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PRIMITIVE i-NOMIALS (t = 3, 5) OVER GF(2)
WHOSE DEGREE IS A MERSENNE EXPONENT < 44497

YOSHIHARU KURITA AND MAKOTO MATSUMOTO

Abstract. All of the primitive trinomials over GF(2) with degree p given by

one of the Mersenne exponents 19937, 21701, 23209, and 44497 are presented.
Also, one example of a primitive pentanomial over GF(2) is presented for

each degree up to 44497 that is a Mersenne exponent. The sieve used is briefly

described. A problem is posed which conjectures the number of primitive pen-
tanomials of degree p .

1. Introduction

A number of authors [3-7] have determined primitive t-nomials (i-term poly-

nomials) over GF(2). Zierler and Brillhart [6] have calculated all irreducible

trinomials (/ = 3) of degree n, n < 1000, with the period for some for which

the factorization of 2" - 1 is known; Stahnke [4] has listed one example of

a trinomial or pentanomial (t = 5) for each degree n, n < 168; Zierler [7]

has listed all primitive trinomials for each degree of Mersenne exponent up to

11213.

This note is an extension of these works: let Mn denote the «th Mersenne

exponent (for example, M21 = 44497 and 2Ml1 - 1 is known to be prime),

and let q, qk (k = 1, 2, 3) be positive integers. Table A lists all primitive

trinomials Xp + Xq + 1 over GF(2) for which p = Mn, 24 < n < 28, and

q < [p/2J . Table B lists one example of primitive pentanomials Xp+Xqi+X92 +

XQi + 1 over GF(2) for which p = Mn , 8 < n < 27, and p > q3 > q2 > qx,

where qk is randomly chosen from the interval [[p(2k - 1)/8J : [p(2k+ 1)/8J]

to provide some distance between p, q3, q2, qx, and 0.

2. Test for primitivity

If 2P -1 is prime, then the primitivity is equivalent to the irreducibility. The

test for the primitivity comprises the following three sieves. The first two of

these are only necessary condition tests, but they are useful for a prescreening

with relatively high speed. The third sieve is a necessary and sufficient test. Let

f(X) be a trial i-nomial of degree p , where t = 3, 5 .
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Sieve I: mod k test (k = 3,5,9). As stated below in (a)-(c), for some k > 0,

one can determine very rapidly whether gcd(f(X), X - I) equals 1 or not. If

it equals 1, then f(X) goes forward to the next sieve. About 30% of trials are

rejected by this sieve.

(a) For some k > 0, there is an irreducible polynomial h(X) with the follow-

ing two properties: (i) h(X) \ X - 1, (ii) every multiple of h(X) with degree

< k - 1 and with the number of terms < t is limited to the form X h(X),

where 0 < / < k - deg(h(X)) - 1. For t = 3, and for k < 26, there are two

such h(X): X2 + X + 1 (k = 3), X6 + X3 + 1 (k = 9). For t = 5 , and for

k < 24, in addition to the above two, there is: X4 + X3 + X2 + X + 1   (k = 5).

(b) Let rk(X) be the remainder polynomial of the division f(X)/(Xk - 1).

This rk(X) is obtained easily by reducing modulo k the exponent of every

term of f(X). It is clear that deg(rk(X)) < k - 1 and the number of terms of

rk(X) is not greater than that of f(X).

(c) From (a) and (b), we get h(X) \ f(X) if and only if rk(X) = x'h(X) for
some / > 0. It is easy to determine whether this last equality holds, and if it

holds, then f(X) is rejected.

Sieve II: gcd test. This sieve is based on the well-known powerful theorem [2,

p. 48]: let q>(X) be an irreducible polynomial over GF(2) of degree m . Then

<p(X) \X2k -X if and only if m \ k . Thus, by computing gcd(f(X), X2"'1 - 1)

for k = 3,4,..., &max successively, we can see whether f(X) has factors of

degree < k. When km¡¡x = 12, approximately 85% of trial polynomials are

eliminated by these two sieves.

Sieve III: necessary and sufficient irreducibility test. If f(X) survives Sieve II,

then we compute XN modf(X), where N = 2P -1. The trial i-nomial f(X) is

irreducible if and only if the result equals 1. In the actual procedure, we compute
y

successively the sequence X¡ from XQ to X , where X; = Xi_l mod/(.Y) over

GF(2) and X0 = X.

3. Results

The search for primitive polynomials was done on the SUN-3, -4 for p <

9941, on the Cray X-MP for p > 11213 at the AIST computer center (RIPS),

Tsukuba. All results and their reciprocals have been verified on all these ma-

chines by another independently programmed version of Sieve III. In Tables A

and B, only the exponents of the terms are listed. For example, the first line

of Table A means that three trinomials exist for p = 19937, q < [p/2\, with

c7 = 881, 7083, and 9842. In the first line of Table B, 31, 23, 11,9 stands for
X3X + X23 + Xxx + X9 + 1.

Of the entries of Table A, for p = M25 = 21701 = -3 mod 8 and p =
M2g = 86243 = 3 mod 8 , it is easily found that no primitive trinomial exists as

follows: Swan's Corollary [ 1, p. 170] guarantees that the trinomial Xp+Xq + l is

reducible over G F (2) if p = ±3 mod 8 and if q ^ 2. Next we find that by Sieve
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III, Xp + X + 1 is reducible, where p = M25 and M2i. Furthermore, in the

same way, it is found that there is no primitive trinomial for p = MJ0 = 216091

(or more directly, Af~30 = 3mod8 = 1 mod3, hence X2+Xx + l \ XM™+X2+1).

Table A

Primitive trinomial

19937
21701
23209
44497
86243

881,
none

1530,
8575,
none

7083,  9842

6619,  9739
21034

Table B

Primitive pentanomial

q2 'i

31

61

89
107
127
521
607

1279
2203
2281

3217
4253
4423
9689
9941

11213
19937
21701
23209
44497

23
43

69
82
83

447
461
988

1656
1709
2381
3297
3299
7712
2475
8218

14554
15986
17777

35504

11
26
40
57

63
197
307
630

1197
1109
1621
2254
2273
5463
4964
6181
8423

11393
11796
18756

9
14

20
31
22
86

167
339
585
577

809
1093
1171
2799
7449
2304
3820
5073
5005

10561

4. PROBABILITY AND PROBLEM

Let p be a prime number. We can obtain the "probability" that a pen-

tanomial of degree p is irreducible as follows. A pentanomial can neither be

divided by X nor by X + 1. The number of polynomials of degree p which
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Table C

Observed hit ratio of primitive pentanomial

(a) number of
trials

(b) number of
primitive pentanomials

p x hit ratio

= px(b)/(a) pmod8

5
7

13
17

19

31
61
89

107
127
521
607

1279
2 203
2281
3217
4 253
4423

4"
20*

220*
560*
816*

4060*
34 220*

109 736*
192920*
325 500*
500000
500000
468200
350300
350000
280000
269400
289000

0
0

66
152
158
584

1708
5 902
4 984

12 656
5 233
4 374
1948
393
829
492
160
347

0.00
0.00
3.90
4.61
3.68
4.46
3.04
4.79
2.76
4.94
5.45
5.31
5.32
2.47
5.40
5.65
2.53
5.31

-3
-1

-3

1

3
-1

-3

1

3
-1

1
-1
-1

3
1
1

-3
-1

Note. * means exhaust trials, others are by random sampling.

can be divided neither by X nor by X + 1 is easily proved to be 2P~2 . On

the other hand, if p is prime, the number of irreducible polynomials of degree

p is known to be (2P - 2)/p [2, p. 84]. Thus, a pentanomial of degree p is

irreducible with probability 4(1-2 ~p)/p « 4/p .

Table C indicates the observed hit ratio for 5 < p < 4423. The above

argument implies that the average of the values p x (hit ratio) should be 4;

the observed simple average is 4.35 for 13 < p < 4423. This table suggests

that for p > 13, one has p x (hit ratio) < 4 if and only if p = ±3 mod 8. It

seems that this phenomenon is strongly related to Swan's Corollary referred to

above, which clarifies the relation between the discriminant and the parity of

the number of irreducible factors. The authors, however, could not generalize

the trinomial version of this corollary to a pentanomial one, and pose it as a

problem:

Problem. Explain why p = ±3 mod 8 implies a low hit ratio.
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