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A HAMILTONIAN APPROXIMATION TO SIMULATE
SOLITARY WAVES OF THE KORTEWEG-DE VRIES EQUATION

MINGYOU HUANG

Abstract. Given the Hamiltonian nature and conservation laws of the Korte-

weg-de Vries equation, the simulation of the solitary waves of this equation by

numerical methods should be effected in such a way as to maintain the Hamil-

tonian nature of the problem. A semidiscrete finite element approximation of

Petrov-Galerkin type, proposed by R. Winther, is analyzed here. It is shown

that this approximation is a finite Hamiltonian system, and as a consequence,
the energy integral

/(h) = /    I % + «J 1 dx«-jfM
is exactly conserved by this method. In addition, there is a discussion of error

estimates and superconvergence properties of the method, in which there is no

perturbation term but instead a suitable choice of initial data. A single-step

fully discrete scheme, and some numerical results, are presented.

1. The Hamiltonian nature and conservation laws

In this paper, we shall consider the following problem for the Korteweg-

de Vries equation:

ut - 6uux + uxxx = 0,       x G R, t > 0,

(P) u(x+X,t) = u(x, t),

u(x, 0) = u0(x)   (a prescribed 1-periodic function).

To study the Hamiltonian nature of problem (P), we introduce the following

function space with / = [0, 1],

H? = {vg Hm(I);v{i)(x+l) = v{i)(x),  i = 0, 1, ... , m - 1},

and the functional

H(u)= f (y + "3J dx,
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where u(i) = d'u/dx'. Define

oo

S/Su := ^2(-X)k(d/dx)kd/du{k) ;
k=0

then SH/Su = 3u2 - uxx , and problem (P) is equivalent to finding a map u(t)

from R+ to H™ such that

(P') ut = JSH/Su,        J = d/dx.

Since

/•' ÖH d   (SH\   ,       - „w
l^d-x\M)dx = ̂       ueH>'

then for any solution u = u(t) of (P') we have

dH(u)      flÔHdudx=z ¡XS_H_d_ô_H_dx = Ç)
dt        J0   ou dt J0   ou dx öu

i.e., u = u(t) satisfies the energy conservation law: H(u(t)) = const.

For any functionals T and S: H™ —► R, define

{T,S}:=      -5— — -j— dx   (Poisson bracket),
J0   ou dx ou

which also is a functional defined on H™ . It can be verified that the operation

{ ,  } has the following properties:

(i)   {T,S} = -{S,T},  T,S:H™^R;
(ii)   {H,aT + bS} = a{H, T} + b{H,S}, a,bGR, H,T,S:H™ ^R;

(iii)   (Jacobi identity) {{T, S}, H} + {{S, H) , T) + {{H, T), S}  = 0,
H, T,S:H™ ^R.

Lemma 1. The functional T(u) is a first integral of problem (P') if and only if

{T,H} = 0.

Proof. Since, for any solution u = u(t) of (P'),

dT(u) flSTdu.        flÔT d ÔH f_
= /   -r--^-dx= /   -1- — -¿-dx = {T,H},

J0   du dt J0   öu dx öu ldt

the lemma follows immediately from this identity.   G

For a given functional H: H™ -> R, a family of mappings G'H containing a

parameter t can be determined through (P') :

u(t) = G'Hu0,        u0 G H™ ,

which is called the phase flow corresponding to H. By Lemma 1 and the Jacobi
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identity, we have

Theorem 1. Suppose T and S are two first integrals of (P'). Then {T, S) is

also a first integral of (P'). Therefore, the set offunctionals consisting of all first

integrals of (P;), equipped with the operation { , }, forms a Lie algebra RH.

Let Lu = -d2/dx2 + u (Schrödinger's operator). P. D. Lax proved in [5]

that every eigenvalue X = X(u) of the Sturm-Liouville problem Luf = Xf is

a first integral of (P;), i.e., X(u) G RH . In fact, (P') has infinitely many first

integrals, such as

/0(w) = /   udx, Ix(u)=      u dx, I2(u) =      [-+ + u \ dx,... .

From the form (P') and the properties indicated above we see that prob-

lem (P) is of the same nature as a Hamiltonian system of ordinary differential

equations (see [1, Chapter 8]), which can be viewed as an infinite-dimensional

Hamiltonian system. For a given functional H: H™ —► R, we call JöH/öu the

velocity vector of the phase flow G'H with Hamiltonian function H. For any

Is G RH, the phase flow determined by the equation ut = JÖIJöu commutes

with GlH , i.e., GlHG\ = Gj GH .

2. The Hamiltonian approximation of problem (P)

In this paper we seek to develop a numerical method for simulating the soli-

tary waves of the Korteweg-de Vries equation which maintains the Hamiltonian

nature of this equation. We believe that such a method will be able to preserve

as much as possible the global properties of the original problem, for example,

the energy conservation property

^■ijfiH*-0-
which we consider to be particularly important. As is known, the conventional

finite difference method (see [7]) and the Galerkin finite element method (see

[8]) do not preserve the energy. In this section, we shall show that the Petrov-

Galerkin finite element discretization is an appropriate way to derive a numer-

ical method for problem (P) which faithfully preserves the Hamiltonian nature

and the energy conservation property of the continuous problem.

Let Lh: 0 = x0 < xx < ■ ■ • < xN = X be a partition of the interval / = [0, 1],

Ij = [Xj_x, Xj], and h = maxx<j<N(Xj - x,_,). For a given integer r > 2, we

introduce the spaces

Kh {VGHX; v\hGPT(Ij), j=X,2,...,N),

Hh = {wGH2; W^GP^Ij), j = X,2,...,N},

where Pr(I.) represents the set of all polynomials on /  with degree <r. It is

easy to see that dim Vh = dimHh = (r - X)N.



610 MINGYOU HUANG

Based on the chosen pair of spaces Vh and Hh , the Petrov-Galerkin finite

element approximation of problem (P) is defined as follows: find a map u (t)

from R+ to Vh such that

(P„) (il} , wh) + 3((uh)2, whx) + (uhx, whxx) = 0   Vwh G Hh.

Here and hereafter, ( , ) and || • || stand for the inner product and the norm

in L2(I), respectively.

For the purpose of the subsequent analysis, we introduce a linear integration

operator G:H™ -> H™+x uniquely determined by

(2.1) (Gf)x=f-f,    (Gff = f,       fGH?,

where f° = (f, X) is the mean value of / on the interval /. In fact, Gf has

the following explicit form:

(Gf)(x) = ¡X f(s)ds- j°x + \f - Ç J* f(s)dsdx.

From the definition of G, we see that

(2.2) (Gf,f2) = (Gfx,(Gf2)x) + fxf2,

(2.3) (Gf, f) = (f)2.

Moreover, with H™ = {v G H™ ;  v° = (v, 1) = 0} and Vh = VhnHlp, we

have

(2.4) (Gfx,f2) = (Gfx,(Gf2)x) = -(fx,Gf2)   for any fx,f2 g Hmp ,
O

i.e., G is a skewsymmetric operator on //J . It can be verified that G is a one-
o o ,

to-one map from H™ onto H™* , and its inverse is precisely the differential

operator J = d/dx .

h h
Theorem 2. The solution u  = u (t) of the semidiscrete problem (Ph) satisfies

the following conservation laws:

h fx   h
(i)   I0(u (t)) = /   u dx = const  fort>0,

Joo

(ii)   I2(u(t)) = Í   I ̂ - + (uf \ dx = const  for t > 0.

Proof. Since 1 G Hh , by choosing w  = 1 in (Ph), we have

d_
dt

/  u dx =-j-t(u ,l) = (ut,l) = 0,

so that (i) holds. To verify (ii), we choose w  = Gut G Hh ; then

(uht , Guht) + 3((uh)2, (Gut)x) + (uhx, (Guht)xx) = 0.
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Since (mJ)° = (wJ, 1) = 0, (u\ , Gu)) = 0, and (Gu\)x = u¡ , because of (2.1)

and (2.4), we obtain from the above equation

ih(At)) = ^t{((uh)\l) + \(ux,ux)}=0,

i.e., (ii) holds, and the theorem is proved.   D

Theorem 2 tells us that the conservation laws I0 = const and I2 = const of

problem (P) mentioned in § 1 are faithfully preserved by the Petrov-Galerkin

finite element approximation (PA), where I2 = H represents the energy of the

continuous system (P).

It is not difficult to see that the discrete problem (PA) is a system of ordinary

differential equations. After some careful manipulations, we find that (PA) is

precisely a finite Hamiltonian system. To show this, we introduce a kind of

second-order discrete derivative dxxu G Vh for any given function u in 1^,

which is uniquely determined by

(dhxxu,vh) = -(ux,vhx)   WhGVh.

By choosing vh = X, we see that (dxxuh , 1) = 0, i.e., dxxuh GVh = VhnHxp.

h h h       h h °
Now let w  = u (t) be a solution of problem (Ph). Since dxxu , u( G Vh , by

using (2.1) and (2.2), equation (PA) can be rewritten in the form

(2.5) (Guhl,vh)-3((uh)2,vh) + (dhxxuh,vh) = 0,       vhGVh.

o

In addition, let P0 be the L2 projector from L2(I) into its subspace Vh , and

let Gh := P0G ; then for any fh , gh G Vh ,

(G.f" , gh) = {P0GJ* , gh) = (Gfh , gh) = -(/ , Ggh) = -(/ , Ghgh),

o

which shows that Gh is a skewsymmetric operator on Vh . In terms of these

notations, we find that (2.5) is equivalent to

Gh(uh), = 3P0(uh)2-dhxxuh.

It can be verified by calculation that 3PQ(uh)-dxxuh = öH(uh)/öuh . Therefore,

the solution u (t) of (PA) satisfies

(2.6) Gh(u)t = ÖH(u)/öu.

0 0 o

Assume that PQHh = Vh ; then Gh restricted to Vh is a one-to-one mapping,

and the inverse G^   = Jh exists, which also is a skewsymmetric operator on
0

Vh . We thus obtain a new version of (Ph),

(2.7) (u)t = JhÖH(u)/öu.
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For any two functionals T, S: Vh -» R, a discrete analogue of the Poisson

bracket, introduced in § 1, can be defined by

,_   C1       /•' ÖT     ÖS   ,{T>s)-= /  Tj;Jhyi;dx,
Jo öu öu

and most of the analysis and conclusions in [5] can be carried over to the

approximation problem (PA). Comparing the form (2.7) of problem (PA) with

(P'), we see that the Hamiltonian nature of problem (P) is maintained in the

discrete approximation (PA). For this reason, we shall call (PA) a Hamiltonian

approximation of problem (P).

3. Error estimates and superconvergence

of the approximate solution

The discrete approximation (PA) is identical to one of the methods proposed
ft 1 h

in [9], where H and H estimates for the error e = u - u and its time

derivative et were derived. However, in the bound obtained for et there exists

an unknown term \\Gwt (0)||2. In order to achieve superconvergence, D. N.

Arnold and R. Winther in [2] altered the discrete equation by a perturbation

term. In this section, we obtain superconvergence properties of the unperturbed

equation (PA) by suitable choices of the initial data.
1 2

Since G(H ) = Hp and G(Vh) = Hh, problem (PA) can be formulated as

follows: find a map u (t): [0, T] -> Vh such that

(3.1) -(Gu*;,vh) + 3((uh)2,vh) + a0(uh,vh) = 0   VvhGVh,

where a0(u, v) = (ux, vx) and u (0) assumes a prescribed value in Vh. In
o o

order to be sure that the problem has a unique solution, we assume P0Hh = Vh ;

then the coefficient matrix in front of the time derivative in (3.1) is nonsingular.

An elliptic projector F, : Hp -> Vh is defined by

h h
a0(Px4>- (f>, v ) = 0   for any v   GVh,

(Pxcp,X) = (cf>,X).

Let u(t) = u(x, t) be the exact solution of (P), which is assumed to be suffi-

ciently smooth. From standard results for the Galerkin finite element method

for elliptic equations, we know that

(3.2) ||(P,«-«)(*)(i)||,<C(ii)Ar",>        ~(r-2)<s<X, k>0,

(3.3) \\(Pxu-u)(t)\\L {I)<C(u)hr,

where ^k\t) = (j¡) (j>(t) ■ Moreover, the following superconvergence estimate

at nodes holds (see [6]):

(3.4) \(Pxu-u)(xt,t)\<C(u)h2r~2   whenr>2.
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Here and hereafter, || • \\s represents the norm in the Sobolev space HS(I),

s>0, and

0¿veH° \\v\\s

In the subsequent analysis, we shall use the inverse properties of {Vh} , such

as

\\vh\\x<Ch~x\\vh\\   Vvh GVh.

It is well known that such properties can be guaranteed by assuming the family

{Lh, h > 0} of partitions to be quasi-uniform, i.e., there is a constant c > 0

such that hj = x - x ,_, > ch for X < j <N.
L

To begin with, we discuss the case u (0) = Pxu(0) and prove the following

pointwise error estimates.

Theorem 3. Suppose that (P) has a unique solution u(t) for 0 < í <T, u(t) is

sufficiently smooth, and {Lh , h > 0} is quasi-uniform. Assume u (0) = F,w(0).

Then for small h>0, the discrete problem (PA) has a unique solution u (t),

0 < t < T, which satisfies

(3.5) \\u(t)-uh(t)\\L {I)<C(u)hr,
OO v     '

(3.6) \u(xi,t)-u(xi,t)\<C(u)hr+d,        i=X,2,...,N,

where d = 0 for r = 2, and d = X for r>2.

Proof. Set z(t) = u(t) - Pxu(t) and wh(t) = Pxu(t) - uh(t). Then e(t) =

u(t) - uh(t) = z(t) + wh(t), where wh(t) G Vh satisfies

(3.7) -(Gwht,vh) + a0(wh,vh) = (Gzt,vh) + 7>((uh)2-u2,vh)   VvhGVh.

h h h h
Since (Gwt , wt ) = 0, choosing v   =wt  in (3.7) yields

Id..    h,,2       ,„ As   ,   .-,   A,2 2        h,
257IW  =(Gzt,wt) + 3((u ) -u ,wt).

Noting that (uh)2 - u2 = (wh)2 - 2(Pxu)wh -(Pxu + u)z, we have

1   w  11     A||2        d  . _ h,       ,,-, A,.
2Ttllw^ =Tt{Gz',w î-(Gzu>w )

(18) + ¿[((^V. D - 3«/,w)t/ , wh) - 3((Pxu + u)z, wh)]

+ 3((Pxut)wh , wh) + 3((Pxu + u)zt + (Pxut + ut)z, wh).

Without loss of generality we may assume

HuAOIIi < 1   for0</<7\

In fact, this assumption can be removed by the later estimates combined with

the inverse inequalities in Vh (see [8]). By the smoothness of u(t) and estimate
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(3.2), IIFjMHj and HFjWjl, are uniformly bounded for 0 < h < h0 in 0 < t <

T. Note that wh(0) = 0 by the choice of uh(0). Integrating (3.8) from 0 to

t, we obtain in the usual way

HuiWII2 < C |||2(í)||Í, + ||z(I)(í)IIÍ, + \\Gwh(t)\\2x

(3.9) +A||z(j)||Î1 + ||z(1)(î)||2_1 + ||z(2)(5)||2_1
Jo

+\\Gwh(s)\\22]ds} ,

where C is a constant which does not depend on h, but depends on u and its

derivatives.
To derive an estimate for Gw (t), we choose v   = P0Gw    in (3.7) and

obtain

l-±L\\P0Gwh\\2 = a0(wh , P0Gwh) - (Gzt, P0Gwh) - 3((uh)2 - u2, P0Gwh)

<C(\\z\\2_x + \\z{X)\\2_x + \\Gwh\\22).

Thus, by integration we have

\\P0Gwh(t)\\2 < C A||2(í)|É, + ||z(1)(j)||Í, + \\Gw(s)\\22]ds
Jo

and

||G^(i)H2 < 2||F0(7^(0H2 + 2||(7 - P0)Gu;*(/)||2

(3.10) < c{A4||Gti;*(0l|2 + j['[l|í(')IIÍi + lk(1)(*)l£i

+ \\Gwh(s)\\22]ds\.

Since ||it;A||2 < \\Gwh\\ ||íü*|| + ||Guv*||2 , combining (3.9) and (3.10) and applying

GronwalFs lemma, we find for h > 0 small enough,

ll^Wll^cjllzWIli^ll^^Wlli,

+ ¡\Ms)\t + \\z{l)(s)\\2_x + \\z{2)(s)\\2_x]ds^ ,

which shows by (3.2) that

(3.11) \\Gwh(t)\\2<C(u)hr+d,

where d = 0 for r = 2, and d = X for r > 2. In view of

l|tü*(0llLao(/)<C||í?u;*(í)ll2.

the desired estimates (3.5) and (3.6) can be derived from (3.11) combined with

(3.3) and (3.4), respectively.   G
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From estimate (3.6), we see that the approximate solution has a supercon-

vergence property at the nodes, with one order higher when r > 2. Following

a referee's suggestion, we now improve this result. We shall use the technique

of quasi-projection, introduced in [3] for linear second-order parabolic and hy-

perbolic equations. In [2], quasi-projection was used for the Korteweg-de Vries

equation. Since we intend to conserve the energy integral and the Hamiltonian

nature, we use this technique only for choosing a suitable initial data, unlike

[2], where the discrete equation is altered.

Set V(t) = Pxu(t), ZQ(t) = u(t) - V(t), and W¡(t) = V(t) - uh(t). The
o

quasi-projections Z(r):[0, T] -* V h , j = 1, 2, ... ,  are defined inductively

by

a0(Zj, vh) = (GZ(X}X - 6uZj_x ,vh)   Vvh G Vh, 0 < t < T.

We shall use the sum Zx(0) + Z2(0) H-1-Zm(0) to modify the previous initial

data V(0) = Pxu(0), i.e., we choose uh(0) = F(0)-[Z,(0)+Z2(0)+- ■ -+Zm(0)],

where m = [(r- l)/2].

The improved superconvergence result is then as follows:

Theorem 4. Assume (P) and {Lh , h > 0} to be as in Theorem 3 and u (0) =

V(0) - [Z,(0) + Z2(0) + • • • + Zm(0)], m = [(r- l)/2]. Then for h>0 small

enough, the approximate solution u (t) satisfies

(3.12) \u(xi,t)-u(xi,t)\<C(u)h2r~2,       i =1,2,..., N.

To illustrate, let r = 4; then m = X and uh(0) = V(0) - Z,(0). The cal-

culation of u (0) requires three projections V(0), (Z0)i(0), and Z,(0), where

(Z0),(0) = u,(0) - F,(0) and Vt(0) is a solution of

a0(Vt(0), vh) = (Gutt(0) - 6u(0)ut(0), vh),       vh G Vh.

The extra cost spent on calculating Vt(0) and Zx(0) will be compensated by a

convergence rate of order 0(h6).

Now we sketch the proof of Theorem 4.

Let Z(t) = EjlnZ/0 and Wh(t) = WQh(t) - ££, Z.(i). Then

e(t) = u(t) - uh(t) = Z0(t) + W0h(t) = Z(t) + Wh(t),

where W*(t), Wh(t) g Vh . It is not difficult to see that W*(t) and the sum of

Zj(t), j = X, 2, ... , m , satisfy respectively the following two equations,

and

■(G(W*)(X) - ouW¡ , vh) + a0(W0h, vh) = (GZ{0X) - 6uZ0 + 3e2, vh)

= (GZ^ - 6uZ0, vh) - (GZ^ - 6uZm , vh).
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Thus, by subtraction we derive an equation for W (t),

(3.13) -(G(Wh)[X) - 6uWh , vh) + aQ(Wh, vh) = (GZ™ - 6uZm + 3e2, vh).

h h
By the assumption on u (0), we have W (0) = 0.

The proof of (3.12) consists of estimating Z(t) and W (t).

Lemma 2. Let s > - X and k, j > 0 be integers such that 2 j + s < r - 2. Then

(3.14) IIZÍ* >(i)H_. ̂ C(u)hr+2J+S,       0<t<T,
J *

(3.15) |Z/x,.,í)|<C(M)/i2r-2,        j=X,2,...,m; i=X,2,...,N.

These estimates may be proved by an argument as in [2] or [3], with some

obvious changes.

The next step is to show

(3.16) ||W^*(0lli < C(M)A2r-2,        0<i<F.

Then the proof of (3.12) will be completed by (3.4), (3.15), and (3.16). We first

choose vh = (Wh)t in (3.13) to obtain

5^Kl|2= -3±-t(uWh,Wh) + 3(utWh,Wh)

(3-17) +*i(GZ?-6uZm,W»)

- (GZ{2) - 6uZ(X) - 6UlZm , Wh) + 3(e2, (Wh)t).

h h
In addition to (3.17), by choosing v   = PQGW   in (3.13) and integrating this

equation from 0 to t, we get

(3.18)

\P0GWh(t)\\

< cjT' Mlw^WHÎ + èH^WUÎ, + lk(*)ll2lk(*)IIÎJ rf*.

For lack of available bounds for (W )t and et, we treat the nonlinear term

3(e2, (Wh)t) of (3.17) in the following way:

3(e2, (Wh)t) = 3(Z2 + 2ZWh + (Wh)2, (Wh)t)

= ^[3(Z2, Wh) + 3(ZWh , Wh) + ((Wh)\ 1)]

-6(ZZ(, Wh)-3(ZtWh, Wh).

As in the proof of Theorem 3, we may assume || W (r)||. < 1, 0 < t < T ; then
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\((Wh(t))\ 1)| < C\\Wh(t)\\2. Integrating (3.17), we obtain

Wx\t)\\2 <ci\\w\t)\\2 + ^\\Z^\t)\\2_x + \\Z(t)\\2\\Z(tn
*• k=0

^ +nii^(,)ii2+¿iizí)(í)ii2_1
Jo L f-ifc-0

ds\,+ \\Z(s)\\2\\Z{x)(s)\\2

where \(Z(k)Wh, Wh)\ < C\\Wh\\2, k = 0,1, are implicitly used. Lemma 2

tells us that HZ^WIL, < Ch2r~2 and \\Z{k)(t)\\s < Chr~s, for k = 0, 1, 2,
5 = 0, 1, and 0 < / < T. Thus, by (3.19),

(3.20) Wx(t)\\2 <C ¡h2(2r~2) + \\Wh(t)\\2 + Í \\Wh(s)\\2xds\.

Since [9] ||<?(i)||, < Chr~s ,5 = 0,1, and ||(7 - P0)GWh(t)\\ < Ch2\\Wh(t)\\x,

we have by (3.18)

(3.21) \\GWh(t)\\2<cíh4\\Wh(t)\\2x+h2{2r~2)+ Í \\Wh(s)\\2xds\.

Similar to the proof of (3.11 ), when h > 0 is small enough, the desired estimate

(3.16) can be derived from (3.20), (3.21), and Gronwall's lemma. Thus, the

proof of Theorem 4 is complete.

4. Numerical results of simulating 1-solitary waves

A numerical experiment is performed for the following solitary wave of (P)

with initial data:

uQ(x) = -(3d2)~x[l + q(x)],       0<x<l,

q(x) = q0 + asech (a/6d )'' (x - 0.5),

q0 = -2d(6a)x/2tanh(a/24d2)x/2,

where a = 0.2 and d = 10    . Here, uQ(x) is extended as a 1-periodic function

to the whole real axis, and we denote the corresponding solution of (P) by

u(x, t) ; then q(x, s) = -X - 3d u(x, ¿d s) solves the following equation:

Qs + (l+4K + %d2qxxx = 0.

The solitary wave u(x, t) is simulated by means of the method (PA) with

r = 2 and uniform mesh x = jh , h = 1/47, while the approximate solution

u (t) is a piecewise linear function. Let {qj(x) ; j = 1, 2,..., 47} be the basis

of the subspace Vh , and

47

u (x,t) = 22uj(t)qj(x).
7=1
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Then it can be seen that {Uj(t); j = X ,2, ... , 47} is the solution of the system

of ordinary differential equations

47

z>
(4.1)

i=i

dUj

"It tK-i - 2ui + um) + 4^("2-i + 6m? + M?+i3

47

+ ¿¿("/-i", + "í«/+i) - Ë("î + ujuj+i + Vi) = 0
i=i

where ûy = (<?■, Gq¡)/h , and by the periodicity, w0 = «47, w, = w48.

We choose the time step Ai = 3.125 x 10-7 and discretize (4.1) in the time

variable by the midpoint rule; then a fully discrete scheme for (P) is obtained,

namely

(4.2)

where

47

SX1*
7=1

uTl-u"
-J- = F
At

'    B+l    ,       «'
u     +u

i=l,2,...,47;

" = 0, 1, ... ,

W = ¡jfVl - 2vi + Vi+0 - 4ä(Vi + 6y2 + Vl04h
47

- 2t(viu/+vivt+i) + E(w; + vj Vi+Vi)-
7 = 1

As pointed out by Feng Kang in [4], the midpoint rule (i.e., the centered im-

plicit Euler scheme) is a symplectic scheme, which behaves very well as far as

preserving conservation laws is concerned.

Table 1 indicates the ability of scheme (4.2) to preserve the conservation laws

I i = const, i' = 0, 1,2, when this scheme is used to simulate the solitary waves

of(P).
Figures 1-3 exhibit the shapes of solitary waves q(x, s) calculated by scheme

(4.2) at time steps n = 0, 30, 60, respectively.

Table 1

Values of Ijt i = 0, 1, 2, at various time steps

!nM_ /,(") h(")
0 -3333.33333 1137605.2 -373082079 x 10'

30 -3333.33333 1137605.0 -373082041 x 10'

60 -3333.33448 .137624.0 -373082365 x 10

90 -3333.33206 1138221.0 -373081466 x 10

140 -3333.33251 1138159.6 -373081527 x 10"

190 -3333.33141 1138299.3 -373081693 x 10"
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The shape of solitary wave q(x, s) at time step n = 0

The shape of solitary wave q(x, s) at time step n = 30

The shape of solitary wave q(x, s) at time step n = 60
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