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UNIFORM CONVERGENCE RESULTS FOR CAUCHY
PRINCIPAL VALUE INTEGRALS

PHILIP RABINOWITZ

Abstract. A general uniform convergence theorem for numerical integration

of Cauchy principal value integrals is proved. Seven special instances of this

theorem are given as corollaries.

1. Introduction

In this paper we study the uniform convergence with respect to the parame-

ter X of various numerical methods for evaluating the Cauchy principal value

(CPV) integral

,/;«:=/' .«*>;i) I(wf;X):= f    W(x)^-Ldx,        -1<A<1,
j X — A

where w is the Jacobi weight function

(2) w(x):=(l-x)a(l+x)ß,        a,ß>-\.

In a previous paper [11], the author showed that if / is Holder continuous,

f G Hß, 0 < p < 1, where

Hfl:={g:œ(g;t)<Atfl, A>0, 0</í<1}

and oj(g ; t) is the modulus of continuity of g on J := [-1, l],

co(g;t)=     sup     \g(xx)-g(x2)\,
\x¡-x2\<t

xx ,x¿€J

and {fn} is a sequence of piecewise linear approximations to /, then

(3) r(wr„ > X) -* 0   as n -> oo, uniformly in X g (-1, 1),

if

(4)_ ß + y>0,
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where rn(x) := f(x) - fn(x) and

y:=mm(a, ß,0).

Here, we have a sequence of partitions Un given by Un : -1 = x0n < xXn <

■ • • < x„   „ = 1 with n ,. > o, h¡„ = x,-,. „ - xim and /T = maxn ,,..     , A.

and assume that lini    _/T = 0. The function  f   satisfies fJx-) = f(xim)9

i = 0,... ,Pn. and is linear on every subinterval 7(/) := [xjn , xi+l n].

The proof of (3) used the following three properties of rn which were demon-

strated in [11]:

(i)   rn(±l) = 0,

(ii) K\\ = co(f; Hn), where ||^|| := max^ \g(x)\,

(iii) œ(rn ; t) < Coo(f; t) for some C > 0.

In this paper we will extend this result to the case where fn is a generalized

piecewise polynomial as defined in [12], a cubic spline interpolating / at equally

spaced knots, a modified cubic interpolating spline of deficiency 2 as defined

in [9] or a quadratic spline interpolant as described in [10]. We shall also give

conditions for (3) to hold when fn is a Lagrange interpolating polynomial, a

Hermite-Fejér interpolating polynomial or a Bernstein polynomial. In these

cases, the conditions for uniform convergence are weaker than in the previous

cases. All these convergence results are corollaries of a general convergence

theorem which we give in the next section.

There are some other uniform convergence results in the literature. The

strongest are those by Criscuolo and Mastroianni [3, 4] for integration rules

based on polynomial approximation. Interestingly enough, their convergence

conditions are similar to those given here, as we shall see.

2. A general uniform convergence theorem

In this section, we shall state and prove a general uniform convergence the-

orem for CPV integrals. The proof follows along the lines of that in [11].

Theorem 1. Let f G H   on J and assume that fn is an approximation to f

such that

(a) r„(±l) = 0,

(b) \\rn\\ = 0(Avn), 0 < v < p, where {An} is a sequence of positive numbers

such that liiri    _ A„ = 0,
n—+oo    n '

(c) co(rn;t) = 0(f), 0<a<p.

Then (3) holds if

(5) p + y>0,

where p := min(<7, v).

Proof. Using the well-known device of subtracting the singularity (see, e.g., [6,

p. 184]), we write

I(wrn ;V = J_ w(x)r»iX)x~_r¿W dx + rn(X)I(w ; X) := Tx + T2.
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We now show that Tx = TX(X) and T2 = T2(X) both converge uniformly to 0

for all Ae(-1, 1) if (5) holds.

Consider first   T2 := rn(X)I(w; X).   Since  rn(l) = 0, we have  rn(X)  <

co(rn ; 1 - X) = 0((\ - X)a). Furthermore, in a neighborhood of X = 1,

0(( 1 - X)a) + C   if a is not an integer,

0(| log(l - X) |)     if a is an integer

[13, §4.62].
Hence, we can find s > 0 sufficiently small so that for all X in [1-5, 1]

I(w ; X) = |

,<J+Q

T2 = 0((l-Xr"\log(l-X)\)<e

uniformly in X if (5) holds. Similarly, we can find s > 0 such that for all X in

[-1,-1+1]

T2 = 0((l+X)"+ß\log(l+X)\)<e

uniformly in X. Finally, since I(w; X) = 0(1) in [-1 +s, 1 -s] and ||rn|| =

o(l) as n -> oo, we conclude that T2 = o(l) uniformly in X as n -> oo .

We now turn to Tx, which we write as

T= f h(x)dx+ [ h(x)dx+ Í hn(x)dx:= I.+L + L,
1       Ju   " J\x-X\>An     "V J\x-k\<An     "y   ' 12        3'

xgU x$V

where hn(x):=w(x)(rn(x)-rn(X))/(x-X) and U := [-1, -1 +r]U[l - r, 1]

for some r, r to be determined below.

Consider now the integral

~-l+r

hn(x)dx\
i:

-Af-
-AOl+x)ß\x-X\a~ldx

l+r
\?+<r-l

( 1 + x)        dx]<e   for r sufficiently small.

Similarly, | fx_?hn(x)dx\ < e for r sufficiently small, so that |/,| < 2e . As for

'2>

Lm>a, K{X)dX   ̂ x?FuWÍX)-2^L-M>An lx~^dx
x$U x$U

= 0(A"n\\ogAn\) = o(l)   asn^œ.

Finally,

i KiX)dx=o(í %Jí^J
J\x-X\<A„      "V \J\x-i\<A„ \X-X\

xíU \       x<tU J

•/ x-M<A„
xZU

\x - X\°    dx

= o(l)   as n -y oo uniformly in X, since A  = o(l).
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Hence, I(wrn ; X) can be made arbitrarily small as n —► oo, uniformly in X G

(-1,1).

3. Particular examples of Theorem 1

In this section, we derive uniform convergence results for a variety of ap-

proximations fn to / which we state as a series of corollaries.

Corollary 1. Let f G H and let {fn} be a sequence of piecewise polynomials

defined as follows: For every partition Iln, we define a partition Ylin of each

subinterval Jin, i = 0, ... , pn - 1, by

U     x   = x(n) < x(n) <■■•< x{n)    = X

subject to the conditions mni < M for all i and n and x¡ j+1 - x¡j > dhin

for some d > 0 and all i, j, and n. fn(x) is defined on Jin as the Lagrange

interpolating polynomial of degree mni agreeing with f(x) at the points x¡"\

j = 0, 1, ... , mni. Then (3) holds if (4) holds and if Hn —> 0 as n -> oo.

Proof. Since Xqq = xQn = -1 and x m = xp n = 1, condition (a) in

Theorem 1 holds. We show condition (b) with An = Hn and v = p by writing

/„(*) = £4n)w/(4n))>    *****
k=0

where
m«i     x _ x{n)

i{n)(x) - TT ij
Hk \X>-   11      (n)_    («)'

jtk

which implies that |/;-^(x)| < d~M for all i, k and n and all x G J. Hence,

k„(*)l =
M rjß

<(M+l)d-mH"n

k=0

as asserted. Finally, we show condition (c) with a = p as follows: Using the

Newton divided difference form for the interpolating polynomial, we have that,

for any t G Jin ,

m =Mo)+Pi w/[iB), xff]+p2(t)f[x¡;], xff, 4B)]

+-+pm.it)f[x<i^x^,...,xi:in],
m '      ni

where

Pj(t) :=Jfl(x - x%]),       j=l,...,mni.
k=0

Since all the zeros of PUt) lie in Jin, we have that

(6) \P'ß)\<jhj-\       j=\,...,mm;   i€Jin.
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We now show by induction that if co(f; t) < Af for some A > 0, then for

any distinct values y ■ such that

{^„...jjck;»,^,...,^},   k>2,

we have

(7) \f[yx,...,yk]\<A2h-2d-k+lh»n-k+l.

Indeed, for k = 2

l/Lv,, y2]\ = l/iy,) -fiy2)\/\yi -y2\ < Ah^/dhin = Ad~lhfn~l,

and for k > 2

l/Lv,, y2.yk]\ = l/Lvi, • • •, ̂ _J - /[y2.^ll/l^i - ?*l
^ i/ A~\k-3 ,-k+2, u-k+2. ,,, .~k-2 ,-k+\ , u-k+1
<2(A2     d      hrn      )/dhin=A2    d      W¡n      .

Consider now u, v G Jin, u < v . Then

/»(«) - /»(«) = (« - «H^te/i*!?. 4n)]+^«y/t*» . *ii". 4fl)]

+ •   • + ^m   (<»m   )/[•*,()   ' • ■ • ' Xi,m„,U '

w < £. < t;.

Using the bounds (6) and (7), we see that

\fn(v) - f„(u)\ <(v- u)A[d~l + 2d'1 + ■■■ + 2m--xd-m"]h'¡;X

<B\v-uf,

where B := A[d~l + 2d~2 + ■■■ + 2M~xd~M].

If UG Jin , v G Jjn , i <j, then

J» - /»(") = fniV) - fniXjn) + f„(xjn) ~ Ä+1, J + fniXi+lJ " /.(")■

Since fn(xkn) = f(xkn) for all A:, we have that

\fn(v)-fn(u)\<B\v-xjf + A\xJn-xi+1>nf + B\xMtn-uf

<3B\v-u\ß.

Finally,

K(v) - rn(u)\ < \f(v) - f(u)\ + \fn(v) - fn(u)\

< A\v - uf + 3B\v - uf < 4B\v - uf,

establishing condition (c). This proves the corollary.

Corollary 2. Let f G HM and let {fn} be a sequence of cubic splines with knots

tin = -l + 2i/(n + \), i = 0, 1, ... , n + 1, which interpolate f at all the knots

and also at the points \(t0n + tXn) and \(tnn + tn+x n). Then (3) holds if (4)

holds.

Proof. Since fn interpolates / at t0n = -1 and tH+l n = 1, condition (a) of

Theorem 1 holds. By Lemma 1 in [5], \\rn\\ = 0(œ(f; m-1)) , so that condition
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(b) holds with An = n~l and v = p. By Lemma 4 in [5], co(rn ; t) = 0(n~M+rf)

for any positive x < p. Hence, by condition (c) in Theorem 1, (3) holds if

t + y > 0. However, if (4) holds, we can find a positive x < p such that

t + y > 0. Hence, it follows that (3) holds if (4) holds, as asserted.

Corollary 3. Let f G H and let {fn} be a sequence of modified interpolating

cubic splines of deficiency 2 defined on a sequence of partitions {U.n} as follows

[9]: For any Un , let gn be the piecewise linear function defined in §1. Now, for

every i, i = \,... , pn- \, choose points tf G Ji_x n, tf G Jl■. n such that for

some positive k < 1/2

K - ÍI = \Xin - ff I = K minihi-l,n> hin)-

Let Sj(x) be defined on [f; ,tt] as the cubic Hermite interpolating polynomial

satisfying

Si(tf) = gn(tf),       S'j(tf) = g'n(tf),

Siitf) = gnit?)>       S'tf) = g'n(tf).
Then fn is defined by

/(JC)=/W> XG[tf,tf],     i=l,...,pn-l,
" \ Snix)        otherwise.

If Hn^0 as n^O then (3) holds if (4) holds.

Proof. Since fn(±l) = gn(±l) = f(±l), condition (a) of Theorem 1 holds. By

equation (5.1) in [9], ||rj = 0(H^), so that condition (b) holds with An = Hn

and v = p . Finally, by equation (5.3) in [9],

\r„(x)-rn(y)\<CHßn-x\x-y\x

for any positive x < p. Hence, our conclusion follows as in the proof of

Corollary 2.

Corollary 4. Let f G H and let {Yln) be a sequence of partitions. Let Xjn e

[d, 1 - d], i = 0, ... , pn - 1, for a fixed d, 0 < d < 1/2, and define tin :=

^■inxin + il ~ ^in)xi+\ n • Let fn ^e tne Quadratic spline defined for x G Jin by

fnW ■= O - Cin(x))f(xin) + Cm(x)f(xl+Xn) + (x- xin - hinCin(x))a,

where a is an arbitrary real number and

Í ix - *,J2/(1 - ^,JA?„, x,„ <x< tjn,

1  1 - iXM,n - X)2/Xinhí . Un ̂X^ *,+!,»•

Then (3) holds if (4) holds and if Hn^> 0 as n —> oo.

Proof. Since fn interpolates / at all points in Un, condition (a) of Theorem 1

holds. By Neuman and Schmidt [10, Theorem 4.2],

\\f-fn\\<\a\HJ4 + a>{f;Hn) = 0(Hlin),
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so that condition (b) holds with An = Hn and v = p. To show condition (c)

with a = p, we assume that u < v and examine first the case u, v G [x¡n , tjn]

for some i. Then,

/.(«) -./» =(C,» - Cin(u))(f(xi+Un) - f(xin))

+ a[(v-u)-hin(Cin(v)-Cin(u))].

But

Hence,

\CJv) - Cin(u)\ = \(v - u)(v + u - 2xin)/(\ - Xin)h]n

<2d~l(v-u)/hin.

l/„(«) - fniu)\ <Bx(v- «JÄf-1 + B2(v -u) = 0(\v - uf)

and similarly if u, v G \tin , xj+x J. For u, v G Jin, u<tin<v, we write

fniv) - f„(u) - fnW - Win) + /.«*,) " /.(")

and get the same result. For the case u G Jin, v G Jjn , i < j, and the rest of

the proof, refer to the proof of Corollary 1.

Corollary 5. Let f £ H   and let {fn} be the sequence of Bernstein polynomials

fn(x):=2-nYjf(-l+2k/n)(n\l+x)k(\-x)n'k.
/,_n V.    /

Then (3) holds if

(8) p/2 + y>0.
Proof. Clearly, /(±1) = 0. Furthermore, by Theorem 1 in [1], condition (c)

holds with a = p. Finally, by Theorem 1.6.1 in [8], \\rn\\ = 0(n_>l/2), so that

condition (b) holds with An = «_1 and v = p/2 .

Corollary 6. Let f G H , let {Xn} be a sequence of point sets defined by

Xn:-i=X0n<Xln<"'<Xnn:=l

with Lebesgue constants A(Xn) with respect to Lagrange interpolation, and let

{fn} be the sequence of Lagrange interpolation polynomials interpolating f on

the sets Xn . If A(Xn) = 0(\ogn), then (3) holds if (H) holds. If A(Xn) = 0(nz)
for some x > 0, then (3) holds if p - x + 2y > 0.

Proof. Since x0n = -1 and xnn = 1 for all n , we have rn(±\) = 0. Further-

more, we have that

||rJ|<(l+A(^„))£„/,

where Enf = \\f - qn\\ and qn is the polynomial of degree n of best approxi-

mation to / in the uniform norm.

We consider first the case A(Xn) = 0(\ogn). Since by Jackson's theorem,

Enf = 0(n~ß), it follows that ||rj = 0(n~ß') for any positive px < p. Now,

by Kalandiya's theorem (see, e.g., [7, Lemma 1]), we have that

co(rn;t) = 0(t^/2)
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for any positive p2 < px. Hence, by Theorem 1, (3) holds if p2/2 + y > 0.

However, if (8) holds, we can find px, p2 such that 0 < p2 < px < p and such

that p2/2 + y > 0.

If A(Xn) = 0(nx), then ||rj = 0(n~ß+x), so that by Kalandiya's theorem,

0)(rn ; t) = 0(f) with a <(p- x)/2. The rest of the proof proceeds as before.

Remark. Two examples of sets Xn such that A(Xn) = 0(logn) are as follows:

(1) xin  are the zeros of (1 - x2)P{n"_'f](x), where P{n"jf]  is the Jacobi

polynomial of degree n - 1 and -1/2 < ä, ß < 3/2 [15].

(2) xin = sec(n/(2n + 2))cos[n - (2i + l)n/(2n + 2)], i = 0, ... ,n, the

so-called extended Chebyshev nodes [2].

Corollary 7. Let f G H and let fn = FInpq(f), p, q > 1, be the Hermite-Fejér

interpolation polynomial with boundary conditions based on the zeros {x¡n , i =

1, ... n} of the Jacobi polynomial P°    , which satisfy the following conditions:

HnPqif> Xin) = fiXin) >   Kpgif* Xin) = ° »   ' = 1 » • • • » » >

Hnpq(f;±l) = f(±\),

<)?(/;1) = 0' r=l,...,p-l, H^f;-1) = Q, s=l,...,q-l.

If p-1.5<â<p- .5, q-1.5< ß <q-.5, then (3) holds when (8) holds.

Proof. By Vértesi [14, Section 3.4.3],

\rn(x)\ = 0(l)J2
i=\

/sinö\ / .   i I cos 01
co[f, —=—)+oj[f,        2

n

.-2
i

where x = cosö. This implies that \\rn\\ = 0(n~ß) when p < 1 and \\rn\\ =

0(logn/n) when p = 1. Since rn(±l) = 0, we can proceed as in the proof of

the first part of Corollary 6.

4. Other uniform convergence results

Criscuolo and Mastroianni [3] consider the CPV integral I(wf; X), where

w(x) := y/(x)w(x)

and y/(x) > 0 on J and satisfies

I
2 _,

co(y/; t)t   dt < oo.
to

Since I(wf; X) = ¡_xw(x)^rzMl dx + l(w; X), they consider the approxi-

mation to I(wf; X) given by

(9) Q:(f-,X):=±pin^^ + I(w-X),
i=i '"
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where the pin are the Gaussian weights and xin the Gaussian points corre-

sponding to w , that is, the zeros of pn(w; x), trie polynomial orthogonal with

respect to w . The index k is the index of the point closest to X. The authors

show in Theorem 2.1 and Corollary 2.3 that Q*n(f; X) converges uniformly to

I(wf; X) for all k € (-1, 1) if (8) holds.
In [4], these same authors approximate / by the Lagrange interpolating poly-

nomial /„ based on certain sets X„. They show that if x„ are the zeros of
Jn n * in

(1 - x2)pn_x(w; x), then (3) holds if (8) holds. On the other hand, if xin are

the zeros of pn+x(w; x), then (3) holds only when yx := min(a, ß) > 0 and

p + yx >l/2.
We see that in both cases treated by these authors, the best uniform conver-

gence results they can get require that (8) hold, which is the same requirement

as in Corollaries 5-7, which deal with polynomial approximations to /.

We conclude by remarking that Theorem 1 is also true for I(wf; X). By

inspecting the proof, we see that the only thing we need worry about is the

behavior of I(w; X) in the neighborhoods of ±1. We show that

;io) I(w; X) = 0((1 ±Xy log(l ±X)) + c

for X in a neighborhood of +1, which is sufficient for our purposes

By Lemma 5.3 in [4], in a neighborhood of X = 1,

f (^T^X+m-1)20,

ma)-E=^
1=1

= ol log[m_1(l-A) -1/2 + 1],

Ul-A)\

a >0,

a = 0,

a<0,

for m > MQ, where pin, xin, and k are as in (9). A corresponding result

holds in a neighborhood of X = -1 with a replaced by ß . By Lemma 3.4 in

[3],

i=l X>"
i*k

Vin

{ It

log m,

w (X) log m,

a,ß>0,

-1 <q, ß <0,

uniformly for X G (-1, 1) with similar estimates if a < 0 < ß. Hence,

choosing m = M0 yields (10). Similarly, Theorem 1 is true for I(wf;X),

where w(x) := w(x)\ log(l -x)p log(l +x)q\ for any nonnegative integers p, q .

Note added in proof. I am indebted to Professor Philippe L. Toint for the

following remarks. From Theorem 1, it appears that the rapidity of convergence

of / to / plays a role in deciding when I(wfn; X) converges uniformly in

(-1,1) to I(wf; X). However, a simple observation shows that this is not

the case, which implies that one can dispense with condition (b) in Theorem

1. In fact, if we write Bn := A"n, then Bn is also a sequence of positive

numbers such that lim^^i^ = 0 and H^ll^ = 0(Bn). Since the restriction

v < p in condition (b) is never used, we have always that v = 1. Hence

we can replace p by a and condition (b) with the hypothesis that {/„}  is
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a sequence of approximations which converges uniformly to / in J. Thus,

the rate of convergence of {fn} to f is irrelevant to the question of uniform

convergence of I(wrn ; X). It is only the modulus of continuity, œ(rn ; t), that

counts. Of course, in many cases, the Holder index p or rn depends on the rate

of convergence of rn as in Examples 6 and 7 which use Kalandiya's Theorem

to determine œ(rn ; t). However, in the case of Example 5 where {fn} is the

sequence of Bernstein polynomial approximations to /, we get a stronger result,

namely, that we have uniform convergence of I(wrn ; X) in (-1, 1) if p+y > 0

and not only for p/2 + y > 0.
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