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A CONVERGENCE ANALYSIS
FOR NONSYMMETRIC LANCZOS ALGORITHMS

QIANG YE

Abstract. A convergence analysis for the nonsymmetric Lanczos algorithm is

presented. By using a tridiagonal structure of the algorithm, some identities
concerning Ritz values and Ritz vectors are established and used to derive ap-

proximation bounds. In particular, the analysis implies the classical results for

the symmetric Lanczos algorithm.

1. Introduction

Lanczos' algorithm is one of the most popular methods for computing some

extreme eigenvalues of large symmetric matrices. An elegant theory and analy-

ses of the symmetric Lanczos algorithm have been developed since the 1960's,

which include error bounds of Kanial, Paige, and Saad (see [3, 7, 10] or [8]).

At the same time, considerable effort has been made to generalize this work to

nonsymmetric problems. The idea of tridiagonalization is naturally extended

and yields a two-sided nonsymmetric algorithm (see [4, 9, 2]). However, sev-

eral substantial problems, e.g., a breakdown phenomenon and a convergence

analysis, remain unsolved.

The Lanczos algorithm was originally introduced as a method to tridiago-

nalize a general matrix [4]. Later it was found that it can be used to compute

some extreme eigenvalues. It can be regarded, in particular, as a Rayleigh-Ritz

projection method using Krylov subspaces; and based on this, a convergence

analysis was established using the minimax theorem [3, 7, 10]. Since there is

no minimax characterization for general matrices, this analysis cannot easily

be generalized. Nevertheless, some approaches have been suggested in this re-

gard. In [11] the idea using projection on Krylov subspaces is extended to show

that some eigenvectors are close to the Krylov subspaces. The recent work [ 1 ]

establishes some properties of the Lanczos polynomials which can be used to

explain the convergence of the Lanczos algorithm. In [5, 13], by using a mini-

max theorem, the classical method is applied to definite matrix pencil problems.

However, the result there suggests that the classical approach may not be the

best for nonsymmetric problems. We therefore take another look at the Lanczos
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algorithm and find that it is essentially a method of approximating a tridiag-

onal matrix using its submatrices. It turns out that employing the tridiagonal

structure of the algorithm is an appropriate approach.

We shall present a convergence analysis for the nonsymmetric Lanczos al-

gorithms. Our analysis is based on the tridiagonal structure and is completely

different from the classical approach. In particular, we shall reprove some clas-

sical results, and some of our results are even new for the classical symmetric

case.

We first introduce the Lanczos algorithm in §2. Then some identities are es-

tablished for tridiagonal matrices in §3. The approximation bounds are derived

for Ritz values in §4 and for Ritz vectors in §5. Following that, the implications

of this analysis to the symmetric Lanczos algorithm are discussed in §6. Finally,

some numerical examples are presented in §7 and some remarks in §8.

Besides the standard notation in numerical analysis, we will use the following

notation. / will denote an identity matrix and Im will specify the m x m

identity matrix. e¡ m will denote the ith coordinate vector of Rm, i.e., Im =

tei,m ' • •• ' em,ml '

2. Lanczos algorithms

In this section, we briefly introduce the Lanczos algorithms. The details can

be found in [9] or [2].

Given a matrix A and two starting vectors x, and yx in C" , the nonsym-

metric Lanczos algorithm, in step m, generates sequences [xx, ... , xm] and

[yx, ... , ym} via a three-term recursion, so that

XmA - TX   = ym+\em,mXm+l '

and

WM***.

where Xm = [xx, ... , xl, Ym = [yx, ... , yl, and

T   =
m

ß2

V

\

an,J

The algorithm continues until breakdown, that is, when x*m+xym+x = 0 at some

step m. This is one of the serious problems in the nonsymmetric Lanczos

algorithm (see [9] for a detailed discussion). Numerically, it is rare to have

an exact breakdown. The real difficulty comes when the iteration is close to

breakdown. In this theoretical analysis, we always assume that no breakdown

occurs.
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From the above construction, it is easy to see that

(2.1) K¿Ym = Tm

and

XmYm = Im-

In particular, at step n, we have X* = Y~ . Then A is similar to Tn, and

the eigenpairs of Tn give those of A. This was originally used as a method

to tridiagonalize a matrix A . However, the attractive feature of the Lanczos

algorithm is that it usually stops at m < n, and some extreme eigenvalues of

Tm can be used to approximate some eigenvalues of A. Specifically, at step

m, we find the Jordan decomposition of Tm ,

(2.2) Tm = P*BQ,        P*Q = I,

where 8 is the Jordan canonical form of Tm . Then the eigenvalues of Tm (or

8) are called Ritz values. Further, letting

(2.3) U = [ux,...,um] = XmQ\        V = [vx,...,vm] = YmP\

we call u* (resp. v¡) a left (resp. right) Ritz vector. We will show that some

Ritz values and Ritz vectors give good approximations to the eigenpairs of A .

If A is symmetric, we take the initial vectors xx = yx. Then the algorithm

yields Xm = Ym and a symmetric Tm, which is just the classical symmetric

Lanczos algorithm.

3. Tridiagonal matrices

The symmetric Lanczos algorithm has been successfully treated as a Rayleigh-

Ritz projection method using Krylov subspaces. For nonsymmetric matrices, it

can also be viewed as an oblique projection method (see [11]). The approach

is, however, not as successful as in the symmetric case. As mentioned before,

the Lanczos algorithm is closely related to its tridiagonal structure. To analyze

the algorithm, we first consider tridiagonal matrices.

In the following we always denote an n x n tridiagonal matrix Tn by

fax    y2 \

Tn
ß 2

y• n

v "n n '

Lemma 3.1. Let Tm be a tridiagonal matrix; then e* mTmem m = 0 for k <

m-2 and e\ mT™   emm = y2---ym.

Proof. It is easy to check that, for k < m - 1

^.m7^ = (*>••• ,*>vy/t+i>0>---> °).

where the product of the y 's is in position k + 1.   From this, the lemma

follows.   Q
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The next two theorems establish some relations between a tridiagonal matrix

and its submatrices.

Theorem 3.2. Let Tm be the m x m leading submatrix of a tridiagonal matrix

Tn. Then

(3-D <nTkn=(e\mTkm,0)   fork<m-l

and

Proof. We prove (3.1) only. Let

(T       E   \T = I   & I
"   \e   t   yv n-m '

where E = ym+lemme¡n_m and Ê = ßm+xex<n_me*mm.  If, for some k <

m-2,

<,nTkn={e\,mTkm,0),

then

<,nTn+X - («iVÎ. 0)7; = (elmTkm+l, elmTkmE) = (e^T^1, 0),

where by Lemma 3.1, e\mTkmE = ym^e\mTkmemme\n_m = 0.  Hence the

theorem follows by induction.   O

k k
Conceptually, this theorem says that Tm and Tn  have essentially the same

k k
first row (column) for k < m - 1. Furthermore, Tm and Tn  have the same

(1.1) element for k < 2m - 1, as shown in the next theorem.

Theorem 3.3. Let Tm be the m x m leading submatrix of a tridiagonal matrix

Tn. Then

(3.2) e*   Tke, _ = e*    Tke. m   for k < 2m - 1

and

(3-3) eXnTn  ex n=eimTm ex m + ß2---ßm+xy2---ym+x.

Proof. We first prove by induction that, for k > m + 1,

(3.4) e*   Tk = (e* mTk+e*    T'"~xEÊTk~m~x

k—m—2 \

+ <,m    E    GiêTln><,mH),
i=0 '

where Gt and H are m x (n - m) matrices.

From (3.1), we obtain

»    Tm+\_(  .     Tm+1        *     T™-lE£     *    H)
e\,n1n        -ye\,m1m       +e\,m1m      ^^ ' el ,mn > '
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where H = T™E + T™~xETn_m . We now assume that (3.4) is true for some

k > m + 1. Then, for k + 1,

.     -Jc+l _ (   *     Tk+l+p*     j.m-1    £    k-m
t\,n1n       ~ lel,mJm      ^trl,mim      i^^1m

k-m-1K—m—i \

+ '\,m    E    Gi-lÊTL+<,mHÊ'<,mH),
i'=l

where H = 7¡£ + T^EET^E + J¿^~2 GßT^E + HTn_m . Letting

G i = G¡_x and G0 = H, we obtain (3.4) for k + 1. So (3.4) is proved.

Now, for k < m, (3.1) leads to (3.2). For m + 1 < k < 2m - 1 and

k = 2m, (3.2) and (3.3) follow from (3.4) and Lemma 3.1 by a straightforward

computation.   D

We remark that it is possible to derive some formulae of form (3.3) with

larger exponent k by using (3.4). The resulting expression, however, will be

very complicated and of little use.

4. Error bounds

This section will develop error bounds for Ritz values. We define P to be

the set of polynomials of degree not greater than k , and MP to be the set of

monic polynomials of degree k .

Let the Lanczos algorithm be applied to a matrix A and

A = zr\z;,    z;zr = i,

be the Jordan decomposition of A.  Then Zr = [zx  , ..., z^'] (resp. Z¡ =

[z\ , ... , z^']) contains the right (resp. left) eigenvectors and the generalized

eigenvectors. Letting

(4.1) X = z;xn = (xu)   and   Y = Z*Yn = (yi}),

with Xn , Yn being generated by (2.1), we have

(4.2) Tn = X*NY

and

X*Y = I.

Note that xn = z)   xx is the z\ ' component of the initial vector xx, i.e.,

;=i

and y.j = z\ '*yx is the z¡' component of the initial vector yx, i.e.,

nE(r)

/=i
Using the properties obtained in §3, we establish the first theorem.

(4.3) xi=Exnzi
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Theorem 4.1. Let X = (xi}), Y = (y. ) and P = (p¡,), Q = (q^) be defined as

in (4.1) and (2.2), respectively, and let

A = diag[A,, Às+X,..., AJ,        8 = diag[8,, 6l+x ,...,6m],

where

A,

(K   »

V
1

eC1 ®i =

(QX     1

V

\

1

exJ

eC
txl

-,2m-1
Then, for any f e P

(4.4)   e/'^h + E M^.^-i = E-Aw + E m««.>
5-1 « Í-1

r(')o w       V^   /•/! ^   „        V^ /<<),

;'=0 i=í+1

and, for any f e MP m ,

5-1
A')

i=0 i=í+i

En^+EMto
(4.5)

¡=o 1=5+1

r-i m+l

^nW+EM^i + Il^.
(=0 ¡=r+l 7=2

/'rao/. Substituting (4.2) and (2.2) into (3.2) of Theorem 3.3, we obtain

<n**A%„ = elimJP*e*ôeljM

for k < 2m - 1 . Then, for any / e P2m_1 , we have

A straightforward computation from this proves (4.4). Similarly, we can prove

(4.5), using (3.3).   D

We can use this theorem to derive some identities concerning approximation

errors. We state the following theorem for a diagonalizable matrix.

Theorem 4.2. Let A be a matrix with n distinct eigenvalues and \XX - 9k\ =

min^A, -6j\.

(I) If k > 2, i.e., 6k is a semisimple eigenvalue, then, for any h € P m~ ,

1
A, - 0t = -EvAz-ww«

(4.6)
1      *     h(Xx)xuyxx v    T=2

+ Y,h(i\ei)ai+¿Z{ei-ek)h(ei)piXqiX),
1=0 i=t+i

where ai = (6X - dk)cbi + (i + l)<w/+1 with ¿bt = 0.
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(2)Ifk=l, then, for any h e p2m~'-1,

+ E(»i-»i),*(Wlflf,i).
i=í+i 7

/roo/. (1) For /c > 2, we substitute /(x) = (x - 6k)h(x) into (4.4) and obtain

(A, - ÖfcWW.J',, + ¿>, - Öfc)A(A#)xny„
i=2

f-1 m

/=0 í=í+l

It is easy to check that

i=0 i=0

This leads to (4.6).

(2) For Jfc = 1, we substitute f(x) = (x-6x)'h(x) into (4.4). Since /(,)(0,) =

0, 1 < / < r - 1, we get

(A! - ö.Mw.j',, + £>,- - e,)'*^)*,,?,, = j; (ö,. - e^hie,)?^.
1=2 i=i+l

This leads to (4.7).   D

Obviously, our method is not restricted to diagonalizable matrices. Instead,

it applies to any eigenvalues of a general matrix. For instance, if kx is an

eigenvalue with Jordan block of size s, we can use f(x) = (x - Àx)sh(x) in

(4.4) and subsequently obtain similar identities. However, the results are more

complicated. Such statements are therefore simply omitted.

To use the theorem, we choose for h a polynomial p so that p(kx) = 1 and

p(X¡) (i ^ 1), p(6¡) (i # k) are as small as possible. Then the right-hand side

of (4.6) or (4.7) is a small number, and Xx - 6k can be bounded by this number.

Clearly, the magnitude of the bound depends on the distribution of ki, 0;. On

the other hand, comparison between (4.6) and (4.7) suggests that convergence

of a Ritz value with Jordan block of size s is expected to slow down by an

order of 5.

To present some detailed bounds, we will concentrate on the case where

both A and Tm are diagonalizable. Let a (A) = [Xx, ... , ln) and o(Tm) =

{9X, ... ,6m} be the spectra of A and Tm , respectively, and let

tJ, = {A2,...,AJ,        ôx = {d2,...,dj.
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We then define

and

QIANG YE

e   (S) =       inf      max\p(x
pePk,p(xx)=\ xes

ix — AI
ôx (S) = max < |x - 6X | J J A-¿ :

les |A,-A|
'1 ^"1

for S c ax U ax.

Corollary 4.3. Let A and Tm be diagonalizable, with a (A) = {A¡, ... , Xn)

and o(Tm) = {6X, ... , 6m}. Assume that \XX - 8X\ = min;. |A, - 6 À, and let

ax = {l2, ... ,kn), dx = [62, ... ,6m}.

(I) If axl>ax = Sx U S2 with Sx and S2 disjoint, and s = \S2\ < 2m - 2,
then

\xx-ex\<e?m-2-s)(sx)âx(s2)

(4.8)
<ZU K\2 + EZ2 Kl2)''2 (E"=2 l^nl2 + ZI2 knl2)'/2

l*i.l M

(2) If <Tj = Sx U S2 with Sx and S2 disjoint, and s = \S2\ < m - 1, then

(EU\xn\2)i/2 (2Zl2\yn\2f2
(4.9)       |A1-01|<e{1M-1-,)(S1)á1(52U*.)

I*m 1^111

2m-2-i
Proof. (1) Substituting h(x) = p(x) YlXeS (x - A) for any p e P

p(Xx) = 1 into (4.6), we obtain

with

|A.-0.| =
\xuV11^111

- e <^ - wwi*n n ^ztt
JL6S, A652 ̂        A>

+ J2(ei-ex)p(ei)piXqiXY[([^
eies¡ xes2 K l      '

< max\p(x)\âx(S2)    J2 \*nyn\+ E M/il ) /l^iil
VA,e52 9,65,

2      r^m    1       ,2sl/2

< max|p(x)|r5,(52) (E^K.r + E^bni2)

(E"=2i^i2+Er=2igj2)'/2

1*11

This proves (4.8).
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(2) Substituting h(x) = p(x)U^s ud (x -A)  for any p e Pm  x s  with

p(Xx) = 1 into (4.6), we obtain

(¿,--A)
|A,-0,l =

xltylililí
E^-ww^« Il írnr

A,€5, A652Uâ, ^1      Aj

(Tn ix ñ1/2,r" iv iY/2
< max|p(x)|r51(52Ug1)^|X''N     ^^iN     .
" *est 1V 2     l'        |xu| |yu|

This proves (4.9).   G

We now analyze the magnitude of e\k\sx).   In [11], it is proved that if

k < \SX |, then there exists {a., ... , ak .} C Sx such that

fk+l
-i

-A,

■Pw- EIlEp

Furthermore, it is shown from this that e[ (Sx) is small when A, is well sep-

arated from {q, , ... , ak+x} ■ For details see [11]. Another analysis can be

conducted using Chebyshev polynomials [11, 6]. Let Sx lie inside an ellipse

and A, lie outside of it and on the major axis. More specifically, by a shift and

rotation we can assume that Xx = 0 and Sx lies inside of the ellipse E which

is centered at d and has foci at d + c and d - c and semimajor axis a with

0 < c < a < d (i.e., the real axis is the major axis of E and the origin lies

outside of E). Let Tk(x) denote the Chebyshev polynomial of degree k on

the interval [-1, 1] (see [6] or [8] for a detailed definition). Then

min     max \p(x)\ = max \pk(x)\ = Tk ( J) /Tk
p€P  ,p(A,)=l x£E X^E vc/

where pk(x) = Tk(^-)/Tk(^) (see [6] and references therein). Hence,

(4.10) £^(5,) < Tk (£) ¡Tk (£) .

Since 1 < f < ¿, we have Jfc(f) < ^(f). Furthermore, the bigger the

difference between ^ and ¿ , the smaller is the bound of (4.10). Note that -c

is a measure of separation of Xx from E, and f is a measure of flatness of

the ellipse E.

On the other hand, if s = \S2\ is small, SX(S2) is a bounded number. If

s = |52| is large and, in addition, |x - A| < \Xi - X\ for most X e S2 and any

x e 5,, then SX(S2) is a product of 5 numbers, most of which are less than

one. Hence it is a small number.

Thus, for an extreme eigenvalue Xx, we can partition a¡ Uâ, into a union of

Sx and S2 , so that Sx lies in a flat ellipse well separated from Xx and ? = \S2\

is small. Then Corollary 4.3 says that we can expect a good approximation

bound for A, .



686 QIANG YE

An alternative partition is by taking Sx and S2 calUôl in (4.8) (or 52 c ôx

in (4.9), respectively), with \S2\ = 2m-2 (resp. \S2\ = m-l). Since ef^SJ =
1, we have the following

Corollary 4.4. Under the hypotheses of Corollary 4.3, we have

fVn      lv    I2 4- N^"1     In    I21»1/2
|A, -0.|< min S.(S)[2"=2* '''  ,   ^\Pn\ )

1 '        5Ctr,Uâ, ,|5|=2m-2   ' [XjJ

/v^«     i,,    |2   ,   v^"1    l-   |2\l/2
x (E,-=2ly,-il + E,=2knl )

and

(Tn   Ix  \2)x/2 (Tn   lv  ñ1/2
(4.11)      |A,-0,|<       min      ¿,(Su g,)1^ ' '}N     ^|j;''|j     .

1 " -5Cff,,|S|=m-l    1V l; |X,,| |yn|

Finally, we remark that analogues of Theorem 4.2 and Corollaries 4.3 and

4.4 can be obtained by using (4.5) with polynomials of higher degree. However,

this increase in degree is not significant, and all such statements are therefore

omitted.

5. Ritz VECTORS

In the previous section, we only considered the convergence of Ritz values.

We note that the behavior of Ritz vectors could be quite different from that of

Ritz values. In some cases it is more appropriate to consider Ritz vectors and

invariant subspaces, e.g., when there are some close eigenvalues, or eigenvalues

with Jordan block of size greater than two.

In this section, we give an analysis for Ritz vectors. Again, we use the prop-

erties of tridiagonal matrices developed in §3. For simplicity, we always discuss

the case where both A and Tm are diagonalizable.

Theorem 5.1. Assume that A and Tm are diagonalizable.  Then, for any f e
pm-i

(5.1) X>iV(*,)*, = !>,/(*,)«„,
¡=i i=i

where z\ ' are the right eigenvectors and v¡ the right Ritz vectors.

Proof. By Theorem 3.1, for any / G Pm~ ,

/(%,„ = (f(Tm0Km)-

By (4.2) and (2.2), we have

r/,A>re,.„ =('»-),
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or

2rm)YeUn = Yn^f(ßlQe^) = Vf(e)QeUm.

Expanding this, we obtain (5.1).   D

For some Xk and 8¡, which are close to each other, we choose / so that

/(A,.) (i ¿ k) and f(8i) (i / /) are small and f(Xk) = 1. Assume that

f(e,)qnjiO.Thtn
vt = a(z[r) + we),

where a is a constant and

is a small vector compared to   zk .     A particular choice of  ^(x)   =

(x - 8X) ■ ■ ■ (x - 8,_x)(x - 0/+1) • • • (x - 0m) yields an expression of v¡ in terms

°f 4".
Corollary 5.2. Let g¡(x) = (x - 8X) ■ ■ • (x - 8¡_x)(x - 8¡+x) •••(x-6m). Under

the hypotheses of Theorem 5.1 and qlx ̂  0, we have
n

^^E^A)*.
1=1

for some constant a.

For a fixed /, there are some Xi close to 0 (j ^ /), in which case g¡(X¡) is

relatively small. Hence, v¡ is close to some spectral subspace, though 8¡ may

not be close to any eigenvalue. So in this case, v¡ can make a good starting

vector to find the remaining eigenvalues.

6. The symmetric case

In this section we apply our techniques to the classical symmetric case. In

particular, we are going to derive some generalizations of the classical bound.

For a symmetric matrix A , all the eigenvalues Xi and the Ritz values are real.

Let A, < • • - < Xn and 0, < • • • < 8m. Then X¡<8¡ for i = I,... ,m. The
classical convergence analysis compares A; with 0;, which is not necessarily

the best approximation to X¡. For example, if the initial vector xx has a

significantly small component in the direction of the eigenvector associated with

A,, then 8X will converge to A2 first. In such a case, a bound on \XX - 8X\ is

irrelevant. Without using the minimax theorem, our method does not require

this match in ordering. This allows us to compare an eigenvalue with the Ritz

value that is closest to it.

When considering the left end of the eigenvalues, we note that 8t decreases

as m increases. Then an approximation of 8¡ to Xk can only be improved if

9[ > Xk. Otherwise, 8¡ will depart from Xk and approach Xk_x. From this

point of view, we naturally consider Xk approximated by some 8¡ > Xk .

We have seen in §2 that the symmetric Lanczos algorithm can be obtained

by taking xx = yx in the nonsymmetric case. Furthermore, we have Xn = Yn,
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X = Y, and P = Q. Combining this with the previous results, we obtain the

following

Theorem 6.1. For a fixed Xk, let 8¡_x - Xk < 0 < 8¡- Xk (where 0O = -co).

Then

\Xk - 0,1 < \Xn - AJE'-=*+ll2*nl  inf Í  max<n |A(A,.)| : A € *} ,
\xkx\ \     — )

where <D = [h e p2(m-x); h(Xk) = 1, A(0,) < 0  (I < i < I - I) and A(0() > 0

(l+l<i<m)}.

Proof. By Theorem 4.2, for A € O, we have

o< -a  i e = E^^-^^^l^l'-E,^-^^)^.!2
AC4)l*ii

,2

<EL±i(VWÍMll
A(A,)|x;,|2

This proves the theorem.   D

Now consider the polynomial

A(x) = (x-01)2-..(x-0/_,)2r2_/f2jc;i"^~A"] •

It is easy to see that h(x)/h(Xk) e O.  Hence, we obtain the following more

general form of the classical bound (see [8]).

Corollary 6.2. Under the hypotheses of Theorem 6.1,

\1 fll<rlJ ,   |E"=fc+il^ill    TT(An~g|)     /i¿       (2Xk-Xk+\ ~Xn\

l**i I i=i \h-tíi) I \     A"    Ak+\      J

For Ritz vectors, Theorem 5.1 and Corollary 5.2 apply and give two new

results. In particular, we notice that Y™=x vif(8i)q¡x lies in the Krylov subspace.

Taking

h(x) = (x - ex) ■ '■■ (x - g;,,)^,! r* ~ ̂  ~x" J

in Theorem 5.1, we can obtain the bound of Saad concerning eigenvectors. We

will not state this result, but refer to [10] or [8] for the details.
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7. Examples

We present two simple examples in this section. Both are taken from the

nonsymmetric examples of [1]. For the sake of computational convenience, we

have used bound (4.11) in our calculation.

Example 1. Let the matrix be

A = diag[70 - 70/, -40 + 80/, 8 - 7/, -1

= diag[A¡, k2,k3, k4,k5],

and the initial vectors be x, = y, =[1,1,1,1,1]*

three Ritz values are

5/, 8]

Then for m = 3, the

0, =69.9-70.0/. 0, = -40.0 + 80.1/, 03 = 4.9 4.0/

to one decimal digit of accuracy. By taking S = {k2, k5} in (4.11), we obtain

the bound 0.346 for kx - 8X. By taking S = {kx, A5} , we obtain the bound

0.348 for A2 - 02.

Example 2. In this example,

^ = (7diag[10, 13-4/, 7 + 3/, -80/, -20 + 90i]U~x

= C/diag[A5, A4, A3, A2, kx]U~x,

with U and the initial vectors chosen randomly as

U =

/2113 + 2922/ 6284 + 5015/ 5608 + 9185/ 2321+2860/ 3076 + 6857/^
7560+5664/ 8497 + 4369/ 6624 + 0437/ 2312+1280/ 9330+1531/

2 + 4826/ 6857 + 2693/ 7264 + 4819/ 2165 + 7783/ 2146 + 6971/
3303 + 3322/ 8782 + 6326/ 1985 + 2640/ 8834 + 2119/ 3126 + 8416/

V6654+ 5935/ 684 + 4052/ 5443 + 4148/ 6525+1121/ 3616 + 4062//

and
/1.0942 +0.2736/\

0.6524-0.1925/

xx = yx =     0.6630 - 0.7264/
0.4387 + 0.5967/

V 0.0888 + 0.5170/7

For m = 3, the three Ritz values are

0, = -19.9524+90.2763/,     0, = 0.1894-79.8844/, 03= 11.6666+0.9774/,

By taking S = {k2, A4} in (4.11), the bound for kx - 0, is 0.435 . By taking

S = [kx, A3} the bound for A2 - 02 is 1.62.

8. Conclusion

The analysis of the nonsymmetric Lanczos algorithm is considerably more

complicated than that of the symmetric one. In this paper, we have developed a

convergence analysis which leads to the classical results for symmetric matrices.

To our knowledge, it is the only analysis of this kind. Furthermore, the analysis
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of Ritz vectors is new and demonstrates that some Ritz vectors which do not give

good approximations of eigenvectors may still be close to some small spectral

subspaces.

We remark that all the approximation bounds derived in this paper are not in-

tended to provide a practical computable estimation of the number of iterations

needed, but rather to demonstrate the convergence of the Lanczos algorithm.

As is known, the error bound for the largest or smallest eigenvalue in the

symmetric Lanczos algorithm depends only on the matrix A and the initial

vector Xj. In contrast to this, the bounds for all eigenvalues in the nonsym-

metric Lanczos algorithm depend on Ritz values as well. Unfortunately, there

is no guarantee that Ritz values will be well distributed. Indeed for nonsym-

metric matrices, the Ritz values can be anywhere in C. Then there could be

no convergence at all. At this point we should mention that when we talk about

convergence of the Lanczos algorithms, it is not strictly in the sense of math-

ematical convergence, even for the symmetric Lanczos algorithm. As is shown

in [12], there are always contrived choices of initial vectors that give rise to

nonconvergence of the Lanczos process. From this point of view, it is not rea-

sonable to expect a bound that guarantees convergence all the time, but only

a bound that reveals the convergence behavior. Of course, a bound depending

only on the matrix and the initial vectors would be most desirable.
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