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GENERATION OF ELEMENTS

WITH SMALL MODULAR SQUARES AND PROVABLY
FAST INTEGER FACTORING ALGORITHMS

BRIGITTE VALLÉE

Abstract. Finding small modular squares, when the modulus is a large com-

posite number of unknown factorization, is almost certainly a computationally

hard problem. This problem arises in a natural way when factoring the modulus
by the use of congruences of squares. We study here, with the help of lattices,

the set of elements whose squares modn are small enough, less than 0(n ' ).

We obtain a precise description of the gaps between such elements, and we de-

velop two polynomial-time algorithms that find elements with small modular

squares. The first is a randomized algorithm that generates such elements in

a near uniform way. We use it to derive a class of integer factorization algo-
rithms, the fastest of which provides the best rigorously established probabilistic

complexity bound for integer factorization algorithms. The second algorithm

is deterministic and often finds, amongst the neighbors of a given point, the

nearest one that has a small modular square.

Introduction

At present, two of the most efficient factorization algorithms are the polyno-

mial sieve algorithm and the continued fraction algorithm, which are based on

congruences of squares. In order to factor n by using such algorithms, one has

to find x, y such that x2 = y2 mod n and x ^ ±y mod n . The problem reduces

to obtaining many smooth quadratic residues modulo n , a smooth number being

a number which is composed solely of small prime factors. It is intuitively clear

that smaller numbers are more likely to be smooth. One can precisely quantify

this correlation with the help of the function L(n) = exp ^log n log log n , and

this function plays a central role in the complexity of integer factorization.

There are two different approaches: one is heuristic and leads to fast practical

algorithms; the other is rigorous (appealing to no unproven assumption) but

leads to less efficient algorithms.

(A) In the most practical factorization algorithms due to Morrison and Brill-

hart [4] or Pomerance [5, 7], one uses quadratic residues modulo n , of absolute

value less than «1'2+o(1) ; that are produced in a deterministic way. Since these

algorithms use small quadratic residues, they are efficient in practice. However,
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the analysis of their complexity cannot be done, unless one appeals to ad hoc

heuristic hypotheses asserting that the numbers used are "pseudorandom" with

respect to smoothness. One obtains in this way [5] a class of algorithms with

nonrigorously proved complexity bounds in the range L(n)     to L(n).

(B) On the other hand, Dixon [3] uses purely random quadratic residues, so

that one can prove the complexity of the corresponding class of probabilistic

algorithms. However, since the quadratic residues used are only bounded by

n , the algorithms are not as efficient in practice and their run times range from

L(n)2 to ¿(h)^ [6].

Here, we show that some of the good aspects of both worlds can be combined:

We consider the set B of the elements whose squares modulo n are less than

4n ' , and, by a detailed study of their distribution, we are able to produce a

polynomial-time algorithm that generates the elements of this set in an almost

uniform way. We apply this result to integer factorization and obtain a class

of probabilistic algorithms whose time-complexity bounds are proved to be in

the range L(ny ' to L(ny ' . More precisely, the main result of this paper

is a description of a rigorous, random factoring algorithm of time complexity

L(n)v4' +o(1) on input of the integer n . This last bound, with exponent near

\J4¡3 = 1.1547, is the best rigorous complexity bound established so far for

integer factoring algorithms.

In order to study the set B, we construct a particular covering of the integers

mod n for which the distribution of B is globally uniform: This covering is

made with Farey intervals [1] which each contain almost exactly the number of

elements of B that one should expect if the distribution of B were actually

uniform. Locally, in each of these subsets, we build on methods we developed

earlier for "guessing" /th roots mod« [8]. We transfer our problem to lat-

tices and use very natural properties in the geometry of numbers to solve an

integer programming problem: Describe, in an algorithmic way, points of a two-

dimensional lattice which lie between two parabolas. From there, we obtain a

precise description of this set B, and we derive two polynomial-time algorithms

which allow one to generate locally the elements of B . The first realizes a ran-

dom drawing from B in an almost uniform way, while the second determines

the two neighbors of an element of B .

Our paper is organized as follows: In §1, we describe a general framework

for integer factorization algorithms, which covers most classical methods. We

obtain general conditions (Theorem 2) under which a rigorous time-complexity

bound can be derived. Amongst these conditions, a natural one emerges, namely

the ability to describe precisely the set B(a) of the numbers whose square

mod n is less than na, with 0 < a < 1. First, we give a sharper estimate of

the cardinality of this set when a > 1/2 (Theorem 3).

Note added May 1, 1990. Since this work was completed, H. W. Lenstra, Jr. and C Pomerance

have announced a rigorous complexity bound of Z,(ti)1+0< ' for integer factorization.
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In the sequel of the paper, we show how to study this set when a is near 2/3.

We consider the set B of numbers whose squares mod n axe less than 4« ' ,

and, by a local use of lattices, we obtain a description of this set that proves

the facts that we observed in our numerical experiments (Theorems 4 and 7):

We explain the occurrence of a regular pattern in the gaps between successive

elements of B (Theorem 7) and we prove that there is a global balance in the

variations of these gaps (Theorem 4).

This description is efficient enough to give rise to two polynomial-time algo-

rithms: With Theorem 5, we show how to draw random elements of B both in

polynomial time and in an almost uniform way. We thus obtain a condition,

namely the Uniformity Condition, from which we deduce Theorem 6, which

provides our complexity bound for integer factoring. In Theorem 8, we adopt a

deterministic point of view. We determine in polynomial time the two elements

of B which surround a given point.

We finish by comparing our results to the previously known ones, from the

two points of view of theoretical number theory and computational number

theory.

A preliminary presentation of some of these results appears in [9].

1. The a-DixoN method

Complexity bounds for the class of factorization algorithms that we describe

here can be expressed mainly in terms of the function

L(n) = exp \/logttloglog«.

(Henceforth, log* = logex.) La is a shorthand notation for the class of

functions L(n)Q+0( ', and we call exponent of / the number a defined by the

relation f e La . Let Z(n) denote the ring of the integers modulo n that we

identify with the integers in the interval of length n centered at 0 ; we denote

by Q the squaring operation in Z(n):

Q(x) = x  modulo n.

For two reals a and ß, with 0 < a < 1, we shall deal with the two related

sets:

B(a) = {xeZ(n)\ \Q(x)\<na},

F (a, ß) = {x e B(a) | \Q(x)\ is composed solely of primes p < L(n) }.

1.1. The Q-Dixon algorithm. It is natural to consider a generalization of Dix-

on's factorization method [3] which operates with elements of B(a) in order

to find elements of F (a, ß), and we call it Dixon's a-method, or D[a] for

short. It reduces to the standard Dixon's method when taking a = 1, and we

recover the general framework of both the continued fractions algorithm and

the quadratic sieve method when taking a near 1/2. The algorithm D[a]

involves four main steps and two parameters ß and y that will be adjusted

later. Its description is as follows.

(1) Look for all prime factors of n less than L(n), and remove them.
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(2) Consider the set P of the prime numbers less than L(ny ; perform

L(n)y draws from B(a) in order to obtain L(ny elements x¡ of

F (a, ß) (i.e., completely factored in P ).

For all ; < L(nf , one has: Q'x¡) =    \[   p™" .

(3) Consider the matrix M formed with the coefficients w. mod2. By

means of Gaussian elimination on M in the field G F (2), look for a

subset J such that ILe/ßC*;) is a square, denoted by y2. Then,

x  = iljejXj is congruent to y   modulo n .
1 1

(4) If the congruence x = y [n] is nontrivial, it provides a nontrivial

factorization of n.

The main problem that we encounter in analyzing the complexity of such an

algorithm is the determination of y from the values of a and ß . This can be

done if the following two conditions are fulfilled:

Counting Condition. We can determine the probability that an element of

B(a) belongs to the set F(a, ß).

Uniformity Condition. We can draw from the set B(a) in polynomial time

and in an almost uniform way.

Under these conditions, we know how to choose y as a function of a and

ß. Next, we determine the optimal value of ß as a function of a, and we

obtain the complexity bound for the algorithm D[a].

1.2. Formalizing the Uniformity Condition. Let us first make the Uniformity

Condition precise:

Definition 1. Let I = (lx, l2) be a pair of positive constants. A drawing algo-

rithm C, defined over a finite set U with the uniform probability P, and with

values in a subset X of Z(n), is said to be /-uniform if for all x e X, one

has

J±.<P(ueU\C(u)=x)<j±.

We consider now a family of such drawing algorithms obtained when the

index n varies. Then U , P, X, etc. may depend on the integer n . We will

say that this family is quasi-uniform if one can find a pair / independent of n

for which all the drawing algorithms are /-uniform. For short, any element of

this family will be said to be quasi-uniform. Generally speaking,

Quasi = Proportional up to absolute strictly positive multi-

plicative constants.

Now, we can precisely state the Uniformity Condition: There exists a polyno-

mial-time algorithm which draws elements from B(a) in a quasi-uniform way.

1.3. The complexity bound for the D[a] algorithm. The first result describes a

sufficient condition under which the Counting Condition is fulfilled.
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Theorem 1. If n is solely composed of prime factors greater than L(n), the

probability that an element x drawn by a quasi-uniform algorithm from B(a)

belongs to F (a, ß) is in L~a/{2ß).

Note that the first step of the D[a] algorithm fulfills this hypothesis, and thus

the Counting Condition. So it remains to show how the Uniformity Condition

leads to time-complexity bounds for the D[a] algorithm.

Theorem 2. Assume the following condition: there exists a polynomial-time algo-

rithm which draws elements from B(a) in a quasi-uniform way. Then the proba-

bilistic factoring algorithm, obtained by the a-Dixon method, with the optimum

choice of auxiliary parameters ß = s/a/2 and y = V2a, has time-complexity

exponent equal to \f2a .

Proof of Theorem 1. We use directly two results of Pomerance [5]:

The cardinality of B(a) is equal to 2naL(npx'.

The cardinality of F(a, ß) is equal to 2naL(n)~a/{2ß)+o{x].

Thus, we deduce: The exponent of the probability that an element of B(a)

belongs to F(a, ß) is equal to -a/(2ß). This exponent will not change if we

replace a uniform drawing from B(a) by a quasi-uniform one. Thus, if we can

choose x in B(a) in a quasi-uniform way, the probability that Q(x) could be

factored in the base P is equal to L(nya/m+o{x).   a

Proof of Theorem 2. If we want to obtain Lß different quantities Q(x) that

are totally factored in P, we expect to perform Ü draws from B(a) with the

following relation between the parameters:

01        a
y-2ß=ß-

We adapt now to D[a] the improvements that Pomerance [6] gave to Dixon's

standard method.   He uses, in Step 2, the Elliptic Curves Factoring Method

in order to find small factors of the Q(x), and, in Step 3, the Wiedemann

elimination method which works well on a sparse matrix with entries in a finite

field.

Proceeding in this way, one can prove, as in [6], that the cost of each iteration

of Step 2 is equal to L(n)o{-x), so that the exponent of the total cost of this step

is equal to
ex [ex

y = ß + rr ,    which is minimal fox ß = J- .

The best exponent of Step 2 is thus V2a.

In Step 3, one can successfully apply the Wiedemann method because the

matrix M contains less than 0((log«/loglog«)l/2) nonzero elements in each

row. This number has an exponent equal to 0, and thus the exponent of the

elimination cost is equal to 2ß = \[2a..   D

It remains now to obtain the Uniformity Condition under our particular

choice of a . We will choose a near 2/3 , and we will complete this task in the
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next sections, after a detailed study of the subset B associated with this choice

of a.

1.4. A sharper estimate of the cardinality of B(a). We begin this study with

providing a sharper estimate of the cardinality of the subset B(a), under specific

hypotheses about the parameter a.

Theorem 3. If n is solely composed of prime factors greater than L(n), and if

a is greater than a0= 1/2 + (loglog«/log«)x/2, one has

\\B(a)\-2na\<naL(n)-X+0(X).

For the proof of Theorem 3, we start with an odd integer n , with its prime

factor decomposition

n = flPiA
i=\

where the p/s are distinct primes in increasing order, and the exponents ei

are at least 1. Throughout the proof, small letters are for cardinalities of the

sets denoted by the corresponding capital letters. Given any subset T of Z(n)

formed with t consecutive integers, we let

T* = {xeT\(x,n) = l},

S = {xe Z(n)\Q(x) eT},       S* = {x e Z(n)\(x ,n) = l and Q(x) e T}.

We must evaluate the cardinality of the subset S in the particular case when the

corresponding set T is the subset [-na, +na](~)Z(n). The proof of Theorem 3

consists in three lemmas; in the first two lemmas, we consider a general subset

T and we come back to our particular hypotheses in Lemma 3. We seek an

upper bound for the expression \s - t\. Lemma 1 links 5 and the cardinality

u of the subset U of T defined by

U = {x e T*\x is a square modulo «}.

Lemma 1. The cardinalities of S, S*, T, T* are related by

(1) s* = 2hu,    s* <s<s* + 2h(t-t*),    t-t* <h(t/px + l).

The proof of Lemma 1 is straightforward and is omitted. From the relations

of Lemma 1 one easily deduces

(2) 0<s-2hu<2hh(t/px + l).

In order to link / and u, Lemma 2 uses the Jacobi symbol and a particular case

of the Pólya-Vinogradov inequality using this symbol; this provides an upper

bound for \t -2 u\.

Lemma 2. We have

(3) \t-2hu\<2h[Jñlogn + h(t/px + l)].
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Proof. The Jacobi symbol (¿) relative to an odd integer n is defined from

Legendre symbols:

©-S(T
The Legendre symbol relative to an odd prime p is defined by the three prop-

erties:

(i) (|) = ±1 for all x coprime with p .

(Ü) (f) = +1 if anc* only if x is coprime with p and is square modulo p .

(iii) (|) - 0 if x is a multiple of p .

Moreover, an element x of T is a square modulo « if and only if it is a square

modulo each pi. We deduce the following expression for u :

w «-iEn(i+(f-
z ¿cer i=i v      v^<

We work with the squarefree divisors of «.   For a nonempty subset / of

H = {1, 2, ... , h} , we let ^7 = FT,6/P, • Equality (4) can be written

(5) ~,h        ~,h     Z—i      ¿—à
eSrticH xer" ^r'

The Pólya-Vinogradov inequality [2] will give an upper bound for this ex-

pression; it asserts that: For any odd squarefree integer m and for any interval

T of Z, one has

£_©
xer

< \fm log m.

We use now all the Pólya-Vinogradov inequalities associated with the g/s. Con-

sidering the subsets of T,

TI = {xeT\(x,q,) = l},

we obtain

xer, 91
< ^q~,iogq,.

Using inequality ( 1 ) and the fact that T, contains T*, we deduce

W^)Sv^o6,, +*(± + 1).
xer'

We use these inequalities in (5), and obtain

\2hu - t*\ < 2hsf^logn + (2h - l)h (— + l) .

Using relation (1), we get the upper bound of Lemma 2.   D
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The previous two lemmas provide an upper bound for the quantity \s - t\ ;

from inequalities (2) and (3), we obtain

(6) \s-t\<2hyfñlogn + 2h+xh(— + l\.

Now, under the specific hypotheses of Theorem 3, we can evaluate this upper

bound and complete the proof of the theorem.

Lemma 3. If n is solely composed of prime factors greater than L(n), and if

one sets t = 2na with a greater than a0= 1/2 + (loglog«/ log«)1/2, one has

i -    a, a T ,    ,-l+o(l)
\s-2n \<n L(n)

Proof. Since n has all its prime divisors larger than L(n), one has

h < (log«/loglog«)       and also   2  < L(n)     .

Furthermore, our hypotheses allow us to bound from above each term on the

right of (6) by
aT.    ,-l+o(l)

« L(n)

which completes the proof of Lemma 3.   D

We can come back now to the subset B(a), which is exactly the subset S

associated with r = [-«Q,+«Q]nZ(«). Thus, Lemma 3 finally completes the

proof of Theorem 3.

2. A STUDY OF THE SUBSET  B  USING FAREY COVERING

AND GEOMETRY OF NUMBERS

The purpose of this section is to introduce basic notions and tools that we

use for studying the set B of elements x of Z(n) whose squares x mod «

are in absolute value at most 4« ' . Starting with two experimental facts, we

are led to a covering of Z'ri) related to Farey sequences, as well as to a special

class of integer lattices linked to B. The results relative to random generation

of elements of B that are of use for the complexity of integer factorization

are stated in this section (Theorems 4, 5, 6) and proved in §3, using the main

tools of this section. But here, the structure of B appears to be curious enough

to deserve detailed analysis. In particular, we wish to precisely explain all the

experimental facts that we observe, and use them to generate locally the elements

of B in a deterministic way. This will be done in Theorems 7 and 8 of §4.

In the sequel, we adopt the shorthand notation:

B = b(\ + {SUV     « = 4«2/\    and   Âc = ? = i«1/3.
\3     log nj «      4

We assume here that our problem is not trivial, i.e., we have 2h < n or equiv-

alent^ « > 2 .
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2.1. Experimental observations. In order to study the subset B , we need to de-

scribe the distribution of gaps between successive elements of B . We observed

in numerical experiments two important facts:

Pattern Occurrence. The gaps between successive elements of B may have

large variations near the rationals pn/(2q) of small denominator q , but their

distribution appears to follow a definite pattern inside a sufficiently small interval

around pn/(2q).

If q is very small, there appear sequences of gaps all equal to q , sepa-

rated by much larger gaps.

If q is moderately small, an element of B may appear in the midst of

a gap of length q (which then splits into two gaps of sum q ). At the

same time, much larger gaps disappear.

This pattern seems to disappear when going away from pn/(2q).

Balance Phenomenon. There is a balance between these gaps, so that the total

number of 5's elements inside a sufficiently large interval around pn/(2q) is

almost the same as if the distribution of B in the whole Z(«) were actually

uniform.

It appears that the length of a suitable interval to express these phenomena is

inversely proportional to q .

Let us give a numerical example of these facts: For « = 46961, we observe

the situation near three rationals: «/4, «/12, and «/18. We use the notation

xy for a y-fold repetition of a gap sequence x.

Near «/18, the sequence of gaps starting at 2601 is:

(8 l)10 (7 1) (8 l)2 (7 1) (8 l)2 (71) (81) (7 1) (81) (7 1) (81) etc.

Near «/12, we find the following sequence of gaps starting at 3895 :

66(5 1)55 65(5 1)25 63(5 1)25 etc.

Note that the point w/12 lies in the middle of the first sequence of gaps equal

to 6, which is also the longest one in this neighborhood.

Near «/4, the sequence of gaps starting at 11103 is:

24 13 24 13 24 13 24 13 251325 26 172723 28 25 21027 212 35 216 59 290 57 etc.

Note that the point n/4 lies close to the middle of the sequence of gaps 2 ,

which is also the longest one in the neighborhood.

It remains to prove these facts, which we now set out to do.

2.2. Farey covering. In order to prove the above observations, we construct

a particular covering of Z(n), based on Farey sequences (see, e.g., [1]), that

we call the Farey covering of order k. By definition, this covering is made of

intervals I(p, q) with center pn/(2q) and radius n/(2kq) = h/(2q), where

\p\<q<k and (p, q) = I.
We are going to prove that these intervals are convenient for our purpose:

They are sufficiently large to realize a balance between the variations of the gaps

in B, and sufficiently small to preserve the pattern of these gaps.
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0 n/2

Figure 1

Farey intervals for k = 8

We compare intervals I(p, q) with closely related intervals J(p, q). Given

three consecutive Farey fractions with denominators less than k :

-f, - , and -f,
Qx    q a2

which thus satisfy p'2q - q'2p = +1 and p\q - q[p = -1, we define the interval

J(p, q) of so-called "mediants" by

T,    „v     f(P+p[)n   (p+p'2)n\

\2(q + qx)    2(q + q2)J

It is clear that the intervals J(p, q) form a partition that is not too different

from our Farey covering.

Lemma 4. An interval I(p, q) can only meet its two next neighbors I(p[, q'x)

and I(p2, q2). Moreover, the interval J(p, q) is included in I(p, q), and the

length of I(p, q) is less than twice the length of J(p, q).

We omit the easy proof of this lemma, which can be found in [1].

So the Farey covering is almost a partition in the following [precise] sense:

Definition 2. Let / be an integer. A covering y = {Yj\j e J} of Z(«) is said

to be an /-partition if, for all x of Z(n), the number of elements 7 that

contain x is at most /.

So we have proved that the Farey covering made of the I(p, q)'s is actually

a 2-partition and also a quasi-partition—with "quasi" being used in accordance

with the principles of §1.2.

2.3. Formalizing the Balance Phenomenon. We first need to extend our defini-

tion of uniformity to coverings, in order to formalize the Balance Phenomenon.

Definition 3. Let I = (lx, l2) be a pair of two strictly positive constants. Two

subsets X and Y of Z(n) axe /-independent (with respect to P, the uniform

probability measure over Z(«) ) if

<P(xnY)
1 - P(X)P(Y) - 2-

A pair made of a subset X of Z(«) and a covering y = {Y\j e J} of Z(«)

is /-independent if, for all ; of J, the sets X and F  are /-independent.
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We consider now, as in §1.2, a family of pairs (X, ff) obtained when the

index n varies. We will say that this family is quasi-independent if one can

find an / = (/,, l2) that does not depend on n for which all the pairs (X, y)

are /-independent. For short, any pair (X, ff) of this family will be said to

be quasi-independent. Alternatively, we shall say that the distribution of X is

quasi-uniform with respect to the covering y.

The first result in this section formalizes a version of the Balance Phe-

nomenon: Up to absolute multiplicative constants, each subset B v\I(p, q)

contains as many elements as if the distribution of B were actually uniform.

Theorem 4. The pair made with subset B and the Farey covering of order k =

(l/4)nx'   is quasi-independent.

2.4. Obtaining the Uniformity Condition when a is near 2/3. In a subset

X that has a quasi-uniform distribution with respect to a quasi-partition y,

we can work locally and we propose to construct quasi-uniform drawings from

X nYj. This can help in obtaining a quasi-uniform drawing from X, and this

principle will be used now for getting the uniformity condition when a is near

2/3.
So we will work in each subset B n I(p, q). There, we will prove a weak

version of the Pattern Occurrence (Lemma 6) and use the exhibited pattern

to construct locally quasi-uniform drawings that we will assemble together to

obtain the Two-Thirds Algorithm, which provides the Uniformity Condition

when a is near 2/3 .

First we give an informal description of this algorithm: Imagine that points

of B axe balls that are contained in a chest of drawers. Each drawer represents

a Farey interval.

(1) The balls are not necessarily all distinct. Perhaps, there are two in-

carnations of the same ball in two distinct drawers [according to the

2-partition].

(2) The number of balls in each drawer is almost proportional to the size

of the drawer [according to the Balance Phenomenon].

(3) In each drawer, the balls are collected in numbered boxes. The first two

boxes are perhaps empty, but one knows exactly the number of balls

that they contain. The other ones contain a number of balls that almost

follows a law depending on the numbering of the box [according to the

Pattern Occurrence].

It is clear that one can choose "easily" a ball in this chest of drawers in an

"almost" uniform way. This is expressed in the following result:

Theorem 5. There exists a polynomial-time algorithm, called the Two-Thirds

Algorithm, which draws elements from B in a quasi-uniform way.

This last theorem, together with our general Theorem 2, gives the main result

of the paper.
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Theorem 6. There exists an integer factoring probabilistic algorithm, associated

with the a-Dixon method with a = 2/3, whose time-complexity exponent is

equal to \/4/3.

2.5. Using lattices for a local study of the subset B. We now introduce our

main local tool, lattices.

Inside each of the intervals I(p, q), some simple facts of geometry of num-

bers can explain and prove our observations about gaps between successive el-

ements of B . We make a local use of lattices of Z2 and, thus, the elements of

B near a point x0 give rise to points of a lattice L(x0) between two parabo-

las. Furthermore, if x0 G I(p, q) is sufficiently close to the rational number

pn/(2q), this lattice has a geometry which is "compatible" with the geometry

of the parabolas, and we can easily describe, in an algorithmic way, the points

of the lattice between the two parabolas and count them. We now will develop

these arguments.

We consider the lattice L(x0) which is generated by the two vectors ( 1, 2x0)

and (0, «), and the elements of B near point x0 give rise to points of L(xQ)

between two parabolas. If x = x0 + u is an element of Z(«), we have

Q(x) = x0+ 2x0u + u   [n].

1 2
Thus, if we let w = Q(x) - u - x0 , we have the equivalence between the two

conditions:

(i) x = x0 + u belongs to B ,

(ii) there exists w such that the point m(x) = (u,w) belongs to L(x0)

and lies between the two parabolas with respective equations

2 2 2 2
w + u + x0 = h   and   w + u + x0 = -h.

If now x0 is the integer nearest to the rational pn/(2q) with a small denom-

inator q,
pn ., , 1

*0_2^ = "°   wlthKI^2'

we introduce the domain P(p, q) formed with the points m(x) of L(x0) aris-

ing from the points x of B n I(p, q). In other words, for two integers p and

q satisfying \p\ < q < k, and (p, q) = 1, we propose to describe the domain

of lattice points

2 2
P(P i Q) = {("> w) G L(x0) | \u + uQ\ < h/2q and \w + u + x0\ < h} .

There exists a primitive vector of L(x0) which makes this task easy. The vector

r = q(l, 2x0)-p(0, n) = (q, 2quQ)

has a slope equal to 2uQ, which is in absolute value at most 1, and has a

horizontal component equal to q . If I(p , q) is a Farey interval adjacent to

x0 , we can use the vector

s = q'(l, 2x0)-p'(0, n) = (q , 2q'u0 + n/q)
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to complete r into a basis of L(x0). Finally, we have shown the following

result:

Lemma 5. The points of the lattice L(x0) lie on quasi-horizontal lines which cut

on the vertical axis segments of length equal to n/q ; moreover, on each line, the

points of L(x0) have horizontal gaps equal to q. From one line to the next,

the points of L(x0) are shifted with a horizontal spacing equal to q in absolute

value.

3. Generating random elements of B in a quasi-uniform way

Now, our main tools—Farey covering, lattices, parabola—are defined. We

are going to use them to explain our experimental observations. In this section,

we are interested in the random generation of B, and we will, in particular,

establish Theorems 4 and 5.

3.1. The boxes of the drawer. We now explain how to define the boxes of the

drawer I(p, q) that we mentioned in our informal description of the Two-

Thirds Algorithm in §2.4.

We consider the lines of the lattice, parallel to the vector r, which intersect

the domain P(p, q) associated with I(p, q). The two extremal positions of

these lines are easy to determine (Figure 2).
2 2

The first one is the tangent to the parabola of equation w = -u - x0 + h ,

with a slope equal to 2u0 . This line satisfies the equation

2 2
w - (-uQ - x0 + h) = 2u0(u + u0).

The second joins the two limit points of P(p, q) whose respective coordi-

nates are

and

hi h\2       , 2N

\-U«-Tq>-\U° + Tq)   ~h~Xoj-

This line has actually a slope equal to 2u0 and satisfies the equation

W + ("° + 2q)   +h + x2o = 2uo {u + uo+2q~

These two lines intersect the vertical axis at the respective points

,2
2 2 2 2        «

wQ = h - xQ + u0   and   wx = -h - x0 +u0-2,
4q

so that all the lines parallel to r that intersect P(p, q) axe the ones that intersect

the segment [w0, wx] whose length is equal to 2h + h ¡4q2.
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One numbers these lines from top to bottom; a real v is called an index if

there exists a line of L(xQ) parallel to r which intersects the vertical axis at the

point with ordinate equal to wQ- vn/q; this quasi-horizontal line is denoted

by D(v) ; and, if x is a point of B n I(p, q), we call index of x the index v

of the line D(v) which contains the point m(x).

We use two particular lines, parallel to f, which cut the vertical axis at
1 1

w = w0 - 4h and w = w0 - h ¡4q in order to divide P(p, q) into three

domains: the chest, the legs, and the feet (Figure 2). So, we define our boxes:

The first two boxes are the chest and the feet, while the other ones are all the

lines D(v) of the legs.
Then, we define four particular indices: uQ is the first index of the domain,

v{ is the first index of the legs, v2 is the last index of the legs, and i/3 is the last

index of the domain. The index vx is defined to be the least index greater than

or equal to 4hq/n , while the index u2 is the greatest index less than h2/4qn .

Since the total height of P(p, q) is equal to w0 - wx = h2/4q2 + 2« , the index

iv3 is the greatest index less than h ¡4qn + 2hq/n .

Figure 2 Figure 3

The three parts ofP(p, q) The segments T(v)

C: the chest, L: the legs, F: the feet
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Note that Figure 2 is not to scale: Our choice of h makes the legs very

long, while the chest and the feet are very small and each contains at most four

indices. Observe the relations: 0 < u0 < 1 and

(7) v, + l>-£- >-¡t- = 16=16— > 16^ > 4(i/.-1).
2 4qn ~ 4kn n  ~      n  ~      '

3.2. Estimate of the number of balls in each box; a weak version of the Pattern

Occurrence. We show that the number N(v) of points of P(p, q) on each line

D(v) of the legs follows the approximate law

More precisely, we show the following.

Lemma 6. The number N(v) of points of P(p, q) on line D(v) of the legs

satisfies
h      . .,, .  . 7     h

.-< N(v) < -z   .-.
y/uqn 2 ^/vqñ

Proof. In the legs, we consider the two segments T~(v) and T+(v) cut on

the line D(v) by the two parabolas. Their horizontal projections are the two

segments S~(v) and S+(v),

S~(v) = [-b(v) - u0, -a(v) - u0],        S+(u) = [a(v) - u0, b(v) - u0],

with a(u) = \Jvn¡q - 2« and b(v) = \fvn/q . Each of them has a length s(v)

equal to (cf. Figure 3)

A series expansion is legitimate in the legs because we have there v > 4hq/n;

we use the fact that, for all x < 1/2,

í <l-vT^^<i
2 - - 2

x
1 + 4V h) 5 x

"42

and obtain

\ un 4   y un

Furthermore, on each of these segments, the lattice L(x0) has points with a

horizontal spacing equal to q, and since we have

(9) íM>_J=>2   foralli/<i/,,
q   ~ s/vqn ~ ~   2

it is clear that each segment T(v) contains at least two points of L(x0). More

precisely, we can evaluate the number N(u) of lattice points on the union of
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the two segments of T(v) :

N(v) > 2 I

(10)
s/vqn '

N(v)<2\-^== + l
[4 y/pqñ

7
< -

2 yjvqn '

Thus, up to absolute multiplicative constants, N(u) follows the claimed law.   D

3.3. The number of points in P(p, q); proof of Theorem 4 and the Balance

Phenomenon. In order to prove Theorem 4, we are going to evaluate the above

number N in comparison with the number

N =-x — - —
e     q      «       qn

that we should expect if the distribution of B were exactly uniform.

In order to calculate the number N¡ of points in the legs, we use quasi-law

(10) and comparisons with integrals:

V = V.     v ^' v

(11)
'1

v¿>   1        1       p*  du       1      .  n-

tt. >   v^r Vi v^ - v^i   v 2

and with the relations (7), and the quasi-law (10), we get

\{^Y<-*A(^e '

In the chest and in the feet, one obtains also upper bounds in a straightfor-

ward manner, but no nontrivial lower bounds.

There are at most four lines in the chest, and, on each line, the number of

points is less than (2/q)y/(ux - l)n/q + 1 < 4\fh¡q + 1 < 0.251 AT,. Thus, the

number Nc of points in the chest satisfies Nc < 1.004AT,.

There are at most two lines in the feet, and on each line, the number of points

is less than 8. Thus, the number Nj- of points in the feet satisfies N, < 16 <

0A2SNe.
Finally, we obtain

\Ne<N<4Ne.

So the pair B and the Farey covering of order k = (l/4)nx/ are /-independent.

More precisely, one can take lx = 1/5 and l2 = 4. This provides an explicit

proof of Theorem 4.

3.4. The Two-Thirds Algorithm. We can give now a more formal description

of this algorithm and prove its properties.

Input. A random point x of Z(n).

Output. A point z of B which lies in the same Farey interval as x .

( 1 ) Choice of the Farey interval—the drawer. Randomly choose an x in

Z(«), and, with the last two best approximations of 2x/n with denominators
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less than k, which are called px/qx and p2/q2, determine a Farey interval

I(P, q) which contains x :

Consider the mediant p3/q3 of the rationals px/qx and p2/q2,

defined by the relations: p3 = px + p2 and q3 = qx + q2.

It belongs to the segment [px/qx, p2/q2]- If 2x/n belongs

to [Px/qx > P-ilq-fS > tnen choose (p, q) = (px, qx), else choose

(p , q) = (p2 . q2) ■

Then determine the domain P(p, q) relative to this Farey interval, its four

main indices uQ, vx, v2, u} defined in §3.1, as well as the point x0 nearest to

the rational pn/(2q).

(2) Evaluation of the number of points in the Farey interval. Determine the

points of L(x0) inside the domain P(p, q). [For this, we operate in a different

way in the chest or in the feet, as in the legs.] [In the chest and in the feet, we do

not have lower bounds for the number of points, but we can perform an exact

calculation, because the number of lines is at most four in each case. In the

legs, we use the quasi-law (8) of N(u) and approximate N(v) by 2h/^qvn .]

(2a) First, determine exactly the points in the chest and the feet, and exactly

calculate their numbers, which are denoted Nc and A^.

(2b) Then, with the help of an integral, evaluate the number A^ of the points

in the legs. Let N = Nc + N¡ + Nf be the total number of lattice points

inside P(p, q).

(3) Choice of the line—the box. Randomly choose an integer t in [1, A7].

(3a) If t <NC + Nj, determine the point y of the chest or the feet which

corresponds to this number. The abscissa u of this point gives the

output z = x0 + u.

(3b) If not, from the number t - (Nc + NA , first determine the index v of

the line D(v) : Use the estimate (8) and the comparison between the

series with general term l/^/v and an integral. Then, calculate exactly

the number of lattice points on this line, and randomly choose a lattice

point y on this line. The abscissa u of this point gives the output

z = x0 + u.

3.5. Properties of the Two-Thirds Algorithm. The polynomial-time complex-

ity of this algorithm is clear. Furthermore, we see that it uses only 0(log«)

arithmetic operations on numbers of order « .

The constants of quasi-uniformity arise in our algorithm from each of the

three steps and make precise the informal description that we gave in §2.4.

(1) There are some jc's that belong to two Farey intervals, and others that

belong to only one such interval. We choose I(p, q) in the first step if and only

if 2x/n lies inside J(p, q). According to Lemma 4, this interval J(p, q) has

length proportional to I(p, q) up to absolute multiplicative constants. So we

can choose the I(p, <?)'s quasi-proportionally to their length.
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(2) Use Theorem 4 (Balance Phenomenon).

(3) Use Lemma 6 (weak version of the Pattern Occurrence).

This completes the proof of Theorem 5. From this, we deduce finally The-

orem 6, which provides the best rigorously established probabilistic complexity

bound for integer factorization algorithms.

4. More about the Pattern Occurrence

So far, we have been interested in the random generation of elements of B.

Now we adopt a more deterministic point of view. We propose to describe the

gaps around a given element of B in order to explain the Pattern Occurrence

and determine in polynomial-time the two closest neighbors in B of a point of

Z(n).

We still use lattices and consider the local transfer of points of B n I(p, q)

into P(p, q). This transfer is compatible with the topology of these two subsets:

two neighbors in B Dl(p, q) lead to two sufficiently close points of P(p, q).

In §3, we used transfer from B n I(p, q) to P(p, q), but we stayed in

P(p, q). Now, we come back to B n I(p, q) by using horizontal projections.

Using this double transfer, we, most of all, obtain two results: the first (Theorem

7) gives a theoretical description of gaps around a point of B, while the second

(Theorem 8) is an algorithm, called the Neighbors Algorithm, which "often"

finds the two neighbors in B of a given point.

4.1.   An informal explanation of the main arguments. Our study is based on

some remarks that we state first in an informal way.

Comparison between two notions of neighborhood. We define two notions of

neighborhood: Two points of Bnl(p, q) are 5-neighbors if no point of B lies

between them. Two points of P(p, q) axe P-neighbors if they belong to the

same segment T(v) and, if, on this segment, no point of P(p, q) lies between

them.

The comparison between the two notions of neighborhood depends on the

denominator q of the Farey interval I(p, q), and we must distinguish two

cases, according to the sign of the quantity t = 1 - 2hq/n = 1 - 2q/k. If t

is negative, the segments S(u) axe disjoint and the order on B Dl(p ,q) is

compatible with the natural order on P(p, q). Otherwise, if / is positive, the

segments S(v) overlap each other, and there is a mixing between the horizontal

projections S(v) of successive segments of T(v) (cf. Figures 4 and 5).

Low degree of overlapping. The degree of overlapping is never too large, so

that we can consider only a small number of lines to determine the 5-neighbors

of a point. This is ultimately the reason why we obtain a polynomial-time

algorithm.

Regularity around ordinary points. Our method works for points of Z(«)

that are only moderately well approximated by rationals pn/(2q). Such points
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fl(v-2),
fl(v-lL

>(v-l)

'è(v)

a(v)

a(v+

a(v-l)

b(v+l)

b(v+2)

o(v+2)

I

a(v)

b(v)

b(v+l)

û(V+l)

Figure 4

Case when q > k/2

Figure 5

Case when q < k/2

axe called ordinary and give rise to points of P(p, q) which lie neither too high

in the chest, nor too low in the feet. Around such a point, the pattern of the

domain P(p, q) is sufficiently clear to easily determine the P-neighbors of this

point.

4.2. Gaps around ordinary points. We first formalize the notion of an ordinary

point.

Definition 4. A point xx of I(p, q) is called ordinary if its distance ux from

pn/(2q) satisfies the following inequalities:

(13)
„      „ ^h

- < ux < —.—'       4q

The subset of these points is denoted by 0(p, q).

The following lemma gives an estimate of the density of this ordinary subset

and makes precise the indices of ordinary points (indices are to be taken in the

sense of 3.1).

Lemma 7. The index of an ordinary point satisfies the inequality 2 < v < v2 - 1,

and the ordinary subset has a density greater than 5/8.

Theorem 7 below takes advantage of the three remarks that we previously

stated.

Theorem 7. Let xx be a point of Bn 0(p, q) at a distance ux from pn/(2q),

and let p'/q' be the best approximation of p/q with a denominator q < q.
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We set t = 1 - 2hq/n . Then the following hold:

( 1 ) There exists a point x2 of B at a distance exactly equal to q from xx.

(2) If q > k/2, the two gaps around xx belong to the set

G = {g\l < g < q, g = aq'[q] with a e Z and \a\ < 2}.

(3) If q < k/2, at least one of the two gaps around xx is exactly equal to

q. The other one satisfies

1   i« 2  i« #
■z — < g < -= — + 2q   and   g = ±q[q].
3 qux 3 qux

We now prove these results: we begin by proving Lemma 7, then each part

of Theorem 7. We use the notations of §§2.5 and 3.2, and we shall assume

throughout the proof, without loss of generality, that *, is greater than pn/2q .

So, the point m(xx) belongs to the positive part T+(v) of a segment T(v).

We consider successive segments T(v) of the legs and the positive parts S+(v)

of their horizontal projections:

[a(u)-u0,b(v)-u0]

with

a(v) = ^-2h = yj(v + t-l)^   and   b(v) - ^.

We wish to compare the position of these abscissae for successive values of v .

It is clear that this comparison depends on the sign of t, where t is always less

than 1 in absolute value.

4.3. Properties of ordinary points. Proof of Lemma 7. The first inequality for

the index v , namely v > 2, is clear. As to the assertion v < v2 - 1, we obtain

by equations (7) and (13)

•2 1

^<(v2-3)^<a(v2-l)2.
2^3h2  ^

U,   <  -r  <

1 " 16c72 " 4qn q      *      q

so that the index u of a:, is less than v2 - 1.

We now derive an upper bound for the cardinality of the complementary

subset, which we call exceptional and denote by E. We have

where the sums are taken over the integers (p, q) satisfying the two conditions

\p\ < q < k and (p, q) = 1. The first sum is at most n\/2/6 , while the second

is at most «(1 - v/3/2), and finally an upper bound for \E\ is 3«/8.

4.4. Part of Theorem 7. Part 1. Consider the index v of an ordinary point

xx. By Lemma 7, the point m(xx) associated with xx by means of our usual

transfer belongs to a segment T+(u) that lies in the legs or in the lowest part
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of the chest. If the segment lies in the legs, the length s(u) of its horizontal

projection is greater than 2q by relation (9) and it surely contains at least two

points of the lattice. If it lies in the chest, our hypothesis says that it cannot be

too high in this chest, so that it is sufficiently long and also contains two points

of the lattice.

4.5. Proof of Theorem 7. Case when q > k/2. If t is negative (i.e., q > k/2

and -1 < t < 0 ), the horizontal projections S+(v) of the segments T+(v) are

not disjoint (cf. Figure 4). We must determine how they overlap each other. We

consider an ordinary point xx of B n I(p, q) with an index equal to v . Thus,

the two quantities b(v + I) - b(v) and a(v) - a(v - 1) measure the degree of

this overlapping around this point xx, and we get a lower bound for them.

On the right of T(v), we obtain

b(U + l)-m = f7vJq-fi>^VA^y
and we deduce from Lemma 7 that

Kv + l)-b(u)>l^>k>a.

Thus, there is a point of L(x0) which lies in T(v + 1), to the right of m(xx),

such that the gap between xx and its right neighbor is at most q .

On the left of T(v), we use a lower bound for a(v) - a(v - 1). Since the

sequence of the s(v) is decreasing, we obtain

a(v)-a(v - 1) = b(v) -b(v -l)+s(v - l)-s(v) > q,

so that there is a point of L(x0) which lies in T(u - I) and to the left of

m(xx). We conclude that the gap between xx and its left neighbor is at most

q-
Finally, the two gaps around an ordinary point are at most q.

We remark also that, since / > -1, the abscissa a(v + 3) is greater than

b(v + 1), so that the two segments S(v) and S(v + 3) are at a distance greater

than q. So, if the point m(xx) belongs to a line D(¡v), apoint m(x) associated

with a next neighbor x of x, can only belong to the five lines D(v+a), with a

an integer at most 2 in absolute value. According to Lemma 5, the horizontal

shift between points of L(x0) n D(v) and those of L(x0) n D(v + 1) is equal

to q   in absolute value. This proves Part 2 of Theorem 7.

4.6. Proof of Theorem 7. Case when q < k/2. If / is positive (i.e., q < k/2

and 0 < t < 1 ), the segments S(u) axe disjoint (cf. Figure 5). So the natural

order on I(p, q) is induced by the natural order on P(p, q). Thus, in this case,

since the point m(xx) has at least one P-neighbor m(x) in the segment T(v)

at a distance exactly equal to q, the two points xx and x are 5-neighbors,

with a spacing equal to q between them.

The same fact may hold true for the other 5-neighbor x of xx, if the point

m(xx) has another P-neighbor in the segment T(u). But, we must consider

also the case when m(xx) is at the end of the segment T(u).
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First consider the case when m(xx) is the last point on the right of T(v).

Thus, the gap between xx and its right neighbor is at most a(v + 1) - b(v) + 2q

and at least a(v + 1) - b(v). We get estimates for a(v + 1) - b(v) :

a(v + l)-b(v) = b(v) 1 + --1
v

and

<fl(iv-(- l)-b(v) <
I6q b(u) -   v        '      K ' - 2q b(u)'

since the index v of the ordinary point x, is at least 2. Now, if m(xx) is the

last point of L(x0) on the right of T(u), we have

b(u) - q <ux < b(v).

But, by hypothesis, we also have from (13)

(14)

and

2        2aZ        4/Î 8   2 10   2
u, > — >-¡- = 4h = 2k>2q,    so that u, > 32q.

q  ~ k - ' ~M

We deduce that

(15)

b(u)<(ux+q)< §w,.

< a(i/ + 1)- b(v) <
3qu 2qux '

In the same vein, if m(xx) is the last point on the left of T(v), the gap

between xx and its left neighbor is at most a(v) - b(v - I) + 2q and at least

a(v) - b(v - 1). We get estimates for a(v) - b(v - 1) :

2^ a(/v) 8# fl(i/)

since the index v of the ordinary point xt is greater than 2. Now, if m(xx)

is the last point of L(x0) on the left of T(u), we have

a(v) <ux < a(v) + q

and, by (14),

We deduce that

(16)

\a(u)>\(ux-q)>\ux.

< a(v) ~b(v - 1) <
2fJM, 3^Mj '

Finally, comparing relations (15) and (16) that summarize the two cases,

we obtain the announced bound. We use the horizontal shift of Lemma 5 to

complete the proof of Part 3 of Theorem 7, and also the proof of the whole

theorem.
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4.7. A precise description of the pattern of B near an ordinary point. The right

half 0+(p, q) of the ordinary part 0(p, q) of the Farey interval I(p, q) may

be written as the disjoint union of segments

nc/) = pjL+b(u0+j+D,p£+b(v0+j+2)y

where the integer j varies from 1 to v2 - u0. (The indices vQ and v2 are

defined in §3.1.)

We use these intervals to define the pattern that we observed in §2.1. More

precisely, we can easily describe gaps between successive elements of B n U(j) :

they form what we call the 7th pattern of B inside 0+(p, q). The 7th pattern

has length n(j) which follows the approximate law

*w*2y(*0+"+i)*-

If q < k/2, the 7'th pattern begins by a first gap g—a big one—, approximately

equal to

g « tn(j) ;

then, there is a sequence of gaps, all equal to q . The number Nx(j) of terms

of this sequence is approximately equal to N(u0 + j + l)/2, where N denotes

the function defined in §3.2. We have

Nx(j) *(l-iÄ

If q > k/2, the 7'th pattern is divided between two subpatterns separated by

gaps:

- a first subpattern which is a sequence of N2(j) gaps all equal to q,

- then a gap g,

- after this, a sequence of N3(j) pairs of gaps (q , q - q),

- and finally another gap g .

The two numbers N2(j) and N3(j) are approximately equal to

N2(j)«(l-\t\)^   and   at3(7)«|í|^2.

Note that the gaps g and g' may depend on the integer 7, but they must

belong to the set G defined in Theorem 7, possibly associated with an a equal

to 2 in absolute value.

We have thus obtained an approximate description, where all the approxima-

tions are given up to strictly positive absolute multiplicative constants. Here,

"absolute" means independent of the index v , of the pair (p, q), and the mod-

ulus n . We provide a quasi(!)-description of the Pattern Occurrence, and we

can verify that it explains well our experimental facts of §2.1.
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4.8. The Neighbors Algorithm. As before, we consider an ordinary point xx

of 0(p, q), at a distance ux from pn/(2q). For an easier description of the

algorithm, and without loss of generality, we shall suppose that xx is greater

than pn/(2q).
But, here, point xx need not belong to B, and we now explain how to

find the two 5-neighbors of the point xx. We gather the results of previous

subsections, and we obtain a description of the Neighbors Algorithm. This is a

polynomial-time algorithm that succeeds on the ordinary subset.

Input. A random point xx of Z(n).

Output. The two neighbors xx   and xx   of xx in B .

(1) With the last best approximation of 2xx/n with denominator less than

k, denoted by p/q, determine the Farey interval I(p, q) which contains xx

and the integer x0 nearest to the rational pn/(2q).

Calculate the distance ux of xx to pn/(2q) and check whether xx is ordi-

nary. If not, the algorithm fails.

(2) Determine the index v such that ux e [b(v), b(u + I)).

If q < k/2, there are only three possibilities for the index p. of the next

5-neighbors of xx : it can only belong to the set M = {v, v + 1, v + 2} .

If 67 > k/2, there are only five possibilities for the index p of the next B-

neighbors of xx : it can only belong to the set M = {v-l,v,v + l,v + 2,

v + 3).

(3) On each line D(p) to be considered, determine the abscissae u~(p) and

u+(p) of two points of P(p, q) nearest to the line of equation u + u0 = ux ,

and finally the two next 5-neighbors xx   and xx   of xx by the relations

x~ = x0 + Max{u~(p)\p G M}   and   xx+ = xQ + Min{u+(p)\p € M) .

The analysis of the complexity of this algorithm is clear and gives the follow-

ing result.

Theorem 8. The Neighbors Algorithm is a polynomial-time algorithm which finds

the two next B-neighbors of an ordinary point or fails. The subset where the

algorithm succeeds has a density larger than 5/8.

5. Discussions and conclusion

We place here our method and our results in the context of previously known

results, both within classical number theory and computational number theory.

5.1. Discussion of the choice a = 2/3. A natural question to ask is: Why does

our method work well for a near 2/3 ? Can it be generalized for other values

of the parameter a greater than aQ ?

It is clear that the transfer of the problem to the lattice L(x0) works for

all values of the parameter a : we use the auxiliary parameters h = 4na and

k = (l/4)nx~a , and we define the domain P(p, q). The quasi-uniform law of

N(v) in the legs remains true and the computations in the legs and in the feet
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can be started in the same way. However, one cannot generalize our method

in a straightforward way for values of the parameter a smaller than 2/3 : in

these cases, the legs may be very short, and the chest very big! First, relation

(7) no longer holds true, so that the lower bound (10) in the legs is no longer

valid. Second, the behavior of the number of points in the chest may have large

variations and can no longer be compared with the expected number N .

During the study of the set B(a), the area of the chest which is of order

n a' has to be compared with the determinant « of our lattice L(x0). This

is why the value 2/3 of the parameter a is a natural one. When a < 2/3,

one cannot predict the number of points of L(x0) in the chest. This is all the

more true since all the lattices that we use are irregular [8]: they have a shortest

vector that is very short, i.e., much shorter than «1/2. We thus see that a = 2/3

is optimal for this class of methods.

5.2. Using the Two-Thirds Algorithm. Using our algorithm, we have at our dis-

posal a range of algorithms depending on the optimizations we elect to adopt

in the D[a] algorithm for a = 2/3 (in Step 2 for matrix formation, and Step

3 for elimination). We only discussed the best possible bound of LA'4^3, but it

may be of interest to observe that a bound of L , which was the previously

known complexity record, is easily obtained by using Pollard-Strassen's factor-

ization in Step 2. Some of the time-bound exponents associated with various

optimizations are summarized below (compare with the corresponding table in

[5])-

Basic

Pollard-Strassen

Early Abort

Pomerance [5]

Pomerance [6]

8/3= 1.632
V2= 1.414

7/3 = 1.527

5/3= 1.290
4/3 = 1.154

Also, on the practical side, we can transform the Two-Thirds Algorithm into

a heuristic algorithm of B(a) with a < 2/3 : it is sufficient to always choose in

Step 3 the point of L(x0) nearest to the middle of segment S(u). In this way,

we abandon a rigorously established quasi-uniformity property, but we expect

a gain in obtaining quadratic residues smaller than « ' whose square roots

still retain some sort of randomness, since they are spread over the whole of

the interval Z(«). This approach contrasts with the particular set of quadratic

residues obtained by the continued fraction algorithm [4].

5.3. Coming back to the estimate of the cardinality of B. Note that Theorem 4

also gives an evaluation of the global cardinality of B . Since the Farey covering

is a 2-partition, we deduce from §3.3 that

IE Bn/(i>,«)|<|/)|< YJ|ín/(í>,«)|,
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where the sum is taken over the integers (p, q) satisfying the two conditions

\p\<q <k and (p,q) = I; from this, we obtain

These bounds are of course less sharp than the bounds of Theorem 3, but they

do not involve any arithmetic property of the modulus «, while the proof of

Theorem 3 is principally based on the prime decomposition of the modulus.

Furthermore, our results of §2 are locally stronger, since the Pólya-Vinogradov

inequality cannot give any local estimate. Note also that the local distribution

of B is largely independent from arithmetic properties of the modulus « .

So, in the particular case when a = 2/3, we have developed a geometric

method which gives an alternative result about the cardinality of B . Our result

is weaker from the global point of view, but much stronger from the local point

of view.

5.4. An explanation of experimental facts. Our study of the subset B was

motivated to a large extent, at least in the beginning, by the links that it has

with the D[a] method. But the results of our numerical experiments were

so curious that we guessed much more structure in this subset than we could

hope for. We could actually explain these structural properties with simple

tools—Farey intervals, lattices—that are well adapted to this problem. So, the

subset B is interesting in itself, and also as a good example of Mathematics of

Computation!
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