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ASYMPTOTIC BOUNDARY CONDITIONS
FOR DISSIPATIVE WAVES: GENERAL THEORY

THOMAS HAGSTROM

Abstract. An outstanding issue in the computational analysis of time-depen-

dent problems is the imposition of appropriate radiation boundary conditions

at artificial boundaries. In this work we develop accurate conditions based

on the asymptotic analysis of wave propagation over long ranges. Employing

the method of steepest descent, we identify dominant wave groups and consider

simple approximations to the dispersion relation in order to derive local bound-

ary operators. The existence of a small number of dominant wave groups may

be expected for systems with dissipation. Estimates of the error as a function

of domain size are derived under general hypotheses, leading to convergence

results. Some practical aspects of the numerical construction of the asymptotic

boundary operators are also discussed.

1. Introduction

Many interesting and important problems involving wave propagation in dis-

sipative systems are posed on unbounded spatial domains. Examples from vis-

cous or turbulent fluid dynamics include the modeling of internal flows, which

leads to cylindrical domains, and the modeling of flows past bodies in the ocean

or atmosphere, which may be posed on exterior domains. In these cases, even

for high Reynolds numbers, viscous regions such as wakes and boundary layers

may extend to the far field. Other examples are provided by reaction-diffusion

equations, which have been used in models of combustion and population dy-

namics.

For purposes of numerical computation, an artificial boundary is often in-

troduced. For long-time computations the interaction of the solution and the

artificial boundary cannot be avoided. Striking instances of this occur in fluid

dynamics when vortices or eddies reach the boundary, though more subtle ef-

fects can also be important. These interactions may result in unacceptably large

errors throughout the computational domain, especially if the system has insta-

bilities. (For an example of this in a reaction-diffusion system see Hagstrom

and Keller [11].)
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The primary purpose of this work is to develop accurate boundary condi-

tions to be imposed at such boundaries. We are also interested in establishing

error estimates and convergence theorems, standard components of theoreti-

cal numerical analysis which seem rarely to have been studied in the context

of time-dependent partial differential equations on unbounded domains. For

linear, separable differential operators, the exact boundary conditions may be

represented in terms of appropriate eigenfunction expansions and transform

variables. (See, e.g., Gustafsson and Kreiss [7].) For example, suppose x is the

spatial coordinate normal to the boundary and the x-dependence of the trans-
k (s)x

form solutions takes the form e ' with s the dual variable to time and /

indexing a tangential normal mode. An exact relation at the boundary is given

in transform space by

(1) (A-W)u, = 0.

Unfortunately, the expression of this relation in the original variables is typi-

cally nonlocal in both space and time. For computational efficiency, the added

storage and arithmetic operations required by the implementation of nonlocal

conditions must, to the extent possible, be avoided. Ideally, local boundary

operators would be used. These may be obtained using polynomial or rational

approximations to the dispersion relation, X¡(s), which in turn can generally be

accurate only in a restricted neighborhood of transform space.

An approach to the derivation of boundary conditions is, evidently, to iden-

tify region(s) in transform space where polynomial or rational approximations

are to be made and, then, to compute the coefficients of the approximation. In

their pioneering study of hyperbolic problems, Engquist and Majda [5] consid-

ered a particular high-frequency limit. For problems with dissipation, on the

other hand, this limit is less likely to lead to accurate results. In this work we

consider the use of asymptotic expansions of waves propagating over long dis-

tances computed using the method of steepest descent. A consequence of the

dissipative terms in the equations studied here is the association of growth or

decay with each wave group. By locating minimum decay (maximum growth)

rates, we locate appropriate regions for the required approximations. That is,

we identify a small number of dominant wave groups, characterized by (s¡, l¡),

and compute local linear approximations to the dispersion relation,

(2) tyjJwtyty + A^Xi-i,).
Substituting this into (1) leads to a local operator. The complete asymptotic

boundary condition is defined by the composition of a small number of these

operators:

<3>        u{^-h^-^(ít-s))u=o-

In §§2 and 3, we present in detail the asymptotic analysis and the subsequent

derivation of asymptotic boundary conditions. Some numerical considerations
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are discussed in §4. In §5 we derive estimates of the error as a function of the

size of the computational domain. These lead to the convergence of the solution

of the problem on the truncated domain to the solution on the full domain.

A primary motivation of this work is the development of accurate bound-

ary conditions at artificial boundaries for the Navier-Stokes equations. This is

carried out in [10] for incompressible flows, where extensive numerical experi-

ments are described. Earlier applications of some of the ideas given here appear

in [8, 9]. Boundary conditions for similar equations with constant coefficients

have been derived by Halpern [12] and Halpern and Schatzman [13].

2. Asymptotic expansions

We consider, for definiteness, a general system of equations in a semiinfinite

channel:

du     TJdu     „du     „,       id2u     nd2u

dt        dx       dy dx2       dy2

(5) x>0,      y0<y<yv

These are supplemented by boundary and initial conditions defining a signalling

problem:

(6) u(x,y,0) = 0,

(7) D0u(x,y0,t) = 0,

(8) Dxu(x,yx,t) = 0,

(9) E0u(0,y,t) = g(y,t).

We assume that the matrices D0, Dx, and E0 are such that the problem is

well-posed. We allow a stratified medium; that is, U, V, W, A, and B are

functions of y. Note that equation (4) may be a far-field approximation to a

problem whose coefficients are either nonlinear or functions of x.

A representation of the solution of problem (4)-(9) may be obtained by

means of Laplace transforms and eigenfunction expansions. The eigenvalue

problem to be solved is:

(10) svl + klUvl + V-p- + Wvl = X2Avl + B—^,       y0 < y < yx,

(XX) D0v,(y0;s) = 0,        Dxv,(yx ; s) = 0.

For solutions, u, which grow at most exponentially in time we may restrict

attention to eigenvalues, Xl, satisfying

(12) 0\(X¡(s))<0,       9l(í) sufficiently large.

We denote by JV the set of indices of eigenvalues which meet the condition

above and will refer to the function X¡(s) as the dispersion relation. Let

/oo e-stg(y,t)dt.
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The assumption of well-posedness then implies the existence of a unique col-

lection of functions c¡(s) suchthat

(H) E0lj2êi^vi(y'sn = s(y,s).
XleJ^ J

If c¡(t) is the inverse transform of c¡(s), a final expression for u may be

obtained:

(15) u(x,y,t) = ^2,ut(x,y,t),
l&yT

(16)

where

u¡(x,y,t)= / c,(p)q¡(x,y,t-p)dp,
Jo

(17) q,(x,y, t) = ~ jcest+X'{s)xvl(y;s)ds

and C is an appropriate inversion contour.

To compute asymptotic expansions of u, valid for x large, we must evi-

dently find expansions of q¡. If (17) is evaluated along rays t = yx, x » 1,

the exponent becomes

(18) x(ys + Xl(s)).

In order to use the method of steepest descent, we seek points s* such that

i'/    *\
(19) W) = -y,
(20) 9t00>0,

(21) 300 = 0.

Then, assuming that for 0 < ymin < y < ymax < oo there exists s*(y) satisfying

( 19)—(21) with inversion contour, C, which can be deformed to the steepest

descent path, we have:

(22) q,(x ,y,t)~ ^W'W/'WfWm    «,(?;*'(*/*))     = ^  yt))

\J2nX'¡(s*(t/x))x

(23) 7min < t/x < ymax.

Substituting these into (16) formally yields an approximation of u¡ for t >

J'miri-* '

ft-7mnx
(24) u,(x,y,t)~ ct(p)4>,(x,y,t-p)dp.

./max(0,i-ymM*)

This representation has a simple interpretation: the signal data, c¡, generates

wave packets which propagate at their group velocity. At the point (x, t),

x > 1, the solution is approximately the superposition of waves generated at

times varying from t - ymaxx for the slowest waves to / - yminx for the fastest.
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Now consider the specialization of these results to hyperbolic systems.  In

particular, we take the wave equation written as a first-order system:

(25) A = B=W = 0,        f=(í¿).        F=(o   _°1

and suppose that y0 = 0 and yx = X. For an appropriate choice of boundary

conditions we have

X¡(s) = -\Js2 + l2n2,

dX¡ _       -s

(26)

(27) ds - v/7777'

From (27) we see that group velocities ranging from 0 to 1 are associated with

values of s = iœ, \œ\ > In. Furthermore, 9t(A) = 0 ; that is, the wave pack-

ets do not decay exponentially as they propagate. These observations hold in

general for the high frequencies of all hyperbolic problems. (See, e.g., [15].)

For problems with dissipation, on the other hand, it may be possible to further

simplify the results. Then, some exponential decay rate may be associated with

each wave group. That is,

(28) ft(ys* +X[(s*))¿0.

For general signal data the large x behavior will be dominated by the wave

group with least decay (which may be growth for problems with instabilities).

Therefore, we seek y such that the expression above is maximized. Setting to

zero the derivative of the decay rate with respect to y yields

(29) *(V + ̂ (y + X',)^=0,

which by (19) reduces to

(30) X(s'(y)) = 0.

That is, assuming (19) defines a curve in s space, critical points of the decay

rate occur as the curve crosses the imaginary axis.

Suppose, for simplicity, that a unique solution of (30), y¡, exists. (If s*

is imaginary, its complex conjugate must also be used.) So long as this wave

packet is excited by the initial data, we expect that the dominant contribution

to the convolution integral defining u¡(x, y, t) will come from a neighborhood

of

(31) (t-p)/x = y,.

Introducing a local approximation to 0/ we obtain

(32) u,(x,y,t)~ f c,U>)ex>xF (x + ^^-p) v°t(y)dp,
Jmin(0, t-ymixx) \ X, )

(33) F(z, z) = e     '    "       '

\l-^X2tr/X)'
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Here we have

(34) A¡, = ?/j*+A/(í*),

(35) A) = §(/) = -?,,

(36) x] = \^{s*),

where s* is evaluated at y¡. Also we assume that t > y¡x. The expressions

above represent a restriction to the neighborhood of a single point in the disper-

sion relation. In what follows this restriction will enable us to find an asymptotic

boundary condition which consists of local operators. Furthermore, techniques

will be given for the numerical computation of the various quantities defined

in (34)-(36).

3. Construction of the boundary conditions

We now suppose that an artificial boundary is located at x = x. The rep-

resentation of the solution ( 15)—( 16) may be manipulated to yield a variety of

exact relationships at the boundary. For example, if the matrix A is positive

definite, a characterization of the exact boundary conditions is that a collection

of functions, r¡(t), exists such that

<"»     (&v':i)-£Mte/:;?)*-
In many cases the unknown functions r¡ may be eliminated to yield a direct

relationship between u and f^ . Of course, this condition will be nonlocal in

y and t and, in general, too difficult to use.

If, however, the asymptotic expansion given in (32) is valid, it may be used

to develop a local asymptotic boundary condition. The Laplace transforms of

■£ and q¡ are related by

dq,
(38) -^(x,y;s)=Xi(s)q,(x,y;s).

The steepest descent result involves the restriction of the transforms to a neigh-

borhood of s*(y¡). An asymptotic expansion of the a:-derivative may then be

obtained by replacing X¡(s) by its Taylor series about the critical value of s :

(39) Xl(s)*Xl(s*(yl))+Xxl(s-s*(yl)) + X2(s-s*(yl))2 + ---.

Using, for example, the first two terms, we have

tAf\\ dal       (\°  ,   31 d \

(40) ^-{À'+À'¥t)q'-

These may be substituted into (37) to finally obtain a condition on u¡. The

time-derivative is brought outside the integral to further simplify the expression.

This involves the neglect of terms from the limits of integration, which should
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be exponentially small. The asymptotic boundary condition we propose is, then,

given by

/Ais dui     ii° , i1 d \

(41) -dxL={À'+À'd-t)Ui-

A hierarchy of conditions may be obtained by use of more terms in the

Taylor series. These would involve derivatives of higher order. Their stable

implementation would require the use of Padé approximants, as discussed by

Engquist and Majda [5]. For example, a potential approximation at the next

order is

<42)  H (M)(¿-a'(/))"'^'öH"<-
The condition derived involves only one normal mode, u¡. We may, how-

ever, apply it directly to u if / is such that ÍR(X¡ ) is maximized. For problems

where a small number of modes have similar minimum decay rates, a prod-

uct boundary condition is used. Also, if the critical s* is imaginary, we must

include its complex conjugate in the product. We have in general

(43) Il ( dx ~*l ~ X\-dt )  (complex conJuBate)w = 0.

We have never used more than two modes.

4. Numerical considerations

In order to apply the asymptotic boundary conditions derived above, we must

find y j as well as the first two terms of the Taylor series of Xl. For fixed s,

the substitution w = Xv in conjunction with an appropriate discretization of

the y-derivatives leads to a generalized matrix eigenvalue problem:

(44) M(s)r = XLr,        r=Q

This may be solved using standard linear algebra software which implements,

say, the QZ algorithm [6]. An analysis of the discretization error is given by

Kreiss [17]. The asymptotic expansion requires that s be imaginary and ^

be real. As 5 varies along the imaginary axis, the latter implies a maximum or

minimum for SH(A). Our problem is, then, to maximize Vr\(X¡(s)) as s varies

over the imaginaries. This is a line search problem for which many strategies

have been developed, though they may be expensive to carry out. (See, e.g.,

Dennis and Schnabel [3].) For many of our examples, 5 = 0 has been the

solution. A necessary condition for this is that $j(0) be real and negative. This

may be checked by solving (44) only once.

Once the critical value of 5 has been found, we must compute X\. Differ-

entiating (44) with respect to 5 yields

,45, (M-^=(^-f),
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Since the matrix on the left is singular, X¡ = -^ may be obtained from a

compatibility condition. If f is a left null vector we have

fTdMr

(46) A  = '-XL.
r Lr

The cost of this computation is typically negligible in comparison with the cost

of finding the critical frequency. Expressions for more terms in the Taylor series

can be similarly found.

There are a variety of reasonable numerical implementations of the bound-

ary conditions. For conditions involving derivatives of at most first order, many

stable discretizations are known. Product boundary conditions (for wave equa-

tions) are studied by Higdon [16]. He develops the useful principle of employing

products of stable discretizations. We have successfully employed this proce-

dure throughout our numerical experiments.

5. Error estimates

Estimating the error caused by the introduction of an artificial boundary can

be broken up into two parts. The first is to estimate the residual resulting from

the application of the boundary condition to the exact solution. The complete

error estimate then follows from estimates of the solution of the initial-boundary

value problem in terms of inhomogeneous boundary data. The latter is simply

a proof of well-posedness.

For reference we write down the problem satisfied by the error, e(x, y, t).

Problem 1.

(47) Le = 0,        (x,y)G(0,r)x(y0,yx),

(48) e(x,y,0) = 0,

(49) Dje(x,yj,t) = 0,       j = 0,X,

(50) E0e(0,y,t) = 0,

(51) Be(r,y,t) = Bu(r,y,t).

Here, L is the differential operator appearing in (4) and B is the asymptotic

boundary operator appearing in (43).

A general approach to the investigation of the effect of the boundary condi-

tions on the well-posedness of an initial-boundary value problem is to freeze

coefficients at each point of the boundary and to study solutions of the frozen-

coefficient system. In particular, we must show that no solutions of the frozen-

coefficient problem of the form

(52) eKt+^uVvt     nK>o,nß>o,

are in the null space of the boundary operator. For problems with decay in the

dominant wave groups, that is 9\X¡ < 0 in (43), it is clear that an eigensolution
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satisfying the conditions above cannot exist, as

(53) ^(p-Xl -Xx,k)>0.
i i

(Recall that Xx, is real and negative.)
i

Translating this condition into a bonafide proof of well-posedness requires

further assumptions on the coefficients of (4). Indeed, the conditions we have

constructed may result in an overdetermined problem if A is rank-deficient.

Complete discussions are given by Eidel'man [4] for the parabolic case and

by Strikwerda [19] for incompletely parabolic systems, though in general their

results require boundary operators of low order. See also the more stringent

requirement of dissipativity introduced by Barry, Bielak, and MacCamy [1],

which may be necessary for the estimates used below. We will simply assume

that Problem 1 is well-posed. We introduce appropriate Sobolev norms in the

interior, II • IL ,w,„  „,, and on the boundary, II • II.    „ ,, and define
" tu , II X IKO i-M J Wo>'l'

roo

(54) IMI,=   /       IN'.-.OII(0,T)x(y0,yi)^.
J 0

roo

(55) IMIi,*=/   IM^.-.OIIo,,,,,,)^.J I)

and, for functions of t,

roo

(56) \w\. = /    \w(t)\dt.
Jo

We then make:

Assumption 1. There exists C > 0 independent of x such that

(57) W,<C||Ä«||lft.

(In what follows we mean all constants to be independent of x unless other-

wise stated.)

The requirement that C be independent of x can easily be dropped, though

we must be able to estimate its growth in order to estimate the rate of con-

vergence of the solution on the truncated domain. For example, in the error

analysis of asymptotic boundary conditions for second-order scalar hyperbolic

equations in exterior domains, as given by Bayliss and Türkei [2] and Hariha-

ran and Hagstrom [14], algebraic growth of C with x is encountered. For

the problems under consideration, however, Assumption 1 is typically satisfied

owing to the exponential decay of solutions. An interesting possibility is to use

weighted norms in x, in which case C may decrease with increasing x.

We proceed to estimate \\Bu\\x T. We make a variety of simplifying assump-

tions, as our main purpose is to extract the dependence of the error on x as well

as to give the flavor of the necessary computations. Many of the assumptions

could be relaxed somewhat, though their verification for any practical problem
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is likely to be difficult. We freely quote error estimates from the asymptotic the-

ory of integrals with large parameters. These may be found in any of a variety

of texts on the subject, for example Sirovich [18].

We make, then, the following assumptions:

Assumption 2. For all / G j¥ and all y G [0, co) there exists a unique (up to

complex conjugation) s*(y) satisfying (19), and the contour of integration in

(17) can be deformed to the steepest descent path through s* without passing

through singularities of the integrand. Furthermore, for x sufficiently large,

DJ(q¡- (j>t) is absolutely integrable in y and the integral is uniformly bounded

in /, where D represents a derivative in t or x and j < 2.

Assumption 3. There exists l0 G J^ such that a unique y¡ exists at which

Wys* + X, (s*)) = pn attains a global maximum. If s*(y, ) = 0, then, for

I = Iq, 3(s*(y)) = 0 for all y in a neighborhood of y¡ . Furthermore, there

exists S > 0 such that ÍR(ys* + X¡(s*)) < p0 - ô for all y and / # /0 .

Assumption 4. There exists z such that, for 0 < j < 2,

(58) Y H e'^h, j(p) dp<KQ<oo,

where

(59) pl(p) = K(s*(p)p + X,(s*(p))),

(60) h, j(p) = MA¿(|,W + \Xl{s*(p)n

(We will always take x > z .)

Assumption 5. There exist Ä^, > 0, K2 > 0, and K3 > 0 such that

(61) \Cl\x<Kx\c¡o\x,        l¿lQ,

(62) IK0ll,,r>*2k,JlKII,,r>

(63) fyli<tf3IMIi,o-

Assumptions 2-4 are constraints on the coefficients of equation (4). They are

easily verified in the interesting special case of the advection diffusion equation

with constant coefficients and the usual (e.g., Dirichlet or Neumann) conditions

on the channel wall. Assumption 5 is in effect a restriction to signal data which

excites the dominant wave group. If the data is such that only a certain wave

group is excited, that information should be used to modify the asymptotic

analysis.

The main estimates are derived in the following collection of lemmas, whose

proofs depend on the validity of Assumptions 2-5.
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Lemma 1. There holds, as x -> oo,

(64) \\Bqlo\\Ur = 0(l/x).\\qlo\\XiX.

Proof. We have, by our assumptions on the properties of the transforms,

(65) KHl,r = II0/JI,, t(l + 0(l/T)).

Writing out the integral expression for 110. Il, . and introducing the change of

variables p = t/x yields

(66) ^ l°° exm\cos(xg(p) + 6(p))\h(p)dp.

Here,

(67) f(p) = m(s*(p)p + Xlo(s*(p))),

(68) g(p) = 3(s*(p)p + X,(s*(p))),

(69) h(p)
K("J»)llo>.,y,)

y/\^(s*{p))\

(70) 0(p) =-I arg(^ (*>))).

Again, by assumption, f(p) has a maximum at p = y¡ = p0. The ap-

proximation of this integral by Laplace's method is slightly complicated by the

presence of the absolute value of the oscillatory term. There are two cases to

consider. If s*(p0) = 0, then, by Assumption 3, it is 0 in a neighborhood of

p0, and by direct computation we find that g(p) is constant. Then Laplace's

formula may be directly applied. If s*(p0) ¿ 0, then g'(p0) = 3(5*) ̂  0. Then

the generalization of Laplace's formula given in Theorem 2 of the appendix

applies. In each case the result is

(71) ||0/o||1;r = ^T"°(l+O(l/t1/2)),

where K is independent of x. Similarly, asymptotic expansions of B($-t, g^)q¡

can be computed. In particular, we have

(72) ll^/ol|lit = W/ol|liT(l + 0(l/T)).

As above, we consider the integral expression for 1150, II :
'o

(73) V^i " eT/(P)| COs{xgip) + èlP)M(P) dP-

Here, / and g are as above, while 6 and h are determined by

(74) h(p) = \\v,(.;st(p))\\.
\B(s*(p),X,(s*(p)))\

(75) d(p) = arè(B(s*(p),Xl (s*(p)))) - \arg(X'!(s*(p))).
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Again, we will compute an asymptotic approximation to this integral using

Laplace's formula if s*(pQ) = 0, or Theorem 2 if it is not. We note that B

has been chosen to have a simple zero at p = p0, which implies that

(76) h(p) = 0(p - p0),       p^p0.

We thereby conclude

(77) W/oH,>r = °(1/t)||0/oll1,I.

The conclusion of the lemma follows directly.   D

Lemma 2. We have, as x —► oo,

(78) Ili^JI,^ 0(1/t)||M/J|1t.
Proof. By direct computation,

(79) Bu, = c, * Bq, + boundary terms.
'o        'o 'o

The asymptotic analysis indicates that the boundary terms are exponentially

small. We then have, using Lemma 1 and Assumption 5,

(80) Wu^K^Bq^K^Bq^

< 0(l/T)|c/o|,||<7/ol|1)T <0(l/T)||M/o||1>t.     Q

Lemma 3. There exists r\ > 0 such that

(81) ||J5(M-M/o)||liî = 0(^-',T)

Proof. We directly estimate \\B(u-u¡)\\:

Vi,*'

(82) p*(«-K,)||1>t T,ci*Bqi <*l<70ll£lW,U.,r>
l.t '*«

where we have used Assumptions 2 and 5. From the integral representation of

¡I0JI we have

(83) Eii^iiii.T^^E/"*t/,<pV)^.
Wo ¡A

where

(84) f,(p) = X(s*(p)p + Xl(s*(p))),

(85) hl(p) = \\v!(-,s'(p))\\iyo<y[
B(st(p),Xl(s*(p)))\

\J\tf{s'(p))\
However, by Assumptions 4 and 3, the expression on the right is bounded by

(86) M 2^
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We have, therefore, for some constant KA ,

(87) \\B{u-u,)\\, r < he~ Wdi).
o y/x o

By Assumption 5 and the asymptotic expansion of ¡¡^ || computed in the proof

of Lemma 1, the term in parentheses is bounded by Il m, II, .. We have thus

shown that n > 0 can be chosen such that

(88) ||5(«-M/o)|| = 0(e-"T)||M/o||lT,

completing the proof of the lemma.   D

Lemma 4. There exists K such that

(89) \\Bu\\Xx<K—||«||li0.

Proof. We have, by Lemmas 2 and 3,

(90) \\Bu\\x T<\\BuAx x + \\B{u-u,)\\x t < 0(l/r)||M/ ||, T.

Furthermore, using the asymptotic expansion of 110, IL T computed in the proof
(q 1   ,   T

of Lemma 1, along with Assumption 5, we find

(91) Kll.,r <*5|C/J.llalli,r<VT"l"ll>,0^

Combining these equations yields the statement of the lemma.   D

Finally, by combining Assumption 1 with Lemma 4 we obtain the desired

error estimate:

Theorem 1. Suppose e is the solution of Problem 1, and Assumptions 1-5 hold.

Then for x sufficiently large there exists K independent of x and the data such

that

(92) Ikll.^^NI-.o-

6. Concluding remarks

We have developed a general technique for the construction of asymptotic

boundary conditions for problems with dissipative wave propagation. Theorem

1 clearly implies the convergence of the solution on the truncated domain as

t -> oc, if p0 < 0. The factor of l/x, which is a direct consequence of the

use of our asymptotic boundary conditions, is of importance when p0 is small.

Precisely such a situation occurs when our technique is applied to the incom-

pressible Navier-Stokes equations for moderate to large Reynolds numbers. This

is studied in detail in [10]. Applications to other problems in computational

mechanics are also under consideration.
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Appendix. Asymptotic expansion of an integral

In this section we compute the asymptotic expansion as x —► oo of the fol-

lowing integral, which is needed for the derivation of our error estimates:

(93) /= [P+eTf{p)\cos(xg(p) + e(p))\h(p)dp.
Jv.

The assumptions we will make are:

Assumption 6. (a) The function / attains a global maximum at p0 G (p_ , p )

and is thrice continuously difierentiable in a neighborhood of p0 with f"(p0)

9*0.
(b) The function g is twice continuously differentiable in a neighborhood of

p0 and g'(p0) ¿ 0.

(c) The function h is bounded outside a neighborhood of pQ, and near

p = p0 satisfies

(94) h(p) = h0(p-pQ)m + hx(p-p0)m+l(X + O(p-p0)),

where h0 ̂  0 and, if m is odd,

(95) hx - (m + 2)h,y^¿ 0.

(d) The function 6 is continuous in a neighborhood of p0 .

(e) If p± = ±oo, then f(p) —» -co at least algebraically as \p\ -> oo .

The smoothness and decay conditions can be relaxed somewhat. If m is

odd and (95) does not hold, we must simply consider higher-order terms in the

expansion of / and h .

Despite its apparent simplicity, this integral does not seem to be discussed

in the standard references. Because of the presence of the oscillatory term,

Laplace's method cannot be directly applied. Intuitively, we expect to obtain

the dominant behavior by replacing | cos(xg + 0)| by its mean value. This is

established in the following theorem. Although we have been able to estimate

the contribution of the oscillatory terms, we have been unable to compute it to

leading order for general / and g.

Theorem 2. If Assumption 6 holds, then as x —* oo,

(96) /^e^f^0^Vymr(v),

where

(97) ym = {
(m + l)/2,    m even,

Í (w + 2)/2,    m odd,

(h0, m even,

hx-(m + 2)hj"(p0)/3f(p0),    m odd.
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Proof. We begin by replacing | cos(t# + 0)| by its Fourier series:

~ oo

(99) |cos0| = - + XX cos 2n6'
71     «=i

4(-l)"+1
(100) c„ = -{—¥—.

"     M«2-l

As the series converges uniformly, / may be expressed as the sum of integrals:

*le*mh(p)dp + Y,cnIn,
*-  n »=i

where

(102) /„ = fP+exm cos(2n(xg(p) + 6(p)))h(p)dp.
Jp-

The asymptotic expansion of the first integral follows directly from the use

of Laplace's method and yields the results stated in the theorem [18]. What

remains is to show that the contribution of the oscillatory integrals is of lower

order. Therefore, we consider the asymptotic analysis of In .

In the usual way we restrict the integral to a small, fixed interval about p0,

introducing an error which is exponentially small. Using the fact that g'(p0) #

0, we are able to make a change of variables so that the remaining integral

becomes

(103) exf{Po) f     e~TF{u)cos(nxu)H(u,x)du,

where

(104) F(u) = F2u2 + F3u3 + o(u),        F2>0,

and

(105) H(u,x) = H(u)(X + 0(X/x)),

(106) H(u) = H0um+ Hxum+l+o(um+X),        H0¿0.

We break this integral into two parts,

(107) In=exf{p'\lxn+I2n),

(108) l\ = Í e~rF2"2cos(nxu)H0umdu,

- r    _  p   2

(109) In = I e T 2" cos(nxu)i\(u, x)du.

Here we have

(110) A(u, x) = («p-^W-V2) _ \)h<Uj T) + (#(M) X) - H0um).
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The asymptotic analysis of In may be carried out using the method of steepest

descent. The exponent has a single critical point at u = in/2F2, leading to an

exponentially small contribution. To estimate In , we first rewrite A :

(111) A(w, t) = xum+ ôx(u, x) + um+ ö2(u, x),

where Sx and 62 are bounded functions. Introducing the change of variables

(112) v = sJx~F2u,

we obtain

Le coswrI2 = x {m+

(113) • (vm+3dx(v, x) + vm+xd2(v, x))dv.

Here, dx and d2 are uniformly bounded and v± = ±y/xF2e. For convenience

we extend the domain of integration to the entire real line, extending dx and d2

so that they remain uniformly bounded. As the integrand is absolutely integrable

on the entire real line, uniformly in x, the additional term is o(t_(m+ '' ).

To estimate the remaining integral, we essentially use the Riemann-Lebesgue

lemma, modified to take account of the dependence of the nonoscillatory terms

on x. We have

(114) I2n=x-(m+2)l2ll + o(x-(m+2)l2),

where, following the usual transformation,

(n5> '•=2/r(G("'i,-G("+\/A't))cos(\/í"") dv.

Here, G is given by

(116) G(v,x) = e~" (v'"^dx(v,x) + v"~1d2(v,x)).

Again, G is absolutely integrable, uniformly in x, so we need only show that

-v2,   m+3 j  , .   .     m+l

(117) l^G(v,x)-G[v + ]¡^-,x)j)j=0.

Making use of the fact that for fixed v the limit x -» oo implies u -* 0, we

have
..2/CV..WC- -.2

(118)        limrfl(,,r) = lim-f^->^-^ = -F,H0,
F2(e-v^u)/F2"-x)-X)H(u,x)

and

(119) Iimrf2(t;,T):
T—>oo    * u->0 U

(H(u)(X + 0(u2)) - H0um)
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From these we may conclude that (117) holds and, therefore, that limT_too In =

0. We have shown, then, that /„ = o(x~{m+ '' ). This, in turn, implies

(120) In = o(ezf{p")x-(m+2)l2),        t-oo.

As the bounds obtained above may be made independent of n, we conclude

that the contribution of the oscillatory terms is dominated by the contribution

of the first term in the Fourier series, completing the proof of the theorem.   D

It should be noted that we have not computed the leading order asymptotics

of In . One might at first glance expect that In determines the leading order

behavior. We have, however, shown that it is exponentially small, while the

bounds obtained for the remaining terms decay algebraically.
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