
mathematics of computation
volume 56, number 194
april 1991, pages 859-865

AMICABLE PAIRS OF THE FORM (i, 1)

PATRICK COSTELLO

Abstract. A method is given for finding amicable pairs of a certain type. When

implemented, thirteen new amicable pairs were discovered. Using methods for

finding new pairs from known pairs, the thirteen new pairs generated 64 other

new pairs.

1. Introduction

An amicable pair is a pair of distinct positive integers (a, m) where each

integer is the sum of the proper divisors of the other. If we let a(x) denote

the sum of all divisors of x, then saying that (a, m) is an amicable pair is

equivalent to saying a (a) = a(m) = a + m .

In the 1700's Leonhard Euler made a systematic study of many of the forms

that amicable pairs have. He developed several methods for finding pairs and

used his methods to discover 59 amicable pairs [3]. One particular form that

Euler discovered was the following:

(es, ep),

where 5 is the product of distinct primes not dividing the common factor e

and p is a single prime not dividing es. Recently, pairs of this form have been

labelled as type (/, 1), where i is the number of primes involved in s and 1

refers to the fact that p is a single prime [8]. It is not difficult to see that i

must in fact be greater than 1. A good question is, how big can i get?

The only pairs known prior to Euler were three (2,1) pairs:

(220, 284) = (22 • 5 • 11, 22 • 71) (Pythagoras),

(17296, 18416) = (24 • 23 -47, 24 - 1151) (Fermât),

(9363584, 9437056) = (27 • 191 • 383, 27 • 73727) (Descartes).

Among Euler's pairs were thirteen (2,1) pairs, including the first known odd

pairs. In 1946 Edward Escott [4] produced a list of 219 new pairs that contained

seven (3,1) pairs. In 1968 Elvin Lee [5] published the list of all known pairs

to that point, including six (4,1) pairs that he discovered. In 1982 Herman te

Riele [7] found the first (5,1) pair.

Received September 6, 1989.

1980 Mathematics Subject Classification (1985 Revision). Primary 11A25.
Key words and phrases. Amicable pair.

©1991 American Mathematical Society
0025-5718/91 $1.00+ $.25 per page

859

860 PATRICK COSTELLO

It is the intent of this paper to show one method for discovering pairs of the

type (i, 1) and to list some results obtained through a computer implementa-

tion of this method.

2. The algorithm

Suppose we are searching for an amicable pair of the form (es ,ep), where

p is a prime, s is a product of at least two distinct primes, p does not divide

s, and p and s are relatively prime to e. Since a is a multiplicative function,

the condition that a(es) = a(ep) implies that a(s) = a(p) = p + 1. Hence,

a(s) - 1 must be prime. The condition that a(es) = es + ep implies that

a(e) _ s + p _ s + a(s) - 1

e a(s) a(s)

These observations lead to the following two-step algorithm:

Step 1. Choose a range of s-values.

For each 5

If s is not prime then

Calculate a(s)

If a(s) - 1 is prime then

Save s and (s + a(s) - l)/a(s) in a list

Step 2. Choose a range of e-values.

For each e

Calculate a(e)/e

Search the list created in Step 1 for a match

If a(e)/e = (s + a(s) - l)/a(s) then

If (e and s are relatively prime) and

(e and a(s) - 1 are relatively prime) then

Print that es, e(a(s) - 1) is an amicable pair.

Let us see how this algorithm works on a small example. In Step 1 choose j

to be odd values ranging from 9 to 99. (See the beginning of §4 for a reason to

choose just odd values.) The list of s- and (s + (t(s) - l)/ff(s)-values to save is:

15,19/12; 21,13/8; 33,5/3; 35,41/24; 51, 61/36; 55,7/4 ; 57, 17/10;
63,83/52; 65,37/21; 85,16/9; 93,55/32. When e = 4 in Step 2, we
would search the list for ff(4)/4 = 7/4, which corresponds to s = 55. Since

4 and 55 are relatively prime, and 4 and 71 are relatively prime, we get the

Pythagorean pair (220, 284). When e = 819 in Step 2, we get the Euler pair

(32 • 7 • 13 • 5 • 17, 32 • 7- 13 • 107).
Technically, this algorithm will find more than just (/, 1) pairs because s■y

was not restricted to be a product of distinct primes. For example, 63 = 3 -1

was an s-value that got put into the list, but 63 is not the product of distinct

primes. If a pair (e • 63, e • 103) were to be discovered, it would be labelled an

irregular or exotic pair. Such a pair would be marked type X. There are very

few known exotic pairs that would be produced from this algorithm, but they

AMICABLE PAIRS OF THE FORM (i, 1) 861

o

should not be discounted altogether. If s-values in Step 1 ranged from 5-10

to 6 • 109, we would save 5 = 172 • 59 • 315461. Letting e = 23 • 37 in Step 2,

we would obtain the known exotic pair

(23 • 37 • 172 • 59 • 315461, 23 • 37 • 5810810039).

3. Computational details

This algorithm requires that three functions be readily available. First, one

needs a function that tests if the input to the function is prime or not. If

the numbers to be tested for primality are not extremely large, a sophisticated

primality test is not really necessary. Trial division by 2, 3, and every odd

number after 3 until a divisor is found or the square root of the input is exceeded

would be a suitable implementation of this function.

The second function needed is one to calculate the sum of all the divisors

of the input. Suppose x is the input. A simple way to compute a(x) is to

initialize s to be 0 and for each divisor d between 1 and v^ to increment s

by d + x/d (except when d = \fx). Since this method requires \[x tests for

division for every input x, and since the algorithm calls for submitting many

values to this function, one might want a more efficient implementation.

The following method is a more efficient method for computing a(x) that

takes advantage of the multiplicative nature of a, i.e., if x = pax{p22 ■■ -parr,

where the pi are distinct primes, then

a(x) = a(pax')a(pa22)---a(par').

Initialize 5 to be 1. Do trial division of x by 2,3, and odd numbers after 3.

When a prime divisor p is found, repeatedly divide x by p to determine the

exact power of p that divides x. At the same time sum up the powers of p

including p . This can be accomplished with the following process:

powersum <— 1

power <— 1

while p divides x do

power <— power * p

powersum *~ powersum+power

x 4- x/p

endloop

When the loop is exited, powersum holds the value a(pa), where a is the exact

power of p that divides x . Multiply this onto the variable s . Since x has been

reduced by dividing out p", the next divisor to be found in the trial divisions

will be a prime. When x becomes 1 or the trial divisor becomes greater than

y/x, we exit the function. In the case that x becomes 1, a(x) is in s. In the

case that the trial divisor is greater than y/x, a(x) is 5 times (x + 1).

862 PATRICK COSTELLO

As an example of how efficient this implementation for calculating a(x)

is, consider an input of x = 378125. Do trial divisions by 2, 3, and 5 and

discover that 5 is a divisor. One stays in the loop described above five times

for p = 5 since 5 divides x. When the loop is exited, 5 = powersum =

1 + 5 + 52 + 53 + 54 + 55 = 3906 and x = 121. Do trial division by 7, 9, and
11 and discover that 11 is a divisor. One stays in the loop described above two

times for p = 11 and upon leaving, 5 = 3906 * (1 + 11 + 112) = 519498. Since

x has become 1, one quits. Note that the last trial division done this way is by

11 versus doing trial divisions (as suggested in the simple implementation) by

all integers less than yfx = 614.9.
The third function the main algorithm needs is a function to compute the

greatest common divisor of two integers. Step 2 requires this to determine when

two numbers are relatively prime. This function is most efficiently implemented

using the Euclidean Algorithm [6].

One can separate the two steps of the main algorithm into two separate com-

puter programs. The program that implements Step 1 should save the list of s-

and (s + a(s) - l)/<7($)-values in a data file. This allows for various ranges of

e-values to be compared with a single range of s-values.

Because of the internal computer inaccuracies involved in real number com-

parisons of the form "if a(e)/e = listvalue then... ", it is advantageous to save

the fractions (s + a(s) - l)/a(s) as a pair of integers representing the numera-

tor and denominator. We use the greatest common divisor function to find the

gcd of s + a (s) - 1 and a(s), say g. Then we actually save the integer pair

((s + a(s) - l)/g, a(s)/g). In the program that implements Step 2, we similarly

reduce o(e)/e to its reduced form, say N/M, and search the data file saved in

Step 1 for a match with the integer pair (TV, M). In the case of a match, note

that since o(s) is not really in the data file, it must be recomputed in order to

test if e and a(s) - 1 are relatively prime.

It turns out that the data file saved in Step 1 is a large file for any reasonable

range of s-values. Consequently, doing a linear search of the data file in Step

2 for each ¿-value would make the algorithm quite slow. One solution to this

problem is the following idea. At the beginning of the Step 2 program read in

the data file saved by Step 1 and store the values in a table by applying a hash

function to the numerator and denominator pairs. Then as one goes through

the e-values, a quick check for a match can be done by applying the same hash

function to the numerator and denominator of the reduced form of o(e)/e.

4. Restrictions and results

Restricting s-values in Step 1 to odd integers is based on the conjecture that

there are no odd-even amicable pairs. (It has been shown that there are no

odd-even (2,1) pairs [2].) For if 5 is even and a(s) - 1 is an odd prime, and

e and 5 are relatively prime, then e must be odd and so (es, e(a(s) - 1)) is

an odd-even pair.

AMICABLE PAIRS OF THE FORM (i, 1) 863

A program was written in Pascal to implement Step 1 and run on a VAX

11/785 minicomputer with all odd s-values ranging from 9 to 105. While not

requiring much computer time, the program used up a lot of disk space to store

the list of s- and (s + a(s) - l)/a(s)-values. Just within this particular range

there are 10360 different s-values to save. In order to discover new amicable

pairs one needs to find ej-values greater than 101 because all amicable pairs

with smaller integer less than 101 are known [8]. Consequently, we wanted to

let 5-values get fairly large (at least to 10), but file space limitations (as well as

main memory limits on the size of the hash table in Step 2) prohibit saving all

s-values less than 107. It was decided to save only the s-values less than 10

that contained a numerator < 50000 when (s + a(s) - 1)/<j(s) was reduced.

It took approximately 16 hours of CPU time on the VAX to create the data

file that contains all odd s-values satisfying these restrictions.

A second program was written in Pascal to implement Step 2 and run piece-

meal on e-values ranging from 4 to 5-10 . The program utilized the idea of

applying a hash function to each numerator-denominator pair from the data

file of Step 1 and storing s and the pair in a table. The program also checks

for the possibility of several s-values having the same numerator-denominator

pair when a match with a(e)/e is found. For example, when s is 205, 25705,

and 35905, one gets the numerator-denominator pair (38, 21). Then e = 5733

actually matches with three 5-values and one obtains three different amicable

pairs.

This second program was very fast when the range of e-values was small,

but slowed down considerably on larger values. To do just the final range of

e-values chosen, 4.5-10 < e < 5 • 10 , the program required nearly 14 hours of

CPU time on the VAX. While 49 previously known pairs were obtained by this

second program, twelve new (3,1) pairs and one new (4,1) pair were discovered.

Their factorizations are listed in Table 1. Notice that pairs 7 and 9 and pairs

10 and 11 demonstrate the fact that several different e-values can also match

up with a single s-value.

In addition, Table 1 lists the number of "daughter" pairs generated by each

pair. These are new amicable pairs that are found by applying a few clever tricks

to a known pair and arriving at new pairs that have much in common with the

known pair. 60 of the daughter pairs were generated using the ideas described

in [9]. After sending the "mother" and "daughter" pairs to H. te Riele, he was

able to find the additional four "daughter" pairs using some of his breeding

programs.

Pairs 5, 6, and 12 also generate Thabit rules as described by W. Borho in [1],

This is an additional method for generating new amicable pairs from known

pairs that depends heavily on primality testing of large numbers. When H. te

Riele checked the Thabit rules by testing primality of all terms less than 10100 ,

he found that no new pairs were generated .

864 PATRICK COSTELLO

Table 1

New amicable pairs of type (i, 1)

number of

type pairs daughter pairs

(3,1) 3 • 52 • 11 ■ 31 • 7 • 67 • 2749 1
3 - 52 • 11-31- 1495999

34 • 5 • ll3 • 41 - 431 • 439 13

34 • 5• ll3 • 7983359

33 - 52 - 312 • 17-29-61 3

33-52-312-33479

36-5- 13-17- 149-1637 1

36-5- 13-4422599

32-5-13-463-11 • 19-6481 1

32-5- 13-463- 1555679

32-52-13-199-17-269-397 17

32-52- 13-199- 1934279

34-7-ll2-23-43-53-919 1

34-7- ll2 - 23 • 2185919

34-5-11-503-41-59-2011 5

34 • 5 • 11 • 503 • 5070239

35 • 72 -13 • 23 • 43 * 53 - 919 1

35-72-13-23-2185919

33-5-19-37-41-73-83-163 6

33-5- 19-37-41 • 1019423

32-7-13-19-37-41-73-83-163 6

32-7- 13-19-37-41 -1019423

3 • 5 -72 • 419 • 11- 17-11731 4

3 - 5 - 72 -419 • 2534111

(4, 1) 34 - 5 - 113 - 7 - 17-47- 1129 5
34-5-113-7810559

5. Conclusion and future work

The nice thing about this approach to discovering new amicable pairs is that

new pairs can be discovered with single-precision arithmetic on 32-bit comput-

ers. This approach, when restricted to e- and s-values less than 10 , requires

no multiple-precision software and can produce new amicable pairs up to about

18 digits long. This approach also lends itself quite readily to parallel processing.

If one makes the Step 1 data file available to several processors (or machines),

one can have each processor (or machine) work on a different range of ¿-values.

amicable pairs of the form (/, 1) 865

Acknowledgment

I want to thank M. Garcia for his suggestion that I pursue this very profitable

line of investigation.

Bibliography

1. W. Borho, On Thabit ibn Kurrah's formula for amicable numbers, Math. Comp. 26 (1972),

571-578.

2. P. J. Costello, Amicable pairs of Euler's first form, J. Recreational Math. 10 (1978), 183-189.

3. L. Euler, De numeris amicabilibus, Leonardi Euleri Opera Omnia, Ser. I, Vol. 2, Teubner,

Leipzig and Berlin, 1915, pp. 59-61; 86-162.

4. E. B. Escott, Amicable numbers, Scripta Math. 12 (1946), 61-72.

5. E. J. Lee, Amicable numbers and the bilinear diophantine equation, Math. Comp. 22 (1968),

181-187.

6. K. H. Rosen, Elementary number theory, 2nd ed., Addison-Wesley, Reading, Mass., 1988.

7. H. J. J. te Riele, Table of 1869 New Amicable Pairs Generated from 1575 Mother Pairs,
Report NN 27/82, Mathematical Centre, Oct. 1982.

8._, Computation of all the amicable pairs below 1010 , Math. Comp. 47 (1986), 361-368.

9. _, On generating new amicable pairs from given amicable pairs, Math. Comp. 42 (1984),
219-223.

Department of Mathematics, Statistics, and Computer Science, Eastern Kentucky
University, Richmond, Kentucky 40475-3133

