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ON GENERATING POLYNOMIALS WHICH ARE ORTHOGONAL
OVER SEVERAL INTERVALS

BERND FISCHER AND GENE H. GOLUB

Abstract. We consider the problem of generating the recursion coefficients of

orthogonal polynomials for a given weight function. The weight function is

assumed to be the weighted sum of weight functions, each supported on its own

interval. Some of these intervals may coincide, overlap or are contiguous. We

discuss three algorithms. Two of them are based on modified moments, whereas

the other is based on an explicit expression for the desired coefficients. Several

examples, illustrating the numerical performance of the various methods, are

presented.

1. Introduction

Let [lj,Uj], j = 1,2, ... , N, lx < l2 < • • • < lN, be N not necessarily

disjoint real intervals. Furthermore, let cu be a nonnegative weight function

on [/,«], j = 1,2, ... , N. With every a>   there is associated a system of

orthogonal polynomials {pk } , where pk   has exact degree k and

> 0   if k - m,

0   iîk^m.

They satisfy, as is well known, a three-term recurrence relation

(1.1) l"Jp{kj)(x)p{Jl)(x)coJ(x)dx¡[[

(1.2)
xp{kj)(x) = b{kj)p{kjlx(x) + akJ)p<¿\x) + c{kj)p{¿x(x),       k = 0, 1,...

P-\(x) = 0,       P{0j)(x) = l,

where ak , ck   are real numbers and bk^ ■ ck   > 0. We set

/ := /.    and   u := max u,
1<;<JV    J

and consider the nonnegative weight function w(x)  defined on the interval

[/, u] by

;i.3) œ(x):=J£ej^lljUj](x)œj(x)   (>0):

;=i
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where
í 1   if x e [/,, u¡],

.,6 1-1.1)   and   ^,„,W:={0   ^¿„j.

The inner product associated with co(x) will be denoted by ( , ), i.e.,

(1.4)

(f,g):= j" f(x)g(x)œ(x)dx

= 1Zej       f(x)g(x)o)j(x)dx.
;=1     JlJ

Clearly, there exists a set of polynomials {y/k} that are orthogonal with respect

to this inner product. In this paper we investigate the problem of numerically

generating the recurrence coefficients in the relation

xVk(x) = ßkVk+l(x) + aktvk(x) + yky/k_x(x),       k = 0,l,...,

ip_x(x) = 0,        y/0(x) = l,

under the assumption that the coefficients bk , ak , ck , j = 1, 2, ... , TV, for

whatever value of k is required, and the zero-order moments

(1.6) i/0ü):= jUi(ûj(x)dx,       j =1,2, N,

are given.

Problems of this type arise, for example, in connection with the numerical

solution of large systems of linear equations (see, e.g., Saad [17]), in theoret-

ical chemistry (see, e.g., Wheeler [21]), and of course in the determination of

Gaussian quadrature formulae.
We will discuss two classical approaches for generating the recursion coeffi-

cients. The first one is based on the fact that the desired coefficients are given

by

_{x¥k,Vk) k_Q   ,

(1.7) Wk'Tki

7k-ßk-x(vk-i,vk-r   *-1'2---

where the ßk (> 0) are arbitrary. The resulting procedure, alternating re-

cursively between (1.7) and (1.5), is called the Stieltjes procedure [Stieltjes] (for

historical remarks, see Gautschi [3, 4]). The Stieltjes procedure will be discussed

in §3.1.

Our second approach involves the so-called modified moments

(1.8) vk:=(q , 1) = /  qk(x)œ(x)dx,       k = 0,l

where {qk} is a given suitable set of polynomials with deg^ = k . Two algo-

rithms using the modified moments will be described in §3.2. They are gener-

alizations of one derived by Chebyshev in the case of ordinary moments, i.e.,
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qk(x) = x , and are therefore called modified Chebyshev algorithms [modCheb]

(for historical remarks, see Gautschi [3, 4]). Both algorithms, basically, ob-

tain the desired recursion coefficients in terms of the Cholesky factor R in the

Cholesky decomposition (see, e.g., Golub and Van Loan [12, §4.2.3])

(1.9) M = RR

of the associated Gram matrix M = [(q¡,, q.)]. One method [modCheb-

Cholesky] computes first the Cholesky decomposition (1.9) and then the co-

efficients ßk,otk,yk, whereas the other scheme [modChebUpdate] alternates

recursively between updating R and computing ßk, ak,yk. We conclude §3

with a simple proof of a determinantal expression, in terms of the Gram matrix

M, for the desired coefficients.

All three algorithms have in common the need to compute the inner product

( , ) fast and accurately. We will discuss a method for this purpose in §2. In

§3.2 we will see that this method, in particular, leads to an attractive algorithm

for computing the modified moments (1.8). Finally, a number of examples

illustrating the numerical performance of the various methods are given in §4.

2. Evaluation of the inner product

The success of the Stieltjes procedure, as well as the modified Chebyshev

algorithms, depends in part on the ability to compute the inner product ( , )

fast and accurately. In this section we show how to evaluate (p, 1), say for a

polynomial of degree < 2« , under the given circumstances.

The computation of (p, I) can be performed effectively using the Gauss

quadrature rule corresponding to the weight function cOj. In view of (1.4), we

have to generate the rules

j=l,2,...,N.(2.1) fUjp(x)Oj(x) dx = u® ¿(«¡f)2*^),
Jlj i=0

We first recall some basic facts on Gauss quadrature.  We associate with the

weight-function <w   the tridiagonal matrix (compare (1.2))

(2.2) n    •

JU)

V

U)     uU)

JU) U)b\

JU)
"n-l

JU)
ln-\

JU)

Note that /?j^, is, up to the factor Y["=0(-b¡J)), the characteristic polynomial

of TÍ1'. Hence, as is well known, the nodes k¡    of (2.1) are the eigenvalues of
<i) MJ)TKJ>. If T? ' is not symmetric, it can be symmetrized by a diagonal similarity

transformation Z)„   := diag(d{\J', dU) ._ iU)   Ai) , é/„) , where the diagonal elements
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dk] are given by

tâi-^J&P*       k = 0,l,...,n-l.

lu)Here, d^'   (^ 0) is arbitrary. Thus,

(2.3) /^¿>iVr>„ü) =

(<tf   b\])
W)

o
(i) ¿^

fcü)
°n-2

„CO

where è£" = ^b{kj)c{¿x, k = 0,l,...,n-l. We refer to /^ as the (nth)

Jacobi matrix of co . The polynomials pk] corresponding to jjf' are related

to pk by pk = Pk /dk . Hence, if we choose the free parameter d}j to be

equal to Jv^ , the resulting polynomials pk^ are orthonormal with respect to

(Dj . It is well known (see, e.g., Wilf [22, Chapter 2]) that the weight v¡[' in (2.1)

is the first component of the normalized eigenvector v¡ of J^' corresponding

to k[j),

(2.4) jU)vU) = kU)vU) {vUfv? i = 0, I, ... , n.

In principle, we could compute k¡ , v¡ using one of the standard methods

for calculating eigenvalues and eigenvectors (see, e.g., Golub and Welsch [11]).

Fortunately, we do not need to know them explicitly. Since J^ is Hermitian,

there exists a unitary matrix U{J' with

(2.5) (tíV1«' = (U^YJ^U^ = diag^ , k[J),..., k?)   (=: I?),

where each column v¡ of Un is a normalized eigenvector of J^ . Therefore,

we have by (2.5), (2.1), and (1.4),

.l/)„r„, ,t/h„       Y^„ ..V)J,TTU)-tvU)\tTiU)\T.

7=1 7=1

(2.6)
7 = 1 1=0

N ftti
= ZIe7 /    P(x)cOj(x)dx = (p,l),

,—1       Jll

where ex = ( 1, 0, ... , 0) denotes the first unit vector. The "method" (2.6) will

be frequently used in the following algorithms. It is not surprising, as we will
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see in the next sections, that the calculation of (p, 1) is even more effective, if

p itself fulfills a certain recurrence relation.

3. Algorithms

In the following §§3.1, 3.2 we present a detailed description of the Stieltjes

procedure and the modified Chebyshev algorithms.

The procedures compute a system of orthogonal polynomials {wk}k=o f°r

the given nonnegative weight function (compare (1.3))

N

(3.1) ey(x):=£e;.^>ig(x)cu;.(x).

7 = 1

More precisely, the algorithms determine the coefficients in the three-term re-

currence relation

xy/k(x) = ßky/k+x(x) + aky/k(x) + ykvk_x(x),

(3.2) k = 0,l,...,n-l,

y/_x(x) = 0,        yr0(x) = l.

We remark that the system {wk)l=o nas aU °f tne properties of polynomi-

als orthogonal on one interval, provided we consider y/k orthogonal on [/, u]

rather than on U,=i[^ > ",] ■ F°r example, the polynomials y/k have all roots

in [/, u], but not necessarily in U^LiU, > u¡\ (see Example 4.5).

However, we have not yet specified a condition that will uniquely determine

the orthogonal polynomials {yk}l=0 . In order to make the computational effort

of the various methods comparable, we will devise algorithms that generate the

system of orthonormal polynomials {y/k}"k=0 with respect to œ. Here we have

by (1.4) and (1.6),

x¥k(x) = yk+xwk+x(x) + âktpk(x) + yky/k_x(x),

k = 0, 1.»-1,

(3.3) ,N x-i/2

y/_x(x) = 0,        w0(x) = i¡/0 = I ¿ eju{0j)

Observe that the corresponding Jacobi matrix is symmetric, and therefore we

have

(3.4) (W„,¥n) = (¥n-i,¥„-l) = --- = {W0'¥o)   (=1)>

and that tj/k is related to \pk by

(3.5) y/k(x) = (y/k, yk)~l/2>i/k(x).

3.1. Stieltjes procedure. An explicit expression for the coefficients of {wk}k=o

is easily deduced from (1.7) and (3.5). For convenience we set ßk = 1, i.e., y/k
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is a monic polynomial, and obtain

(3-6) . v 1/2

-^=(<Ä>)   '    *"■'■•--
In order to evaluate the inner products in (3.6) we recursively combine (3.2)

and (2.6). Therefore, let

4+1 := «WÍV, = (/nW - akI)wk(J{nJ))ex - ykVk_x(J{nJ))ex

Then

= (^-akI)zk^-ykz^.

7 = 1

- fe í/ü)fz0) lrz0)- Lyo \zJt+iJ zi+i •
y=i

Altogether, we arrive at:

Stieltjes. Given a set of weight functions w  and the associated Jacobi matrices

J{n}) by (2.3) and the moments i/¿7) by (1.6), j = 1,2, ... , N, this algorithm

computes the recurrence coefficients of the polynomials \j/k, k = 1, 2, ... , n ,

orthonormal with respect to co.

Initialize. Set z\y := ex, j = 1,2, ... , N.

• compute â0  (-+ a0) by (3.6) and (2.6):

_ 2~,j=\ bjvQ kzq )  Jn  zp    _ 2^j=\ tjvo ao

2->i=\ tjuo {¿o )  z0 2-,j=\ tjuc

• compute z\j) := y/x(J{n]))ex by (3.2) with ß0 = 1 :

z\j) = (J{nJ)-a0I)zH],        j=l,2,...,N.

Iterate. For k = 1, 2, ... , n - I do

• compute âk  (-> ak) and yk by (1.7), (3.6), and (2.6):

^    BU),UhTT(j)„U) ^N    c(j),(j),TJj)

2%xe^(zuyZkn    '        ^-^erf^fz^

.  compute 4+1 := V*+itf'Vi by (3.2) with ßk = 1 :

Si)   _ (JU) _     j) U) _      U) / - 1   2 Nzk+\~yJn        ak1>zk        'kzk-\> J - I, ¿, ... , M.

•  compute yk  (-» yk) by (3.6):

yk = \/%-
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1/2

End.

Remarks. 1. The algorithm requires Ncf((n + l)2) flops plus n square root

computations.

2. The number of recursion coefficients that can be calculated is bounded by

the dimension of the Jacobi matrices. In order to compute more coefficients,

one has to restart the computation of zk   with appropriate Jacobi matrices.

3. The last n-k elements of z¡¡' are zero. This can be used for designing

a more efficient algorithm.

3.2. Modified Chebyshev algorithm. In this section we present two algorithms

involving the modified moments

(3.7) vk:=(qk,l)= I   qk(x)co(x)dx,       k = 0, I, ... , 2n.

Both algorithms differ from the corresponding algorithm for a single interval,

i.e., N = 1, only in the computation of vk . Therefore, if the vk are known

analytically, the algorithms for a single and several intervals coincide, i.e., have

the same complexity.

However, in general we have to compute the modified moments. Here, we

arrive at an efficient algorithm, if we assume that the system of polynomials

{qk}k=(j also satisfies a three-term recurrence relation:

xqk(x) = bkqk+x(x) + akqk(x) + ckqk_x(x),

(3.8) k = 0,l,...,2n-l,

q_x(x) = 0,        q0(x) = l.

Using the method (2.6) once more, we obtain:

Modmoment (qn). Given a set of weight functions w   and the associated Ja-

cobi matrices J(nj) by (2.3) and the moments v^ by (1.6), j — 1, 2, ..., N,

and the system of polynomials {q¡}¡=0 by (3.8), this algorithm computes the

modified moments vk , k = 0, 1, ... , 2« , of co relative to {q¡}i"0 ■

Initialize. Set Zq   := ex, z~}x = 0, j =1,2,..., N, c0 := 0.

•  compute u0 by (2.6):

-o=E^oV47)=E^')-
7=1 7=1
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Iterate. For k = 1,2, ... , 2n do

•  compute z[j) := qk(J(„i])ex by (3.8):

*k = r-KÎ-^i^irCuA).      J = L 2> ■•• > *■

•  compute j/fc by (2.6):

e;.i/0 <?, z

End.

N
U)„T_U)

k
7=1

Remarks. 1. The algorithm requires Ncf((n + 1) ) flops.

2. The number of modified moments that can be calculated is bounded by the

dimension of the Jacobi matrices. In order to compute more modified moments,

one has to restart the computation of zk   with appropriate Jacobi matrices.

3. It is easy to see that the algorithm does not require symmetric Jacobi

matrices Jjj" . Instead, one can also use T~>, given by (2.2).

4. The last n-k elements of zk are zero. This can be used for designing

a more efficient algorithm.

5. In order to start the algorithm, one has to choose a set of polynomials

{q¡}["0 ■ An obvious choice is qk = pk , i e {1,2,..., N}. Here (3.7)

reduces to

uk = ^2ej       Pk (x)(Oj(x)dx.

7=1       J'i
j*i

However, we only recommend this choice for \lt, ut] « [/, u]. Otherwise, /?[')

would in general produce extremely large \uk\, owing to the fact that pk has

all its zeros in [/(., u¡].

We now give a short derivation of the three-term relationship of y/k in terms

of the Gram matrix associated with q¡ and the inner product ( , ) (compare

Kent [14, Chapter 2]). The Fourier expansion of q¡ in terms of y/k reads (recall

(Vk, ¥k) = 1)

/ /

(3.9) Qi(x) = ^2rlk^k{x) = ^2(ql,wk)^k(x),        1 = 0,1,...,n,
k=0 k=0

or vice versa,

k

(3.10) <M*) = EwU*).       rc = 0,l,...,n.
m=0

The above equations define the nonsingular and lower triangular matrices R :=

M^o = [(<?/ ■ #*>]" jt=o and S := [skm]nkim=0, with R = S~x. Moreover, we
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deduce from (3.9) and (3.10)

(3.11) rlk = (q,, y/k) = I q,, ¿ skmqm \ = ¿ skm(q,, qj .
\        w=0 /        m=0

Now, consider the associated Gram matrix M = [(q¡, qm)]" m=0. The system

of equations (3.11) is equivalent to

(3.12) RT = SM,    or   M = RRT,    or   M~X=STS.

Therefore, R is the Cholesky factor of M and S is the inverse Cholesky factor

of M.

Substituting (3.10) into (3.3) (resp. (3.9) into (3.8)) and comparing the coef-

ficients of qk+x and qk (resp. y/k+x and y/k), we obtain

v       -h       Skk      -h  rfr+1'fc+1 k-0   1 n-\
yk+l-°k~ ~°k     r ' K-U, I, ... ,n     1,

(3.13) ak=ak + bk_x—-bk--
Skk ^+1,^+1

= cik-bk_x^J- + bkr-Jf^,       k = 0,l,...,n-l.
rk-\,k-\ rkk

Thus the desired coefficients yk, âk can be obtained from (3.13) in view of

(3.12) by an inverse Cholesky decomposition of M~ (resp. Cholesky decom-

position of M), where only the diagonal and subdiagonal elements of 5 (resp.

R) are involved.

3.2.1. Fast Cholesky decomposition. The derivation in the last paragraph leads

directly to the following basic algorithm (compare Gautschi [2, §4]):

• build up the Gram matrix M by applying the recursion (3.8);

• compute the Cholesky decomposition M = RR    (resp. M~X=STS);

• compute yk,àk by (3.13).

Since the Cholesky decomposition of an (n + 1) x (n + 1) matrix takes in

general cf((n + 1) ) arithmetic operations, this algorithm does not compare

favorably with the Stieltjes procedure in terms of speed.

One way to overcome this bottleneck is a clever choice of the system of

polynomials {qk} which defines the modified moments uk. Let

(3.14) Tk(x) :=cos(/carccos(x))

denote the kth Chebyshev polynomial of the first kind. It is well known that

(3.15) Tl(x)Tm(x) = 2-(T„_ml + Tl+m).

Hence, if we set qk = Tk, the associated Gram matrix reduces to (compare

Branders [1, §6.4])

(3 16) M-[(T,'Tm)] = ^,-^ + Tl+m,l))
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where y is Toeplitz and %f is Hankel. This special structure of M allows the

construction of a fast, i.e., cf((n + 1) ) or less, algorithm for the Cholesky de-

composition (see, e.g., Gohberg, Kailath, and Koltracht [10], Heinig, Jankowski,

and Rost [13], Lev-Ari and Kailath [15]).

The fast algorithm we used for our computations is based on the following

(general) observation. Let M be a symmetric and positive definite matrix, e.g.,

M is a Gram matrix. Notice that the Cholesky decomposition M = RRT

nested, i.e.,

>t

is

(3.17) Mk = RkRk> k = 0, 1

where Mk = [mi ]( =0 (resp. Rk = [r¡j]i =0) denotes the kth leading principal

submatrix of M (resp. R). Since the inversion of a lower triangular matrix

is also nested, we have from (3.17) that the inverse Cholesky decomposition

M~x = (R~X)TR~X = STS is "semi-nested", i.e.,

(3.18)

Here M¡
Ák)ik

Kl = s¡sk.

is the inverse of M,   and- KjU,m is the inverse of Mk and Sk = [*,,;]*J=0 denotes

the kth leading principal submatrix of S. Assume we have already computed

Sk_x ; then we obtain Sk by appending one row sk := (sk0, skl, ... , skk) and

one column (0, ... , 0, skk)T to Sk_x. In view of (3.18), the new elements sk,

are uniquely determined by skjskk = Ujk , that is

(3.19) ;' = o,i,
T" _ 1

Hence, sk is up to a factor the last column of Mk   . Therefore, we obtain the

inverse Cholesky factor

»o'lVxAi.(3.20) 5 =

y</

by solving the linear systems

(3.21)

where uk ' =

Mtuf-

U
(k)     „(k)
0,k \,k '

0
\l)

lk,k

rc = 0, 1,..., n,

f
Again, the solution of each linear system (3.21) requires in general

cf((k+ l)3) arithmetic operations. However, if M is Toeplitz + Hankel, there

exist cf((n + 1) ) algorithms for computing (3.20). They are based on the fact
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that the solution of two adjoining sections Mk_x and Mk are recursively con-

nected. For details we refer to Heinig, Jankowski, and Rost [13, pp. 671-674].

Observe, that we only need to compute the first 2« + 1 modified moments,

in order to build up the Gram matrix M = j[u,¡_m, + v¡+m\ ■ Once we have

computed the modified moments and the inverse Cholesky decomposition the

desired coefficients are given by (3.13):

ModChebCholesky. Given a set of weight functions w   and the associated Ja-

cobi matrices J^' by (2.3) and the moments v^ by (1.6), j =1,2,..., N,

this algorithm computes the recurrence coefficients of the polynomials  y/k,

k = 1,2,... , n , orthonormal with respect to œ.

Initialize. Set b_x = s0 _x = 0.

• compute the modified moments vl relative to T¡, I - 0, 1, ... , 2n ,

by Modmoment(r/).

• compute the inverse Cholesky factor S = [s,.]" =0 by (3.20) and (3.21).

Iterate. For fe = 0,l,...,n-l do

• compute àk,yk+l by (3.13):

„    ,   U       Sk,k-1       r     Sk+l,k
ak=ak + bk-l^-bk-~

Sk,k Sk+\,k+l

h+i = K -
Sk+l,k+l

End.

Remarks. 1. The algorithm requires Ncf((n+ 1) ) flops plus n square root

computations.

2. We only need the diagonal and subdiagonal elements of S for the com-

putation of the recursion coefficients. However, the recursion formulae for the

solutions of (3.21) involve (unfortunately) the whole vector uk  .

We conclude this subsection with a more theoretical result. Let

denote once again the Gram matrix associated with {q¡} , and let Mk be the kth

leading principal submatrix of M. Furthermore let Dk := det(Mk) designate

the kth principal minor of M, while

(3.22) Dk := det

/   ™oo        woi      ■•■      mo,k-2        mok   \

mxo        mxl      •••      mxk_2        mxk

W_1>0   »»*-,,,    •■•    mk-itk-2   mk~i,k

'Equations (5.6) and (5.8) in [13] are misprinted: The formulae for ß2m should read ß2m

(f2m+'fxm+1 -cos^n and ß2m = km+l/am - kjam_x , respectively.
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is obtained by deleting the last row and (k - l)st column of Dk . By apply-

ing Cramer's rule to (3.21), we easily deduce from (3.19) and (3.13), with the

convention D_, = 1, D0 = 0, that

Dk Dk+X

uk-1 k
(3.23) ,- k = 0,l,...,n-l.

,    \JDk-lDk+\
yk+i = h-—ñ—>

uk

For the special case of ordinary moments qk(x) = x , i.e., bk = \, ak = ck =

0, we recover the well-known relationships

Uk -     Dk_x +   Dk   '
(3.24) ,- k = 0,l,...,n-l.

yDk-lDk+l

yk+í = ñ '
uk

In other words, the computation of âk, yk+x, using the equation (3.23), is

nothing but an (expensive) implementation of a modified Chebyshev algorithm.

However, since the condition number of M depends in part on the poly-

nomial system {q¡} , a clever choice of this system will improve a test, based

on (3.24), for the validation of Gaussian quadrature formulae, proposed by

Gautschi [5, pp. 214-215].

3.2.2. Updating the mixed moment matrix. The next (fast) algorithm computes

the desired coefficients in terms of the Cholesky factor R, which is essentially

a "mixed moment" matrix (compare (3.9))

(3.25) R = [rlk] = l(ql,Wk)}-

Instead of explicitly computing the Cholesky decomposition, we update R con-

tinually as the process unfolds (compare Gautschi [8, §5.4], Sack and Donovan

[18], Wheeler [20]). The key equation is easily obtained from the two recurrence

relations (3.3) and (3.8):

rlk = (Qn Vk) = A"«*«/. #k-i) - àk-iri,k-i -h-Si.k-i)
(3.26) j ïk

= y(bin+uk-i + (ai-âk-i)ri,k-i+ciri-i,k-i-h-iri,k-2)-

This equation combined with (3.13) almost furnishes the algorithm. Since yk

is defined in terms of rkk, we slightly have to change (3.26) for / = k and

finally obtain:

ModChebUpdate (qn). Given a set of weight functions co and the associated

Jacobi matrices J^ by (2.3), the moments Vq    by (1.6), j = 1, 2,..., N,
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and the system of polynomials {q¡}2"0 by (3.8), this algorithm computes the

recurrence coefficients of the polynomials ipk, k = 1, 2, ... , n , orthonormal

with respect to co.

Initialize. Set y0 = 0 and r¡ _x =0, I = I, ..., 2n - I.

• compute the modified moments v¡ relative to q¡, I = 0, I, ... , 2n ,

by Modmoment(^/).

• compute y/0 by (3.3):

n=(£v¿fl'

• compute rl0 by (3.25):

r/o = (tf/' ^o> = %vi>       / = 0,...,2«-l

• compute q0 by (3.13):

à^a^ + bjf-.

Iterate. For k = 1,2, ... , n do

• compute rkk by (3.26) and (3.13):

rkk = JjrL±[bkrM,k-i + (ak-âk-i)rk,k-i

1/2

+Ckrk-\,k-\      yk-lrk,k-2^j

•  compute yk by (3.13):

'k-l,k-l

if k < n then for I = k + I, k + 2, ... , 2n- k do

• compute rlk by (3.26):

rik = y(biri+\,k-\ + (ai-àk-\)ri,k-\+ciri-i,k-\-h-iri,k-2)'
yk

• compute âk by (3.13):

ak = ak-bk-i-+ bk —r~ ■
rk-l,k-l rkk

End.
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Remarks. 1. The algorithm requires Ncf((n + l)2) flops plus n square root

computations.

2. It is well known (see, e.g., Gautschi [9]), that the choice of the system {q¡}

affects the condition of the nonlinear map from the modified moments to the

recursion coefficients.

4. Examples

The purpose of this section is to illustrate the numerical performance of the

three algorithms. All computations were carried out on a SUN 3/50 in double

precision (approx. 15 significant decimal places).

As we will see, because of roundoff errors, the algorithms do not always

produce the same numbers. How do we decide which numbers are the right

ones? The most obvious test—using the associated Gauss quadrature rule for

checking the orthonormality of the computed polynomials—is not without dif-

ficulties (compare Gautschi [5]). Therefore, we transcribed one algorithm also

into MATHEMATICA and used high-precision arithmetic.

In all examples we have computed the orthonormal polynomials, more pre-

cisely the three-term recurrence coefficients, up to degree 50. For every al-

gorithm we have compared the FORTRAN double-precision results with the

MATHEMATICA results obtained by using 100 significant digits. In the corre-

sponding tables we have listed the maximum polynomial degree for which the

relative deviation of these two results is less than 10_1 . We only consider the

case of two intervals, since the extension to more intervals does not produce

any additional difficulties.

Example 4.1. Let

œx (x) := S?[h ; u¡](x),        oj2(x) := Sf^ _ Hj](x),

and

(4.1) 0)(x) := cox(x) + œ2(x).

The orthogonal polynomials p(x), //2) with respect to cox, œ2 are the suit-

able translated Legendre polynomials. The modified moments are based on the

Legendre polynomial Ln and on the Chebyshev polynomial of the first kind Tn

with respect to the whole interval [/, w] = [-1, 1].

The Stieltjes algorithm works extremely well in all cases; cf. Table 4.1. So do

the modified Chebyshev algorithms, as long as the two intervals have at least one

point in common. If there is a gap between the intervals, the latter algorithms

become severely unstable, compare also Gautschi [4, Example 4.7]. As suggested

by Gautschi [8, Example 5.5], one might use in these cases modified moments

defined by orthogonal polynomials relative to a weight function which has the

same support as œ. Therefore, we introduce the following weight functions,
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Table 4.1

Performance of the Stieltjes algorithm and the modified

Chebyshev algorithms for œ given by (4.1)

modCheb

h «1 U2 St. Ch. U-(L„) U-(Tn)

-1.0 -0.1 0.2 1.0 >50 27 27 31
-1.0 -0.4 0.6 1.0 >50
-1.0 -0.8 0.9 1.0 >50
-1.0 0.8 0.9 1.0 >50 4G 38 44
-1.0 -0.3 -0.3 1.0 >50 >50 >50 >50
-1.0 -0.3 -0.5 1.0 >50 >50 >50 >50
-1.0 0.5 -0.7 1.0 >50 >50 >50 >50
-1.0 1.0 0.8 0.9 >50 >50 >50 >50
-1.0 1.0 -0.7 0.5 >50 >50 >50 >50
-1.0 1.0 -1.0 0.8 >50 >50 >50 >50
-1.0 1.0 -1.0 1.0 >50 >50 >50 >50

for lx <ux < l2<u2,

(4.2)
l"i-*l

w"'(x)=<¡    y/Ui - X)(UX - X)(l2 - X)(U2 - X)

0 otherwise,

\L_-x\

for x e [lx, m,]u[/2, u2],

otherwise,

for x e [L , ux]U[L, u2],
co-hx) = \  v/(/1-x)(Ml-x)(/2-x)(u2-x) -*-|.-n

{. 0 otherwise.

The weight functions w"' and œ2 may be viewed as generalizations onto two

intervals of the ordinary Chebyshev weight function. The associated orthogo-

nal polynomials P"1 , PJ were studied by Peherstorfer [16]. In particular, he

derived a recurrence relation for the three-term recurrence coefficients. Using

these polynomials, we obtain Table 4.2.

Table 4.2

Performance of the Stieltjes algorithm and the modified

Chebyshev algorithms for œ given by (4.1)

h
-1.0

-1.0

-1.0

-1.0

"1

-0.1

-0.4

-0.8

0.8

0.2

0.6
0.9
0.9

"2

1.0

1.0

1.0

1.0

St.

>50

>50
>50

>50

Ch.

27

46

modCheb

U-(P^)

>50

>50
11

>50

U-(Pi?)~
>50

42

37

>50

Now the performance of modChebUpdate is indeed better, but in general not
as good as Stieltjes.
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Table 4.3

Performance of the Stieltjes algorithm and the modified

Chebyshev algorithms for co given by (4.3)

modCheb

"t «2 St. Ch. U-(Ln) U-(P^) IMPS?)
-1.0 -0.1 0.2 1.0 24 27 25 27 27
-1.0 -0.4 0.6 1.0
-1.0 -0.8 0.9 1.0
-1.0 0.8 0.9 1.0 34 35 36 38 38

The next computations are based on a different representation of w.  For

lx <ux < l2< u2 we have

(4.3) w(x)=^/i>(<i](x)+^/2>„2](x)=^/i;tt2](x)-^ai>/2](x).

Using the second representation (4.3) of œ we obtain Table 4.3.

As one might expect, here all algorithms tend to be unstable. It seems that

this approach is only of academic interest.

Example 4.2. Let c, := (lx + ux)/2 and dx := (ux - lx)/2. Define the weight

functions ojx(x) := [d2 - (x - Cj)2]-^2^  u x(x), w2(x):= äf{l u](x) ,and

(4.4) œ(x) = tox(x) + œ2(x).

p^ ' is now a suitably scaled Chebyshev polynomial of the first kind. Although

wx and co2 have a "different nature", the algorithms have the same qualitative

behavior as in Example 4.1, see Table 4.4; compare also Gautschi [4, Example

4.9].

Table 4.4

Performance of the Stieltjes algorithm and the modified

Chebyshev algorithms for œ given by (4.4)

-l.O
-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

"1

-0.1
-0.4

-0.8

0.8
-0.3

-0.3

0.5"

1.0

1.0

1.0

1.0

0.2

0.6

0.9
0.9

-0.3

-0.5

-0.7

0.8
-0.7

-1.0

-1.0

"2

1.0
1.0

1.0

1.0

1.0

1.0

1.0

0.9

0.5
0.8
1.0

St.

>50
>50
>50

>50
>50

>50

>50

>50

>50

>50
>50

modCheb

Ch.

34

>50

>50

>50

>50

>50

>50

>50
>50

U-(L„)

25

>50
>50

>50

>50
>50

>50

>50

>50

U-(Pît')

>50
>50
27

>50

U-(P^)

>50

31

>50
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Example 4.3. Let   c¡   :=   (l¡ + u¡)/2,   di   :=   (u¡ - l¡)/2,  and   w,(x)   :=
y y   _\ ¡y

[d¡ -(x-c¡) ]   ' M?[L u](x), i=l,2. The polynomials y/n that are orthogonal

in [lx, ux] U [l2, u2] with respect to the weight function

(4.5) eu(x) = cox(x) + co2(x)

were studied by Saad [17], for /, < ux < l2 < u2, in connection with the

solution of indefinite linear systems. He derived a method for computing these

polynomials by exploiting properties of Chebyshev polynomials.

Note that the orthogonal polynomials y/n are also of interest in Gaussian

quadrature. Here, one has now the possibility to deal in a closed form with

functions having a singularity in the interior of a given interval [/, u], e.g.,

/ = /, < ux = l2 < u2 = u.

Again, the Stieltjes algorithm as well as the modified Chebyshev algorithms

behave as in the previous examples; cf. Table 4.5.

Table 4.5

Performance of the Stieltjes algorithm and the modified

Chebyshev algorithms for to given by (4.5)

modCheb

"i «2 St. Ch. U-(Ln) U-(P^) U-(PJ,2)

-1.0 -0.1 0.2 1.0 >50 35 29 >50 >50
-1.0 -0.4 0.6 1.0 >50 >50 >50
-1.0 0.9 1.0 >50 15
-1.0 o.s 0.9 1.0 >50 >50 >50 >50 >50
-1.0 -0.3 -0.3 1.0 >50 >50 >50
-1.0 -0.3 -0.5 1.0 >50 >50 >50
-1.0 0.5 -0.7 1.0 >50 >50 >50
-1.0 1.0 0.9 >50 >50 >50
-1.0 1.0 -0.7 0.5 >50 >50 >50
-1.0 1.0 -1.0 o.s >50 >50 >50
-1.0 1.0 -1.0 1.0 >50 >50 >50

Example 4.4. In this example we consider the weight function co(x) := œ"1 (x) +

co2(x), where œu' and a>2 are defined by (4.2). We have

(4.6)
|x-(«,+/2)/2|

co(x) = {  2v/(/1 - x)(«, - x)(/2 - x)(u2 - x)

0

for x € [lx, ux]li [l2, u2],

otherwise.

The symmetric case lx = -u2 and ux = -l2 is of interest in the diatomic

linear chain (Wheeler [21]). This special case has been studied also by Gautschi

[6]. He computed the three-term recurrence coefficients in closed form.

However, for the general case we obtain Table 4.6.
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Table 4.6

Performance of the Stieltjes algorithm and the modified

Chebyshev algorithms for œ given by (4.6)

modCheb

«i "2 St. Ch. U.(L„) U-(P^) u.(P!.2)
-1.0 -0.1 0.2 1.0 >50 35 33 >50 >50
-1.0 -0.4 0.6 1.0 >50 10 >50 >50
-1.0 -0.8 0.9 1.0 11 11 11
-1.0 0.8 0.9 1.0 >50 >50 >50 >50 >50

As long as the gap between the two intervals is not too big, the Stieltjes

algorithm and the modified Chebyshev algorithm based on the orthogonal poly-

nomials with respect to œ"' and œ2 perform very well.

Example 4.5. Let

(4.7)      œ(x) := ù)x(x) + œ2(x) =
1   for xe [-1.0,-0.4] U [0.6, 1.0],

0   otherwise.

Figure 4.7 shows the corresponding orthonormal polynomials of degree 2 (dot-

ted curve), 3 (continuous curve), 4 (dashed curve), and 5 (dash-dotted curve).

-1        -0.8      -0.6      -0.4      -0.2        0 0.2       0.4       0.6        0.

Figure 4.7

Orthonormal polynomials of degree 2,3,4,5 with

respect to œ given by (4.7)
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Here, the orthonormal polynomial of degree 3 has a zero in the gap [-0.4,

0.6]. However, it is easy to show that orthogonal polynomials on two disjoint

intervals have at most one zero in the gap (see, e.g., Szegö [19, p. 50]).

Conclusions

The Stieltjes algorithm seems to be the method of choice for generating or-

thogonal polynomials over several intervals in the circumstances considered

here. It is stable in almost every case and, unlike in the usual situation, the

computation of the inner products is relatively simple. But, if the map from

the modified moments to the recurrence coefficients is well-conditioned, one

can also choose one of the algorithms based on modified moments. They are

in particular attractive when the required modified moments are known analyt-

ically. In this case the complexity of these algorithms does not depend on the

number of underlying intervals.

The Stieltjes algorithm as well as the algorithm for computing the modified

moments is straightforward to parallelize.
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