡ G S, i = 1, ... , n . Multiplying both sides of (3.6) by a\ x

and using (3.5), we have / G (Q)Iy. Hence,

(qx+cpx,...,qn + cpn)I>C(Q)I>

for any c G C. For the reverse inclusion, we let

■ayx(z) + cbyxx(z)   •••

x ai

(3.7) Ay(c,z) =
cby2x(z)

cKxM

cb\n{z)

c%»(z)

<{Z) + CK¿Z)1
then (3.5) can be written as

~ay(qx+cpx)

(3.8) : = Ay(c,z)

%

Let B (c, z) be the determinant of A (c, z) and A (c, z) be the adjoint

matrix of A (c, z). Multiplying both sides of (3.8) by A (c, z) yields

(3.9) Ay(c,z)

ay(qx+cpx)

ayn(qn+cpn)\

= By(c,z)

Consider B (c, z) as a polynomial in C x M. Denote its homogenization

with respect to c in P1 x M by B (c0, c, z). Let B be the ideal generated

by the 5 's. Its zero set at infinity, denoted by v, is an algebraic set. Let

Ttj : P1 x M —> P1 be the natural projection. By the proper mapping theorem

[5, p. 64], nx(v) is an algebraic set in P1. The only algebraic subsets in P1 are

the empty set, the finite-element subsets, and P1 itself. Since B (1, 0, y) / 0

for any y at infinity, (1,0) £ nx(v). So nx(v) is a proper algebraic set

of P1 and hence is a finite set {(ci, d¡), i = 1, ... , k} . Let Fx = {8¡ =

arg(di/ci)\ci ¿ 0} and £>, = {rew G C\r > 0, 8 G [0, 2n)\Fx} . Then for any

y at infinity and c G Z),, we have (1, c, y) £ v , that is, there exists a b G B

such that b(l,c,y) ¿ 0. Since b g 5, we have è = £,/?>, + ••• + gßy ,

where y,,..., y are some points at infinity and gx, ... , gs are polynomials.

From (3.9) we see that bq¡ G (qx+ cpx, ... , qn + cpn), i = I, ... ,n. Hence,

(Q) Q (q~\+cpx, ... , qn + cpn)Iy, and we conclude that, by Remark 2.2,

(Q)IyQ{^+cpl,...,q„+cpH)1y.

This completes our proof.   D
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Under the same assumption of Lemma 3.2, we have the following three corol-

laries:

Corollary 3.1. For fixed nonzero a, with a~x e Dx and any y at infinity,

(H(a,z,t))Iy = (Q)'y  forallte[0, 1).

Proof. From (3.2),

t?(z) \
H(a,z,t) = (l- t)aQ(z) + tP(z) = (1 - t)a   Q(z) +

(l-t)a

Since a x G Dx, we have t/(l - t)a G Dx for r ^ 1. The assertion follows.   D

Corollary 3.2. For fixed a~x G Dx, t G [0, 1), and y at infinity, we have

(1) The quotient rings S/(H(a, z, t)) and S/(Q) have the same localization

at the maximal ideal I = {/ G S\f(y) = 0} . That is,

(S/(H(a,z,t)))(Iy) = (S/(Q)){Iy).

Here,  I   is considered as the maximal ideal in S/(H(a, z ,t))  and S/(Q)

through canonical projections.

(2) For any prime ideal q of the ring S, considered as the prime ideal in

S/(H(a, z, t)) and S/(Q), with zero set V(q) lying at infinity, we have

(SI(H(a,z,t))){q) = (S/(Q))(q).

Proof. (1) For any / G (S/(Q)){I ), we have / = (a + q)/b, where q G (Q) and

b(y) Í 0. From Corollary 3.1, (H(a, z, t))'y = (Q)1* D (Q), so there exists

r eS such that r(y) ¿ 0 and rq G (H(a, z, t)). Thus,

r(a + q) _ (ra + rq)     (t,l(B( m
J -      rb      - —^-e (S/(H(a, z, i)))(v ,

and hence, (S/(H(a, z, i)))(/. D (S/(Q))(¡ ). The reverse inclusion follows by

the same reasoning.

(2) Let y G V(q) ; then IyDq, and

(S/(H(a, z, t))){q) = ((S/(H(a, z, <)»(,,)>(,)

= ((S/(Q)){ly)){q) = (S/(Q)){(¡).   D

Corollary 3.3. For a~   6/),, the intersection schemes of

f)hi(a,z,t)
i=i

at infinity are the same closed subscheme of the projective scheme P ' x-xP m

for all /G[0, 1).

Proof. This follows from Corollary 3.2 and the local property of a scheme.   D



706 T. Y. LI AND XIAOSHEN WANG

Lemma 3.3. Let P and Q satisfy conditions (1) and (2) of Theorem 2.1, and

let

(3.10) H(X0,X,z) = X0Q + Xx?

with (X0, kx) G P1. Then for each k, the irreducible component Ak of H (0)

passing through x   satisfies the following:

(1) Let  N  be the set of points   (k0,kx,z)   with   z   at infinity;  then

nx(Ak n N) G P   is a finite set, where nx is the natural projection;

(2) (1,0) i nx(AknN).

Proof. (1) By exercise II.3.12 of [7], dimAk = 1, since x is a nonsingular

point of Ak . Let 5 be any irreducible component of Ak n N. Since B ^ Ak ,

by Theorem 2, X.5, of [8], dim,8,. < 1. So (1) follows.

(2) From the proof of Lemma 3.2, there exists a set D = {C\ a finite set}

such that for k0 = 1 and kx G D the intersection schemes of H(l, A,, z)

at infinity are the same. By Proposition 9.1.2 and Example 9.1.10 of [6], for

kx G D and A0 = 1, the number of solutions of (3.10) in affine space is the

same (= r). Let ex be small enough such that 0 < |A,| < e, implies A, G D.

Since ( 1, 0, x ), k = I, ... , r, are nonsingular, there exists 0 < e < e,

such that for each 0<|A1|<e, Q + kx? = 0 has r isolated affine solutions

xk(kx) and

(3.11) V(Q + kx?)DNnAk = 0.

Since Ak is connected, (3.11) implies

(3.12) V(Q)nNDAk = 0.

This completes the proof.   G

Proof of Theorem 2.1. Le H(k, z) = k0Q(z)+kx?(z) with A = (A0, A) G P1 . A

point (k, z) in P x M is said to be regular if and only if rankHz(k, z) = n .

For each x , k = I, ... , r, in T, let Ak be the irreducible component of

V(H), the zero set of H in P'xM, passing through x . Let Bk be the set of

points in Ak which are nonregular. Nonregularity can be described in terms of

vanishing subdeterminants of Hz(k, z), which lead to a system of polynomial

equations. Consequently, Bk is an algebraic set for each k. So nx(Bk) is

a proper algebraic set in P1, because (1,0) £ ^\{Bk) by Lemma 3.3, and

hence it is finite for each k . Let A = \Jk=x nx(Bk) = {(c\, d\)\i = I, ... , 1} ,

F2 = {6i = arg(d'i/c'i), i = 1, ... , I\C¡ ¿ 0}, and D2 = {rew e C|r > 0,

8 G [0, 2n)\F2). For a G C with a~x e/J2,we have t/(l - t)a G D2 for all

t G [0, 1). That is, (1, t/(l -t)a) i A,so, Hz(l, t/(l -t)a, z) is of rank n

for any (I, t/(l-t)a, z) with / G (0, 1) and z G V(H). Repeated application
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of the Implicit Function Theorem on the affine representation of the homotopy

(3.13) 0 = H(a,z,t) = (l- t)aQ(z) + t?(z) = (1 - t)aH [\ , ^-^ , z)

implies the smoothness property.

For accessibility, it follows from Corollary 3.3 that for fixed a~x G D, , the

intersection schemes of H (a, z, t) at infinity are the same for all / G [0, 1).

By Proposition 9.1.2 and Example 9.1.10 of [6], for each / in [0, 1) the number

of solutions of (3.10) in affine space is the same (= r). As a consequence, the

x (r)'s are the only solutions in affine space for each t G [0, 1). By a degree

theory argument as in [3], or an algebraic argument as in [7], the accessibility

property follows.

By choosing D = Dx n D2, the proof of the theorem is completed.   D

Proof of Proposition 2.1. For / G (?)'z there exists an h G S such that h(z) ¿ 0

and fh g (?). From condition (b), fh vanishes on the set of zeros of (Q) at

infinity. Let x1 = (x[, ... , x'n), i = 1, ... , r, be the isolated zeros of Q in

C",and

(3.14) JF(x) = n¿e;.(x,.-x/),
7=1 1=1

where e( G C, /= 1,...,«, are chosen such that F(z) ¿0. It is easy to see

that F(z') = 0 for each i = I, ... , r, where z' is the corresponding point of

x' in M, and Fhf vanishes on V(Q). By the Nullstellensatz, (Fhff G (g)

for some positive integer k. Since (Fh) (z) ^ 0, we have / G (Q)lz. By

Theorem 48 of [13], (Q)Iz is a prime ideal. Hence, / G (g)'2, which completes

our proof.   D

Proof of Proposition 2.2. (=>) For any p at infinity, the F chosen in (3.14) gives

F(p) # 0, and Fx0 vanishes on V(Q) . By the Nullstellensatz, (x0)k G (g)7'.

Now, for h G (?)Ip there exist g e S = C[x0, ... , xn] and x¡ such that

g(p)¿0, x,(p)¿0,and
n

i=i

where a¡ G S, i = 1, ... , n . Without loss of generality, we may assume hg

is homogeneous of degree, say, 5 . Then, for large enough e and k, (hg)xj G

(P)e c (Q, xj)e = (Q)e, where j = e-s. Hence, h G (Q)1'.

(<=) For / g 5 and I an ideal of S, let

R(f,I) = {geS\fgeI}.

If the zero set V(R(f, I)) of R(f, I) is empty, then the polynomials x(, / =

0, ... , n , vanish at every point of V(R(f, I)). By the Nullstellensatz, (x )a G

R(f, I) for a » 1 . Hence, when e is large enough, the set of homogeneous
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polynomials of degree e in R(f, I), denoted by R(f, I)e, equals Se, the set

of homogeneous polynomials of degree e in S. That is,

(3.15) R(f,I)e = Se.

For fixed k, let f e (?, x0)e. To prove / G (ß, x0)e for large enough

e, from (3.15), it suffices to show V = V(R(f, (Q, xj))) = 0. It is clear

that x0 G R(f, (ß,x0)), so V is supported at infinity. But for any p at

infinity, (2.4) implies that there exists h e S, h(p) ¿ 0, and fh G (ß). Hence,

h G R(f, (Q, Xq)) and p £ V. This completes the proof.   D

Appendix

For P = (px, p2) in (1.5) and Q = (qx, q2) in (1.6), let H = (hx, h2) =
(1 - t)aQ + tP, where a is any nonzero number in C which is not a negative

real number. To be precise,

(1) hx(a, xx,x2,t) = (l- t)a{x\ - 1) + t(x¡ + xx) = 0,
2 2

(2) h2(a, xx, x2, t) = (I - t)a(x2 + x,x2) + /(x2 + x2) = 0.

Multiplying (1) by x2(l - t)a and subtracting t x (2) yields

(3) x2[(l - t)at + (1 - r)V] + x2[-(l - t)at - t2] + x2[-(l - t)2a2 - t2] = 0.

From (3), we can see that for each fixed a G C and / G (0, 1), the zero set of

H(a ,xx,x2,t) is (x,, x2) = ((1 - t)a/t, 0) ,(dx,ex), and (d2, e2), where

-b + \/b2 - 4c -b - Vb2 - 4c
(4) ei =-2-'        £l =-2-

(5) di = -f^l-e¡,        ,-1.2.

or

(6)

with

[((g,.)2-l)(l-/)fl-(e¡)2r] .
dt, =-'--'■-,        i = l,2,

-t -(l-t)2a2-t2
b = -r.-r~, C =

(l-t)a' (I - t)a[t + (I - t)a)

It is easy to see that as t -» 0, we have b -» 0, c -* -1. Hence, from

(4) and (5), (dx, ex) - (-1, 1) and (d2,e2) -* (1, -1). When t -♦ 1, then

j|j -> 0, § is bounded and

f= -b +f^-^ff}
-í + x-2Í+0^))"^+0{t
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However,

è      i[r + (l-r)û]

Hence, / -> -2 and e, -+ -1 as r -► 1. From (6), (rfj, e,) -> (-1, -1)
Similarly,

.,     2c       (4c\

When / -* 1, then ¿? -* +oo, hence, g -* +oc and e2 -» +oc. Therefore,

(rf2, e2) -> (+OC, +oo) from (6).
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