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ORDER BARRIERS FOR CONTINUOUS
EXPLICIT RUNGE-KUTTA METHODS

BRYNJULF OWREN AND MARINO ZENNARO

Abstract. In this paper we deal with continuous numerical methods for solv-

ing initial value problems for ordinary differential equations, the need for which

occurs frequently in applications. Whereas most of the commonly used multi-

step methods provide continuous extensions by means of an interpolant which

is available without making extra function evaluations, this is not always the

case for one-step methods. We consider the class of explicit Runge-Kutta meth-

ods and provide theorems used to obtain lower bounds for the number of stages

required to construct methods of a given uniform order p . These bounds are

similar to the Butcher barriers known for the discrete case, and are derived up to

order p = 5 . As far as we know, the examples we present of 8-stage continuous

Runge-Kutta methods of uniform order 5 are the first of their kind.

1. INTRODUCTION

Consider the initial value problem (IVP) for ordinary differential equations

(ODE's)

(1.1) y\x) = f(x,y(x)),       y(x0)=y0,

where y0 and y are w-vectors and x is a real variable. The function /: R x

Rm _► Rm is assumed to be as smooth as necessary. The solution y(x) is sought

in the interval [xQ, xA.

The large variety of methods available nowadays allows almost any problem

of the kind ( 1.1 ) to be handled efficiently. Most of these methods are designed to

furnish the solution at a discrete set of points, say a mesh A := {x0 < xx <■■■ <

xN := xA . However, many applications require a continuous approximation to

y(x) in the entire interval [x0, xA. These include differential equations with

deviating arguments, problems where dense output is required, and problems

where discontinuities are present. At first sight, it seems that multistep methods

would be appropriate for these cases, as they provide a continuous extension

by means of an interpolant which is available without making extra function

evaluations. But their poor ability to handle problems with discontinuities, and
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the fact that they cannot combine high order of accuracy with good stability

properties are serious deficiencies that have to be taken into account. For these

reasons, many authors have recently investigated continuous extensions of one-

step methods (see, e.g., Bellen and Zennaro [1], Enright et al. [5], Horn [7],

Norsett and Wanner [8], Shampine [10], and Zennaro [11, 12, 13], as well

as the book by Hairer et al. [6]). It appears that one can either construct a

continuous one-step method directly, giving a discrete method as a by-product,

or one can extend an already existing discrete method, possibly by including

some additional function evaluations.

In this paper we follow the former approach in order to construct continuous

explicit Runge-Kutta methods (CERK methods) of the form

(1.2a)        K; = f \x0 + cih,y0 + h'*paijKj \,       i=l,...,v,

V

(1.2b) u(x0 + dh)=y0 + h^2bi(6)Ki,       0e[O,l].
¡=i

u(x0 + 6h) is a continuous approximation to y(x) in the interval [xQ, xQ + h]

and b¡(6), i = 1, ... , v , are polynomials of degree < d, where d is a positive

integer. We shall also require ci = £'.", a,,, and ¿»,.(0) = 0 for / = 1,..., v.

Note that cx = 0, which implies that the first stage reduces to Kx = f(xQ, y0).

Moreover, the coefficients a¡¡ define a strictly lower triangular v x v -matrix A .

As in the discrete case, which is obtained by setting y¡ := u(x0 + h), v is

the number of stages, whereas the uniform order (which we shall simply refer

to as the order) is defined as the greatest integer p for which

(1.3) max \y(x0 + Oh) - u(x0 + 6h)\ = 0(hp+X).

Here, | • | stands for any norm on Rm .

It is well known that efficiency, viewed as the ratio between the accuracy of

the computed approximations and computational effort, is a very important pa-

rameter to be considered when designing new numerical methods. Therefore,

the main goal of this paper is to find methods which use the lowest possible

number of stages to attain a fixed prescribed order. Section 2 is devoted to pro-

viding theorems which can be used to determine lower bounds for the numbers:

CEN(p) :=   min   v,
m(i>)6Mp

where m(v) is a CERK method with v stages, and M is the set of all CERK

methods with order p . The numbers CEN(p) are similar to the famous Butcher

barriers EN(p) for the discrete case.

It is well known (see, for example, the papers quoted above) that for implicit

Runge-Kutta methods the minimal number of stages, say N(p) and CN(p),

necessary to get order p for the discrete and continuous case, respectively, are



CONTINUOUS EXPLICIT RUNGE-KUTTA METHODS 647

easy to find in general, and are attained by collocation methods. They are

N(p) = [(p + l)/2]   and   CN(p)=p.

For CERK methods things are, as for the discrete case, considerably more com-

plicated. One has the obvious result

CEN(p) > EN(p),

and from the literature referred to above, one can extract the following bounds:

CEN(l) = l,        CEN(2) = 2,        3<CEN(3)<4,

5<CEN(4)<6,        6<CEN(5)<9,

where the upper bounds are determined by known CERK methods. Although

in §3 we solve the problem completely up to p = 5, we will not be able to derive

a general formula for CEN(p), and we suspect that, as for EN(p), this is a

very hard task.

2. Lower bounds on CEN(p)

In this section we shall use extensively the theory developed by Butcher [2,

3] without giving specific references, as we shall assume that the reader is ac-

quainted with trees, order conditions, and related topics. We recommend the

books by Butcher [4] and Hairer et al. [6] for background material, and we will

use the notation of the latter.

It is easy to see that in order to fulfill (1.3), the degree d of the polynomials

b¡(6) must satisfy d > p. On the other hand, allowing d > p can lead to

approximate solutions u(x) whose derivatives are unbounded as h —► 0 (see

[8]). Therefore, we always choose d = p, so that, according to [12, Theorem

5], the polynomials b'¡(6) span the space n , of polynomials of degree p-l.

With reference to (1.2a-b) it is necessary that the number v* of distinct c; 's

satisfies

(2.1) v*>p.

Consider the continuous version of the order conditions, which becomes

" gP(t)

(2.2) J2 bji6)®/*) = -7T    for a11 trees t such that p(t) < p,
;=1 yV>

where O(f) is the jxh elementary weight of the tree t, p(t) is the order of t,

and y(t) is a coefficient depending on the tree /. Now, putting

(2.3) z/0):=Äj(0),       j=l,...,u,

(2.2) becomes

" n(t\ftp(t)~X
(2.4) ^2 ZjWQjit) = i^-r—   for all trees t such that p(t) < p.
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For each r > 1, let nr be the number of trees such that p(t) = r. Thus, a CERK

method of order p must satisfy N conditions (2.4), where N = Yfr=x nr. It

is well known that nx = 1, n2 = 1, n,i = 2, n4 = 4, ns = 9, so that Nx = 1,

N2 = 2, N3 = 4, N4 = 8, Ns = 17. In general, we can number the N trees t

increasingly in terms of p(t), such that i > j if p(t¡) > p(tA . We then rewrite

the conditions (2.4) as

A />(r.)0'(,')_1
(2.5) EW= ,(*,) » i-1.....^,,

where </),.. = O ,(*,.). Moreover, by writing

(2.6a) z,(0) = £z;fc0*,
A:=0

pu.ww-1    tí     /
(2.6b) M'(n      = E<?/>

n ''; /=o

and by defining the Npxv matrix $ := (0(..), the // x p matrix Z := (z .fc),

and the N' x p matrix Q := (qa), (2.5) becomes

(2.7) &Z = Q.

The N xv matrix <P depends on the vxv matrix A of the coefficients of the

RK method, whereas the Npx p matrix Q is independent of A . Incidentally,

observe that (2.6b) implies

<2-8> «/.*.)-!-$$    and   qH = 0   ^rl^p(t,)-l.

So we can define the maps

Fp : [J 5f(Ru , R") - (J ^(Rv, R*')   such that Fp(A) := <D,
i/>i i/>i

and

Gp: (J Sf(Rv, R") -» (J .S^R1^, R*')   such that Gp(¿) := <D|ß,
i/>i i/>i

where <P|Q is the N xv matrix obtained by attaching the rows of Q to the

rows of <P.

Proposition 2.1. A strictly lower triangular vxv matrix A defines a v-stage

CERK method of order p if and only if rank(F'(A)) = rank(G (A)).

Proof. From (2.7) it is obvious that any CERK method of order p satisfies

rank(Fp(^)) = rank(G (A)). Vice versa, if a vxv matrix A is such that

rank(F' (A)) = rank(Gp(A)), then the system F (A)Z = Q has at least one

solution Z . By (2.3) and (2.6a), this matrix Z defines uniquely v polynomials

¿>((0), i = I, ... , v ,of degree < p such that b¡(0) = 0, and hence, the matrix

A defines the stages of some CERK method of order p.   O
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In view of the result above, we are only interested in matrices belonging to

the set

Jfp := \ A e [J &(RV, Rv)| A is strictly lower triangular,

\       ">i

rank(Fp(A)) = mnk(Gp(A))

From this point on, we shall say that v is the dimension of A if A is a

vxv matrix, and we write dim(,4) = v. It is clear that in general we have

dim(A) > rank(Fp(^)).

Definition 2.2. A matrix A ̂ Jfp is called p-minimal if dim(>4) = rank(F (^4)).

Moreover, we define

J?l := {A e Jfp\A is p-minimal} .

Proposition 2.3. If the matrix A e Jfl, then it cannot have two equal rows; in

particular, we must have c2^0. Moreover, dim(A) < Np .

Proof. The first part follows easily from the fact that two equal rows in A

imply two equal columns in F (A). To see that dim(A) < N , it is sufficient

to observe that rank(Fp(A)) < N .   D

The following theorem represents a basic result for our theory, since it allows

us to restrict consideration to p-minimal matrices.

Theorem 2.4. Let A e Jfp be such that p := rank(Fp(^)) < dim(^). Then

there exists a matrix A* e Jt"l such that dim(^4*) = p.

Proof. It is sufficient to prove that there exists a matrix A' e J(p such that

dim(/i') = dim(^) - 1 and rank(Fp(A')) = p. In fact, this procedure can

be applied (dim(A) - p) times in order to get the desired result. Let v :=

dim(v4) and O := F (A). By hypothesis, we can find a column, say the kth

column ((f>xk , ... , <j)N k) , which is a linear combination of the preceding k-1

columns, that is

(2.9) i*,*..». *V)r-¿ty*U»-"'Vr

for some A • e R. Now, define the vxv matrix A" as follows:

(2.10a) akj

(2.10b) aik

(2.10c) a'¡j

(2.10d) a]].

= 0   Vj=l,...,v,

= 0   Vz = 1,..., v,

= au + X}aik   Vi = 1,..., v, i^k; j =1, ... ,k-l,

= au   Vi = 1,..., v,  i^k; j = k + l, ... ,v.
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In order to prove that A" e Jtp , first observe that the strictly lower triangular

form of A is inherited by A" . Now, define <I>" := F (A"). In view of (2.10a),

we can easily conclude that the kth column (<//,', , ... , 4>"Nk)T of O" is equal
p

to ( 1, 0, ... , 0) . Moreover, since A and A" are strictly lower triangular,

the first column of both O and <p" are equal to (1, 0, ... , 0)r . As for the

remaining columns of O", we prove by induction on the row index i that

they are all equal to the corresponding columns of <t>. This is clearly true for

i = 1, since the first row of F (A) is equal to (1, ... , 1) for any matrix A ,

and corresponds to the only condition (2.5) of order r = 1. We assume that

the property is true for all i < n — 1 and prove it for i = n. Select the «th

condition of (2.5) which corresponds to the tree t , where p(tn) > 2. This

tree can either have the form [tn,] for some tree tn> of order p(t ) - 1, or the

form [tv ,... , tv] for 5   (> 2) trees tv , where 1 < p(tv ) < p(tn) - 2 and

p(tn) = 1 + z~y¡=\ P(K) • In tne f°rmer case, since a7 = a'¡ = 0 for / > j, we

have

7-1

(2.11a) <!>„] = ¿Zaji^n't'       j = 2,...,v, j¿k,
i=\

and

;-i
(2.11b) Kj = ¿Za'ji<l>n,n       j = 2,...,v, j¿k,

i=\

whereas in the latter case, with tn := [tv], i = I,... , s (with p(tn ) = I +

p{tv)< p(t„) - 1), we have

S S

(2.12) *By = n*v    and   OIK,;'        j = 2,...,v, j¿k.
i=i i=i

Since we have numbered the conditions increasingly in terms of their order, we

get in either case n , nx, ... , ns<n-l and hence, by the inductive hypothesis,

(2.13) €'j = <Pn'j   V; = 2,....i/, j*k,

and

(2.14) <f>"nj = <pn¡j   Vz = 1, ..., j   and   j = 2, ... ,v, j ¿ k,

Therefore, in the latter case, by (2.12) and (2.14) we immediately get <p"n. = <f>nj,

j = 2, ... , v , j£k. As for the former case, by (2.11b), (2.13), and (2.10c-d),

and since cj)"nk = 0, we have

j-\ j-\ j-\ j-\

4>"nj = J2afl€'l = ¿2 OjA'l = E ajl<t>n,l + ajk E Wnl »
/=1 /=1 1=1 1=1

l¿k Ijik l<k
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and hence, by (2.9) and since ajk = 0 for j < k ,

;-i
<C = Ea;A''>

i=i
which by (2.1 la) yields <z»'n'. = </>•, 7 = 2, ... , v , j ¿ k . So the induction

works. By (2.9), and since

(<j>[k,..., (j>"Nk) = (4>"n,..., </>'NX) = (l, o,..., 0) ,
p p

we can conclude that the range of G> is equal to the range of O" and that

A" e Jfp with rank(<I>") = p. Moreover, it is clear that the v x p matrix

Z satisfying <p"Z = Q (see (2.7)) can be chosen with the kth column equal

to the zero-vector, which means that bk(6) = 0 in (1.2b). Furthermore, by

(2.10b), the kth stage in (1.2a) is completely useless for the CERK method

defined by A" , as it is not involved in the computations of the following stages.

Consequently, the (v -l)x(v - I) matrix A1 obtained by suppressing the kth

row and the kth column of A" defines the same CERK method (without the

useless kth stage) and the matrix F (A1) is obtained by suppressing the kth

column of <I>" . So Ä is the desired matrix, satisfying dim(^4') = dim(A) - 1

and rank(Fp(À)) = p.   u

By virtue of the theorem above, the following result is now obvious.

Corollary 2.5. The set Jip is nonempty for all p > 1, and the minimum number

of stages CEN(p) required for a CERK method of order p is

CEN(p) = min dim(v4).
A<íJ¡l

Moreover, if AzJfp and A $ JTP, then dim(A) > CEN(p).

The problem of finding CEN(p) can be slightly simplified by isolating the

following p conditions of (2.5), which we shall call the primary conditions:

(2.15) ^2cj-Xzj(d) = 6r-X,        r=l,...,p.

7=1

These conditions correspond to the trees defined recursively by xr := [x, r~2],

where t := [ ] and t := [t] . Since the matrices A are strictly lower trian-

gular, the remaining N' - p conditions of (2.5), which we shall call secondary

conditions, do not explicitly involve the polynomials z,(0) and z2(6), as they

satisfy <piX = </>i2 = 0. Roughly speaking, the dimension of the problem is, in

some sense, reduced by two units.

Remark 2.6. Since all the secondary conditions correspond to trees of order

r > 3, they always yield qiX =0 in (2.6b).

Now, for a vxv matrix A e Jfp with p > 3, we introduce the following

equivalence relation on the set of indices {I, ... , v}:

i = j   if and only if   c¡ = c,.
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There are v* equivalence classes Sx,..., Sv., and we assume without restric-

tions that 1 € Sx (i.e., ci = 0 if and only if i £ Sx) and that 2e52 (recall

that c2 t¿ 0 by Proposition 2.3).

Definition 2.7. For a v x v matrix A e Jtp with p > 3 we shall call a

good index set either the empty set 0 or any nonempty subset of {3, ..., v)

whose elements do not belong to more than p - 3 equivalence classes among

S3, ... , Su..

Remark 2.8. If p = 3, then S c Sx U S2 for any good index set S.

Lemma 2.9. Let A e Jip with p > 3, and let S be a good index set for A.

Then, with reference to (2.5) and (2.6a), in the set of polynomials {zA6)\j > 3,

; £ S) (which is nonempty by (2.1)) there exists at least one, say Zj(8), such

that zJx^0.

Proof. Choose an index jk e Sk for any k = 3, ... , v*, and assume, without

restrictions, that S c Sx U S2 U • • • U Sr for some r < p - 1 < u* — 1. Since

the polynomials zfd), j = I, ... , v , satisfy the primary conditions (2.15) for

any polynomial n(8) e np_1, we easily get

(2.16) n(6) = ¿>(c,.)zy.(0) = 2>(c4) £ z,(0).
7=1 fe=l 7'€5t

So, if we define jt(ô) := 6(6 - c2)(6 - c}) ■ • ■ (6 - cj ), we get n(Cj) = 0 for all

j 6 5, U 52 U • • • U Sr, so that (2.16) becomes

*

ä(0)=  2 7r(c4)^z.(Ö).

Since the coefficient of Ö in n(6) is (-l)r_1c2c   •••c, ^0, and since n(c¡ ) ^
J3 yr Jk

0 for all fc = r + 1,..., v*, the proof is complete.   D

We shall say that N  (> 1) conditions (2.5) are linearly independent if and

only if the corresponding tV rows of the matrix Gp(A) are linearly independent.

Lemma 2.10. Let A e Jfp, and let N conditions (2.5) be linearly independent.

Then they explicitly involve N polynomials ZÂ6).

Proof. It is sufficient to observe that, since rank(F (A)) = rank(G (A)), if tV

rows of the matrix G (A) are linearly independent, then the same N rows of

the matrix F (A) must also be linearly independent.   D

Now we are in a position to state the main result of this section, which is a

tool for finding lower bounds for CEN(p).

Theorem 2.11. Let A e ^p with p > 3, and let N secondary conditions from

(2.5) be linearly independent. Let S be the set formed by the indices j > 3 of
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the polynomials z,(f?) which are not explicitly involved in these N conditions

(possibly 5 = 0). Then

dim(A) >N + s + 2,

where s is the cardinality of S. Moreover, if S is a good index set for A, then

dim(A) > N + s + 3.

Proof. Since the N conditions we consider are secondary, they involve neither

z,(0) nor z2(6). Thus by Lemma 2.10, we have in any case that dim(^4) >

N + s + 2. To prove the stronger inequality, assume that S is a good index

set for A, and that dim (A) = N + s + 2. Then, again by Lemma 2.10, there

are exactly N polynomials z,(0), the ones with j > 3 and j $ S, which are

involved in these N conditions. Moreover, the NxN matrix <P*, obtained by

suppressing the s + 2 vanishing elements relevant to the missing polynomials

Zj(6) in each of the corresponding N rows of F (A), is nonsingular. Thus,

solving the subsystem (2.7) defined by these N conditions yields z ¡ = 0 for

all J'' > 3, ;' f S, which contradicts Lemma 2.9.   D

We close this section by considering the minimal number of stages that must

be added to a discrete Runge-Kutta method to extend it to a CERK method

of the same (uniform) order. On the basis of the theory of this section, the

following result is easy to prove.

Theorem 2.12. Let the v x v matrix A define a discrete explicit Runge-Kutta

method of order p. Consider a continuous extension of this method with v stages

and uniform order p. Then v - v > Ô, where Ô = rank(CT (A)) - rank(F (A)).

Proof. Let the vxv matrix A define the extended method. Since the first

v columns of F (A) and F (A) are identical, it follows that rank(F (Â)) -

rank(Fp(A)) < v - v. On the other hand, the v - v columns arising from

the additional stages cannot decrease the rank of G (A), so that we must have

rank(Gp(A)) > rank(G (A)). Thus, using Proposition 2.1, we have

ô = rank(Gp(A)) - rank(Fp(A)) < rank(Gp(A)) - rank(Fp(A))

= rank(Fp(A)) - rank(Fp(A)) <v-v,

and the proof is complete.   D

For a given discrete Runge-Kutta method, this bound is easy to calculate and

in many of the cases we have considered it is sharp. By comparing the above

theorem with known interpolants we get

Corollary 2.13. The minimal (total) number of stages of any 5th-order continuous

extension of the Dormand-Prince(4,5) pair, or the Runge-Kutta-Fehlberg(4,5)

pair, is 9.
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3. Finding CEN(p) for p < 5

Now we shall apply the results from §2 in order to find the minimum number

of stages CEN(p) for p = 3, 4, 5 . Our strategy will always be the following:

(i) In view of Corollary 2.5 we consider a vxv matrix A e Jfl. We assume

the maximum number of linearly independent secondary conditions to be in

turn 1,2, ... , Np -p, so that we either obtain an absurdity or, by Theorem

2.11, a lower bound for v = dim(A).

(ii) We will compare these lower bounds to the upper bound given by some

existing method, already known for p = 3, 4 (see (1.4)) and new for p = 5 .

We shall denote by 4>{l' the /th row (<pn , ... , <j>iv) of the matrix F (A)

and by y/{l) the /th row (<f>n ,..., <f>it/, qi0,..., qip_x) of the matrix Gp(A).

Moreover, for each r>\,\t\Rr be the set of rows of the matrix F (A) which

correspond to conditions of order r. In the proof of Theorem 2.4 we saw

that, if <t>(i) G Rr, then either 4>{i) = (p(i']AT, where </>{i'] e Rr_x (and we shall

say that 4> , as well as the corresponding condition, is an A-transformation) or

4>u = n«=t 0i / > J = 1.v > where <t>{'n) e Rr  with r < r-\. In particular,
J n' n

in the latter case we may have 4>{l) = </3(i 'c, where 0(l ) e Rr_x and C :=

diag(0, c2, ... , cu) (and we shall say that <jr'', as well as the corresponding

condition, is a C-transformation). Note that the primary condition of order

r is the C-transformation of the primary condition of order r - 1. In view

of this, and since we have decided to number the conditions increasingly in

terms of their order, each set of nr conditions of order r will be numbered as

follows: First the C-transformations, then the ^-transformations, and finally

the remaining conditions if any. It turns out that the primary condition will

always be the first in each set of nr conditions.

3.1. Order p = 3. There is only one secondary condition for the case p = 3.

This condition corresponds to y/w = (</>(4) ,0,0, 1/2), where <f)W = dP]AT.

Since y/^'j^O, Theorem 2.11 yields in every case v > 4. Thus, the existence of

the 4-stage CERK method of order 3 associated with the RKN(3,4) embedded

pair (see Enright et al. [5]) implies

CE7V(3) = 4.

Alternatively, this upper bound also follows from Proposition 2.3 since yV3 = 4.

Moreover, it is clear that every 4x4 matrix A that results in a nonsingular

F3(A) (which is a 4x4 matrix as well) determines a 4-stage CERK method of

order 3.

3.2. Order p = 4. There are four secondary conditions: one of order 3, cor-

responding to y/4) = (</>(4), 0, 0, 1/2,0) and three of order 4, correspond-

ing to y/6) = (</3(6), 0,0,0, 1/2), ¥{1) = (0(7), 0,0, 0,1/3), and ^(8) =

(qbw ,0,0,0,1/6). Moreover, 0(6) = 4>WC, <p(1) = <j>(3)AT, and 4>(%) = 4>WAT.
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To begin with, we observe that the maximum number N of linearly indepen-

dent conditions clearly obeys N > 2. Then assume N = 2. In this case

ip , y/ , and yr ' are proportional and therefore, since <tj83 = 0, we get

<f>63 = 0 and (f>n = a32c2 = 0 as well. So a32 = 0 because c2 ■£ 0, and hence

<j>43 = a32c2 = 0, which means that z3(6) is not involved in the secondary

conditions. Consequently, with reference to Theorem 2.11, we have S D {3} ,

which is a good index set for A, and hence, in every case we obtain v > 6.

N > 3 implies in every case v > 6 by Theorem 2.11. The 6-stage CERK

method of order 4 associated with the Dormand-Prince(4,5) embedded pair

(see Hairer et al. [6]) provides an upper bound for CEN(4), so we have

CEJV(4) = 6.

Now, consider the conditions to be imposed on a 6x6 matrix A , necessarily

4-minimal (see Corollary 2.5), in order that it determines a CERK method of

order 4. First, observe that, in view of the case p = 3 above, the rows ^(1),

^(2), ^(3), y/w , and y/(i) must be linearly independent. Note that y/w =

(1,1,1,1,1,1,1,0,0,0), y/{2) = (0,c2,c3,c4, c5,c6,0, 1,0,0), y/{3)

= (0,c22,c¡,c24,c¡,c¡,0,0, 1,0), and y/{5) = (0, c], c], c\, c], c], 0, 0,

0,1) correspond to the primary conditions. We can conclude that in order to

have rank(C74(^4)) = 6 , it is necessary and sufficient that at least one of the fol-

lowing conditions be satisfied, where S := span{^( ', y/^ ', yr ', yr ', y/^ '} :

(i)   y/{6) i S and y/{1), y/m e span{S, y/{6)},

(ii)   y/(1) i S and y/{6), y/w e span{S, y/(1)} ,

(iii)   y/m i S and y/{6), y/{1) e span{S, y/W} ■

Of course, we must also require rank(F4(^4)) = 6. Now consider the following

three groups of conditions for the coefficients of A :

(3.1a) c2(c4 - 2(f)u) = c] + Xc4<$>44 + p(a42c22 + a43c\),

(3.1b) c2(c] - 2<f>45) = c\ + Àc5(f>45 + p(a52c22 + aszc\ + a54c24),

(3.1c) c2(c\ - 2cf>46) = c] + Xc6(f>46 + p(a62c\ + a6ic¡ + a64c24 + aKc\),

where

(3.ld) X = 2a^ + t{C\i    and   ^ 3(c2 - c3)(2.32c - cj)
a32c2(2c3 - 3c2) a32c2(2c3 - 3c2)

(3.2a)       c2(c\ - 2</)44) = c] + Xc4<p44 + pa434>43,

(3.2b)      c2(c] - 2045) = c] + lc^4i + p(a53<f>43 + ai4<f>44),

(3.2c)       c2(c¡ - 2djJ = c] + Àc,<t>4, + p(a(>3(j)43 + aMc¡)44 + a,<4>4,),

where

(3.2d) x _ 4(C2 - C3) - 2a32C2      and _ 3(C2 - C3)(2a32C2 ~ c\) .
fl32C2C3 Û32C2C3
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(3.3a)  c2(c4 - 2<t>44) = c4 + k(a42c2 + a43c3) + pa43<j)43,

(3.3b) c2(c] - 2</>45) = c] + X(a52c2 + ai3c\ + ai4c]) + p(ai3<i>43 + a54<j>44),

(3.3c)  c2(c\ - 2<f>46) = c¡ + X(a62c22 + a63c¡ + aMc\ + a65c¡)

+ -"(«63^43 + a64<¿>44 + ^^ '

where
2 2 2 2

(3.3d) A=c3(c2-c3)-2a32C2   and   fi = _2a32c2 + c3(c2-c3)

a32c2 a32c2

Recall that <f>43 = a32c2 , <j>44 = a42c2 + a43c3, q>45 = a52c2 + a53c3 + a54c4 , and

^46 = fl62C2 + Û63C3 + Û64C4 + Û65C5 ■

Simple, but tedious calculations lead to the fact that, for all cases (i), (ii), and

(iii), we must have <z32 ^ 0 (otherwise, the matrix A would not be 4-minimal)

and that:

(i) is equivalent to (3.1a-d) and (3.2a-d), where c2 ^ c3, c3 / 0, 3c2 -

2c3 ̂  0, and 2a32c2 - c\ / 0 ;

(ii) is equivalent to (3.1a-d) and (3.3a-d), where 3c2-2c3 ^ 0 and ü32c2 +

c]{c2 -c3)¿0 ;

(iii) is equivalent to (3.2a-d) and (3.3a-d), where c3 ̂  0 and c3(c2 - c3) -

2a32c\ + 0.

Moreover, it is also easy to see that, for all cases (i), (ii), and (iii), the fol-

lowing conditions, expressing that y/ ', y/^', and y/ ' are linearly dependent,

can equivalently replace either of the two corresponding groups of conditions

among (3.1a-d), (3.2a-d), and (3.3a-d):

(3.4a) a42c22(c3 - c4) + a43c3(c] - c2c4) = (2c3 - 3c2)a434>43,

(3.4b) fl52C22(C3 - Cs) + fl53C3(C32 " C2Cs) + Û54C4(C3C4 ~ C2C5)

= (2c3 - 3c2)(a534>43 + a54<t>44),

fl62C22(C3 - Cô) + fl63C3(C32 ~ C2C6) + Û64C4(C3C4 " C2C6)

(3.4C) +út65C5(C3C5 -C2C6)

= (2c3 - 3c2)(a63dj43 + aM4>44 + a65<f>45).

The method associated with the Dormand-Prince(5,4) pair obeys 2c3 - 3c2 = 0

(i.e., y/{6) and y/7) are proportional) and (iii) holds, but (i) and (ii) do not.

This method is included in the class of 6-stage CERK methods of order 4, which

is obtained by imposing c3 / 0 and the following two groups of conditions:

(3.5a) 2dj43 = c23,

(3.5b) 2044 = c42,

(3.5c) 2<¡>4i = c],

(3.3d) 2046 = c2
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and

(3.6a) 2a42c2c3 + 3a43c3 = c4 ,

(3.6b) 2ai2c2c3 + 3(a53c3 + a54c4) = c5,

(3.6c) 2íz62c2c3 + 3(a63c3 + a64c42 + a65c2) = c].

Indeed, c3 ̂  0 and (3.5) imply (3.2) with A = -2 and p = 0. Moreover, since

the relations (3.2) are satisfied, conditions (3.6) are equivalent to conditions

(3.3) with A = -2c3/c2 and p = 2(2c3 - 3c2)/c2. Since c23(c2 - c3) - 2a32c\ =

-c\ t¿ 0, it therefore follows that (iii) holds. Summarizing, we can choose

arbitrary c2, c3, and c4, subject to the only restrictions c2 ^ 0, c3 ^ 0,

c3^ c4, and we get

(3.7b) a32 = A ,

_ (3c3 - 2c4)c2 _ (c4 - c-j)c\
(3-7b) a42 =     >       *" ,       a43 =

¿c2c3 c3

Furthermore, we can choose arbitrary c5, a54, c6, a64, a65  (subject to A

being 4-minimal) leading to

(3.7c)

(3.7d)

(3c3 - 2cs)c2 + 6a54c4(c4 - c3)

52 ~ 2c2c3

_  (C5 - C3)CJ - ^54C4(3C4 - 2C3)
"53 - 2

C3

_ (3c3 - 2c6)c¡ + 6a64c4(c4 - c3) + 6a65c5(c5 - c3)

2c2c3

_ (c6 - c3)c¡ - a64c4(3c4 - 2c3) - a65c5(3c5 - 2c3)
"63 - 2

c3

3.3. Order p = 5. There are 12 secondary conditions, corresponding to

y/w = (d,w ,0,0, 1/2,0,0)   of order 3,

y,{6) = (<f>{6), 0,0,0, 1/2,0),        y/{1) = (<t>(1), 0,0,0, 1/3,0),

y/{S) = (4>W, 0,0,0, 1/6,0)   of order 4,

and

y/m = (<Pm,0, 0, 0, 0, 1/2), ¥{XX) = (</>(11), 0, 0, 0, 0, 1/3),

y/{X2) = (0(12), 0, 0, 0, 0, 1/6), y/{l3) = (0(13), 0, 0, 0, 0, 1/4),

y/14) = (0(14), 0, 0, 0, 0, 1/8), y/iX5) = (0(15), 0, 0, 0, 0, 1/12),
yy{i6) = (0(16), 0, 0, 0, 0, 1/24), y/(xl) = (<t3(17), 0, 0, 0, 0, 1/4)
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of order 5. Moreover, </>(10) = </>(6)C, </>(11) = 0(7)C, 0(12) = ^(8)C, </>(13) =

<p^AT, ^ = ^AT, ^ = ^AT, ^ = <p^AT, and ¿17>, = (tp4f,
j = 1, ... , v .

To begin with, we observe that the maximum number N of linearly inde-

pendent secondary conditions clearly obeys N > 3. If we assume N = 3,

then (¿T ) and y/ are proportional and hence, since 4> = 4> (AT) and

017 ■ = (04 ,) > J: = 1 > • • • > v > we easily obtain the absurdity <r3(16) = </>(17) = 0.

Therefore, y/(16) and y/(17) must be linearly independent, and we can con-

clude that N > 4. So we assume N = 4. From above, we know that the

dimension of span{^10), ¥{xx), y,{l2), ¥{x3), y/14), y/15), y/16), ^(17)} equals

2. First assume that í¡/(17) is a linear combination of y/ix2) , ^(14), (/(15), and

y/(x6).  In this case, since (pl2 3 = 4>x4 3 = 4>X5 3 = 4>X6 3 = 0, we also have

017 3 = (a32c2)  = ^ • Again, because c2 ̂  0, we must have a32 = 0 and hence,

043 = Û32C2 = °>   063 = Û32C2C3 = °»   073 = fl32C2  = °>   010,3 = Û32C2C3  = °>

2 3
011 3 = a32c2c3 = ^> anc* 013 3 = a32c2 = 0- Since also 4>i3 = 0, the poly-

nomial z3(6) is not involved in the secondary conditions, and therefore, with

reference to Theorem 2.11 we get S1 D {3}, which is a good index set for

A, and v > 8. Then assume a32 ¿ 0 and that y/(X1) is linearly indepen-

dent of y/(x2), y/{X4), y/{X5), and y/{l6). In this case, the rows y/{x2), y/{U),

y/(X5), and ^/(16) must be proportional, and consequently, since <f>x6 4 = 0,

we must also have <pl2 4 = 0t4 4 = 0 and </>X5 4 = a43a32c2 = 0. Further,

a32c2 t¿ 0 implies a43 = 0 and </>g4 = ct43a32c2c4 = 0. Moreover, since

í¡/(6), y/7), and y/{ ' cannot be linearly independent (this would imply N > 5),

(3.4a) holds, and reduces to a42c2(c3 - c4) = 0. So only two cases are possi-

ble, either a42 ̂  0 and c3 = c4, or a42 = 0. Indeed, the former case cannot

hold, since it contradicts the fact that A is 5-minimal. In fact, since y/(X

must depend linearly on ^(16) and y/(xl), and since <z>16 3 = <f>i6 4 = 0, there

should exist A ̂  0 such that </>x3 3 = k$xl 3 and 4>x3 4 = X<f)xl 4, leading to
12 3 2

a32c2 = À(a32c2) and a42c2 = k(a42c2) , so that a32 = a42. Thus, the matrix A

has two equal rows, contradicting Proposition 2.3. So we are left with a42 = 0,

which implies </>44 = a42c2 + a43c3 = 0, <?J64 ='c4(a42c2 + a43c3) = 0, <f>74 =
111 11

a42c2+a43c3 =0, (¡>l04 = c4(a42c2 + a43c3) = 0, </>n4 = c4(a42c2 + a43c3) = 0,

013,4 = fl42C2 + a43C3  = ®' 3nC*   017,4 ~ (Û42C2 + a43C3)2 = 0 .   In Conclusion,

z4(6) is not involved in the secondary conditions, so with reference to Theorem

2.11 we have S D {4} , which is a good index set for A, and hence, v > 8. If

N > 5 , then Theorem 2.11 yields again, in every case, v > 8.

As far as we know, the cheapest known CERK methods of order 5 require

nine stages. As an example, we quote the 9-stage CERK method of order 5

associated with the RKV(5, 6) embedded pair (see Enright et al. [5]). However,

since we shall find examples of 8-stage CERK methods of order 5, we can
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conclude that

CEN(5) = S.

Now we want to find conditions to be imposed on an 8x8 matrix A,

necessarily 5-minimal, such that it determines a CERK method of order 5. In

view of the previous case, p = 4, we observe that at least six rows among

y/ , i = 1, ... , 8, must be linearly independent. So we can, for example,

assume that y/w , yr , y/{ ', y/^', y/^5', and yr ' are linearly independent,

and then impose condition (iii). Then we must have a32 ¿ 0, c3 =¡¿ 0, and

c23(c2 - c3) - 2a32c22 j¿ 0. Moreover, conditions (3.2a-d) and (3.3a-d) (or,

equivalently, (3.2a-d) and 3.4a-d)) must be satisfied. However, since we now

have dim(^) = 8 , we must supply both (3.2a-d) and (3.3a-d) with the obvious

two conditions corresponding to the last two stages (see [9]).

Now, observe that, if 0(,) 6 Rr is a C-transformation of 0(i ' G Rr_x, then

by (2.8) we get qi r_, = qt, r_2, whereas if <fr'' G Rr is an /1-transformation of

0(! ' £ -Rr_!. then qi r_, = q¿ r_2/(r - 1). So we can conclude that condition

(iii) automatically implies

(iv)   y,{XO), y,(xx) g span{^(2), y,(3), y,{5), y,{6), y,w, y,{X2)} and

(v)   y/(H), y/{x5) G span{^(2), y/w , y/[1), y/m , y/{x3), y/{x6)} . Therefore, we

assume that y/(x6) $ span{S, y/8) , y/(9)) and impose that

(vi)   y/{x2), y/{x3), y/(xl)    g    sr>an{S, y/w , y/{9), y/{x6)}   in   order  to  get

rank(C75(,4)) = 8.

A particular class of these methods is obtained by imposing c3 ^ 0 and the

conditions (3.5) and (3.6) together with their counterparts for the last two stages.

It can be shown (see [9]) that this requires 2c3 = c4 = c5.

Moreover, like for p = 4, a54 is a free parameter. However, for the matrix

A to be 5-minimal we must require a54 ^ 0. In conclusion, we can choose

arbitrary c2,c3, a54 subject to the restrictions c2 / 0, c3 ¿ 0, and a54 ¿ 0.
By using c5 = c4 = 2c3 in (3.7a-c) we get

a»=2F2'

a42 — ,       a43 — 4c3,
c2

2cx(3a,. -c,)
"52 r ' "53       *c3      °"54 ■

Furthermore, we can choose arbitrary c6, subject to the only restrictions c6 ¿ c3

and c6 t¿ 2c3, and we get

_c¡(2c3-c6) _ c¡(c6 - c3)

62 ~~   2c2c3      ' a^-~   3c2      '

a     _^62(C6-C3)(2c3 + aS4-C6) a      _ C62(C6 ~ C3)(C6 ~ 2c3)

64 12a54c2 65 12a54c2
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Finally, we can choose arbitrary c7, a16, cg "86 ' "87 (apart from combinations

leading to A not being 5-minimal), and solve for the remaining coefficients

a12,... , a75 and ag2, ... , ass. Their general expressions are quite compli-

cated, so we prefer to present the Butcher tableau c\A as an example of such

methods, together with the continuous weights b¡(6). The choices for the free

parameters are not motivated by stability considerations or error constant min-

imization, but rather by our desire to obtain simple coefficients.

0
i
4

12

0

0

0

9

0

0

12

_3
4

_3
5

±
15

bx(6

b2(6

b3(8

h(6
b5(6

b6(d

b7(6

bJd

22ö5-fö4+^ö3-^02 + ö,
= 0,

= -i§e' + 24d-¿feJ +fl5_L -Mfl4 _ 208^3

-6d2

i=03 + i

= ^05 - 2O04 + 2O03

f e -
4

JW     T1JU     -  TU     T J

5       irv/^4   .   ,„„3       „„2

- 15 V   -t-

= -%65 + l5 ^e3 + ïe2,

= ¥6-l96+l30-3d¿.
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