
REVIEWS AND DESCRIPTIONS OF TABLES AND BOOKS

The numbers in brackets are assigned according to the American Mathemat-
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(1985 Revision) can be found in the December index volumes of Mathematical

Reviews.

24(41-02, 65Dxx].—Günther Nürnberger, Approximation by Spline Func-

tions, Springer, Berlin, 1989, xi + 243 pp., 25 cm. Price $39.50.

In the past 30 years, there has been an explosive development in the theory of

spline functions (piecewise polynomials and generalizations thereof) and their

applications. This great interest is due in no small part to the fact that splines

are ideal tools for use in approximating functions, and for designing methods for

solving problems numerically. While a number of monographs on splines have

appeared in the past 10 years, much of the theory has not yet appeared in book

form. This book helps fill this gap by providing a comprehensive development

of best approximation by splines, along with some related topics.

The book is divided into three parts. The first part (approx. 80 pp.) is devoted

primarily to various types of Chebyshev systems and their properties. The top-

ics discussed include divided differences, interpolation, existence, uniqueness,

strong uniqueness, characterization, and computation of best approximations

in each of the LX,L2, and L^ norms. Much of this material has been treated

in other books, but the unified treatment given here (most of the results are

given full and detailed proofs) provides a useful basis for the study of the rest

of the book.

The second part of the book (approx. 100 pp.) deals with various types of

Weak Chebyshev systems, and in particular with polynomial splines as their

most important example. First, the basic properties of splines (including B-

splines, zero properties, etc.) are developed. Then several special interpolation

methods are discussed. The most interesting sections deal with best approxima-

tion by splines with fixed knots. In addition to the usual questions of existence,

uniqueness, strong uniqueness, and characterization, the problems of continuity

of the metric projection, the existence of a continuous selection for it, one-sided

L, approximation and its connection with Gauss quadrature formulae, and the

optimal approximation of linear functionals are all treated in detail. A Re-

niez algorithm for finding best spline approximants in the uniform norm is also

presented. Many of the results in this part of the book are quite new.

The third part of the book is in the form of an extended Appendix (approx.

30 pp.), divided into three sections. The first section sketches the theory of best
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approximation by splines with free knots. The second section outlines ways of

defining bivariate splines, including tensor-products, blending, simplex splines,

and piecewise polynomial spaces on triangulations and other partitions. The

final section deals with the solution of ODE's by collocation. This part of the

book contains no proofs, but does cite a considerable number of references. A

bibliography of approximately 400 references is included.

This book should be of interest to researchers in the theory of splines, as well

as to users of splines in approximation and numerical analysis. It can be read

by anyone with a good background in elementary analysis. The material is well

organized, and the text reads very smoothly.

L.L.S.

25(94-01, 65T05, 68Qxx, 94A11].—Richard Tolimieri, Myoung An & Chao

Lu, Algorithms for Discrete Fourier Transform and Convolution, Springer,

New York, 1989, xv + 350 pp., 24 cm. Price $59.00.

Discrete Fourier transforms and finite convolutions form a mainstay of dig-

ital signal processing algorithms. Ever since the discovery of the Cooley-Tukey

fast Fourier transform, there has been a flurry of activity in designing efficient

algorithms for finite harmonic analysis, and these algorithms have found ap-

plications far beyond the realm of digital signal processing. There is now a

growing list of monographs devoted to these algorithms; we mention the widely

used references Blahut [1] and Nussbaumer [3].

The book under review presents a unified approach to many fast Fourier

transform and convolution algorithms, using matrix factorizations and tensor

products of matrices as the common themes. The individual steps in such an

algorithm are viewed as matrix operations, and the full algorithm amounts then

to a matrix factorization, typically involving diagonal matrices, permutation

matrices, and tensor products of relatively simple matrices. Conversely, matrix

factorizations of an appropriate type can be translated into algorithms. This

provides a systematic and mathematically appealing framework for the design

of discrete Fourier transform and convolution algorithms. This approach also

makes it easy to switch from parallelized to vectorized algorithms and vice

versa, as one can move from one to the other essentially by transposition of

the matrix factorization and by application of a commutation theorem for ten-

sor products of matrices. This allows an adaptation of the algorithms to the

available computer architecture.

After the necessary background on ring and field theory and on tensor prod-

ucts of matrices, a detailed discussion of the Cooley-Tukey FFT algorithm from

the viewpoint described above is given. Several variants of the Cooley-Tukey al-

gorithm, including those of Gentleman-Sande, Pease, and Korn-Lambiotte, are

also presented. These algorithms make use of the additive structure of residue

class rings of integers. The Good-Thomas algorithm is described as an exam-
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pie of an algorithm based on the multiplicative structure of such rings. Two

chapters are devoted to linear and cyclic convolution. Linear convolution is

identified with polynomial multiplication, and cyclic convolution is identified

with polynomial multiplication modulo a binomial x - 1. The basic tools

for the design of convolution algorithms are the convolution theorem and the

Chinese remainder theorem. The Cook-Toom algorithm, the Winograd small

convolution algorithm, and the Agarwal-Cooley algorithm are the principal con-

volution algorithms that are discussed. Convolution algorithms can be applied

to the design of multiplicative Fourier transform algorithms. This was first ob-

served by Rader who showed that for a prime p , a /?-point Fourier transform

can be computed by a (p - 1)-point cyclic convolution. This principle can be

extended to Appoint Fourier transforms for various values of N, such as prime

powers N or squarefree N. The duality between periodic and decimated data

established by the Fourier transform is studied and applied to the computation

of Appoint Fourier transforms, where N is an odd prime power. Fourier trans-

forms of multiplicative characters mod N and orthogonal bases diagonalizing

Fourier transform matrices are also discussed.

The underlying idea of the book, namely to present the algorithms for finite

harmonic analysis from the systematic viewpoint of matrix factorizations, is

certainly attractive. However, the execution of this idea leaves a lot to be de-

sired. The writing is repetitious and tedious, and the approach is numbingly

slow. For instance, an algorithm might first be presented for N = 15, then

for N a product of two distinct primes, then for N a product of three dis-

tinct primes, and finally for the general case of squarefree N, always with the

same arguments and usually with the same wording. The book could easily be

streamlined to half its size without any loss of information. A further irritant

is the sloppy attitude that pervades the book. On p. 79 the authors speak of the

"following diagram" and on pp. 271 and 274 of the " following table", but the

reader will look in vain for any of these. On p. 279, Problems 6 and 7 refer to

tables that do not exist. The definition of a subfield on p. 23 is worth repeating:

UF is a subfield of K in the sense that F is a subset of K containing 1, and it

is closed under the addition and multiplication in K". According to this "defi-

nition", the natural numbers would form a subfield of the reals! The distinction

between "relatively prime" and "pairwise relatively prime" is often not made.

In the statement of the unique factorization theorem for polynomials on p. 22

one has to assume that the irreducible factors are monic in order to guarantee

uniqueness up to the ordering of factors. On p. 16 the authors speak of the

"Euler quotient function" instead of the Euler totient function. There are many

misprints and even some systematic spelling errors. No serious attempt is made

to assign proper credit for the results that are presented. For instance, with

respect to the construction of orthogonal bases diagonalizing Fourier transform

matrices only papers from the 1980's are quoted, although it is well known that

this was first achieved by McClellan and Parks [2] and that the basic ideas go

back to Schur [4]. Overall, the careless and repetitious style takes away a lot of
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the pleasure one might have had in reading this book.

H. N.

1. R. E. Blahut, Fast algorithms for digital signal processing, Addison-Wesley, Reading, MA,
1985.

2. J. H. McClellan and T. W. Parks, Eigenvalue and eigenvector decomposition of the discrete

Fourier transform, IEEE Trans. Audio Electroacoust. 20 (1972), 66-74.

3. H. J. Nussbaumer, Fast Fourier transform and convolution algorithms, Springer, Berlin,
1981.

4. I. Schur, Über die Gaufischen Summen, Göttinger Nachr. 1921, 147-153.

26(60-02, 49D37, 60G15, 60G17, 60G35, 60G60, 62C10].—Jonas Mockus,
Bayesian Approach to Global Optimization—Theory and Applications, Math-

ematics and Its Applications (Soviet Series), Kluwer Academic Publishers,

Dordrecht, 1989, xiv + 254 pp., 24 \ cm. Price $59.00 /Dfl 190.00.

In the Bayesian approach to global optimization an objective function / is

a priori modelled as a realization of a stochastic process (also called random

function), which can be viewed as a probability distribution on a class of func-

tions. The objective function is evaluated in certain points, and the posterior

stochastic process is computed, conditional on the observed function values.

The posterior information is used to determine the location of the next point

where / will be evaluated.

The stochastic processes are taken to be Gaussian. A Gaussian process is

characterized by a mean and covariance function. The covariance function

specifies how the correlation of the function values f(x) and f(y) depends on

the originals x and v. Gaussian stochastic processes have the very attractive

property that the posterior process, conditional on a number of observed func-

tion values, is Gaussian as well. However, the determination of the posterior

mean and covariance function involves the time-consuming operation of the

inversion of a matrix, whose size is equal to the number of observations.

On page 12 the author argues that the Bayesian approach and a stochastic

model of / were first applied to global optimization in his reference of 1963.

However, H. J. Kushner already in 1962 published a paper on this subject [1].

The author first defines an optimal «-step optimization strategy which min-

imizes the expected deviation from the global optimum. The strategy can be

computed by solving n Bellman equations. However, it is well known that

serious problems arise from a practical point of view, even for moderate val-

ues of n . Therefore, a one-step approximation is introduced, where the next

observation is considered as the last one. Even this approximation, however,

is hard to implement, since at each step the matrix referred to above has to

be inverted, and since the next observation point is the optimum value of a

function, say </>, which also will have different local optima. Several simplifica-

tions are carried out to achieve a method which is able to process a reasonable

number of function evaluations. Unfortunately, these simplifications all ruin
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the consistency of the model. It also has to be remarked that no exact result

is known about the distribution of the global maximum of a Gaussian random

function. This means that, unless the number of function evaluations is fixed

in advance, the question of how to evaluate the error of an approximation to

the global optimum cannot be answered satisfactorily.

An outline of the book is as follows. Chapter 1 contains a discussion of

the main advantages of the Bayesian approach. Chapter 2 presents a general

definition of Bayesian methods of global optimization. Chapter 3 contains an

axiomatic justification of the Bayesian approach. In Chapter 4 the Gaussian

class of prior random functions is derived from the conditions of homogeneity,

independence of partial differences, and continuity of sample functions. Chap-

ter 5 provides the expressions for the one-step approximation of the dynamic

programming equations. This chapter also discusses the replacement of the Kol-

mogorov consistency conditions by the weaker condition of the risk function

continuity. Chapter 6 discusses methods to reduce the dimensionality of global

optimization problems. In Chapter 7 the Bayesian approach is applied to find

local optima of objective functions with noise. In Chapter 8 a number of real-

life applications is described. Chapter 9 provides a description of the portable

FORTRAN package which is contained in the book.

Although the Bayesian approach to global optimization, in my opinion, did

not yet yield efficient algorithms which are fully theoretically justified, this new

book shows that the approach is very appealing, and that the approximations

work well. Also, the book contains all the relevant theorems, proofs, and com-

puter programs. Hence, although the book is not very clearly written, and con-

tains very many typos (7 in the preface), it can serve well for investigators who

want to pursue the approach. In addition, the programs of the methods, which

are based on approximations, can be used by practitioners to solve real-life

problems.

C. G. E. BOENDER

Econometric Institute
Erasmus University Rotterdam

3000 DR Rotterdam, The Netherlands

1. H. J. Kushner, A versatile stochastic model of a function of unknown and time varying form,

J. Math. Anal. Appl. 5 (1962), 150-167.

27(33-04,65D20].—UNITED LABORATORIES, INC., Mathematical Function
Library for Microsoft-FORTRAN, Wiley, New York, 1989, xvii + 341 pp.,
25 j cm., loose leaflets in 3-hole-punched binder, including three 5^ dis-

kettes. Price $295.00.

In 1964 the National Bureau of Standards (now the National Institute of

Standards and Technology) issued a massive handbook of formulas, graphs and

numerical tables of the elementary mathematical functions and the so-called



880 REVIEWS AND DESCRIPTIONS OF TABLES AND BOOKS

higher transcendental functions or special functions of mathematical physics [6],

This N.B.S. Handbook immediately filled, and continues to fill, a tremendous

need in scientific work; according to the Science Citation Index (published by

the Institute for Scientific Information, Inc., Philadelphia, PA), the current rate

at which it is cited in the mathematical and scientific literature is of the order

of 1,300 entries per year.

The need for the numerical tables of the elementary functions in the N.B.S.

Handbook has now largely disappeared: library routines for generating exponen-

tials, logarithms, and trigonometric and hyperbolic functions are available in all

major scientific software libraries as well as being required by the FORTRAN

Standard [1]. Also, these routines are incorporated in hand-held calculators

designed for scientific calculations. The loose-leaf manual and accompanying

diskettes under review, which we shall refer to as the "UL Library", may be

regarded as an attempt to replace the numerical tables of the higher transcen-

dental functions supplied in the N.B.S. Handbook by a comprehensive software

package. The functions treated include Bessel and related functions, hypergeo-

metric and confluent hypergeometric functions, elliptic functions and integrals,

exponential integral and related functions, error function and related functions,

Gamma and incomplete Gamma functions, orthogonal polynomials, probability

functions and random number generators. This list is not quite isomorphic with

the list of functions tabulated in the N.B.S. Handbook; among the omissions are

parabolic cylinder functions, Mathieu functions, spheroidal wave functions and

the Riemann Zeta function. The UL Library is designed to be used on Personal

Computers of IBM type and equipped with a Microsoft FORTRAN 77 Com-

piler. For efficiency, a numeric co-processor is recommended.1 The operating

precision is IEEE double precision (53 bits in the floating-point mantissa), but

the accuracy of the computed function values is generally less, sometimes well

below single precision.

The project is an extremely ambitious enterprise, especially as it appears that

all of the programs for the library routines have been constructed ab initio. For

such a project to be completed successfully its authors need to have a thorough

knowledge of, and experience in, several areas of classical and numerical analy-

sis, including analytic properties of the higher transcendental functions, asymp-

totic analysis, approximation theory, and error and stability analyses. How well

have the present authors (who are nameless) succeeded?

A comprehensive answer to the question just posed would necessitate a tre-

mendous amount of numerical testing. We concentrated our testing on just

a few functions with which we have had previous software experience, namely

Airy, Bessel, hypergeometric, confluent hypergeometric and Legendre functions.

Usually the UL Library performed in accordance with the specifications for each

routine. However, we studied the documentations in detail, looking for major

'The library diskettes provide FORTRAN programs, which could be compiled and used on a

Personal Computer without a co-processor, as well as coprocessor assembly code for each subroutine.

For the purposes of this review, attention is restricted to the co-processor assembly code.
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ways in which the algorithms used might go astray. Unfortunately, we were

successful.

The first, and very serious, type of failure arise when the UL Library delivers

completely wrong answers without any error message. This occurs with the

routine BESJR in §8.8, which is designed to generate the Bessel function Jv(x)

for real values of the argument x and order v . For example, with x = 9n

and v = 2\, 4\, 6±, %\, 10±, BESJR yields the following values of Jv(x)
to ten decimal places:

-0.00670 05817, 0.03764 71379, -0.05418 00781,

0.31114 25305, -0.06567 89923.

These should be compared with the correct values

0.01592 10880,    -0.05237 32560,    0.10316 94874,

-0.14727 18330,     0.14363 19977.

Not only are the numerical values totally incorrect, all the signs are wrong, too.

Similar gross errors occur for v = 22^(2)50^ , for example. On the other hand,

BESJR generates correct values (within the prescribed error tolerance) for the

intermediate values v = 12^(2)202, and also for v = \ and lj(2)49j, x

again being 9n. The reason for the errors appears to be that J. C. Miller's

backward recurrence algorithm has been used, with the trial values normalized

on the value of a single Bessel function, in fact Jx,2(9n). Since Jx/2(9n) is zero,

this procedure is bound to lead to meaningless answers. Yet this cannot be the

entire explanation, otherwise all values in the range v = 21^(1)50^ would be

incorrect and not merely alternate ones. Thus the documentation must be in

error, too. And there may be further inaccuracies here. For example, according

to the documentation the value for v = 2\ is computed from the power series

expansion of Jv(x) : either the Miller algorithm was used instead, or, perhaps

less likely, the power series was summed incorrectly.

Similar errors occur for numerous other values of v , both integer and non-

integer, that we tested. For example, with x = 8.6537279129... (the third

positive zero of J0(x) ), BESJR generates accurate values for v = 0, 1, 2, 3

and 7(1)50, but grossly inaccurate values for v = 4, 5, 6. Furthermore, erro-

neous values of Jv(x) are generated when the value of x is merely moderately

close to one of the critical values, the magnitudes of the errors being inversely

proportional to the distances of x from the critical value.

A companion routine to BESJR is BESYR (§8.10), which is designed to gen-

erate the Bessel function Yv(x) for real values of x and v. Since one of

the algorithms used in BESYR draws upon values of Jv(x), we expected—and

found—some difficulties. For example, BESYR computed Yv(9n) with wrong

signs and incorrect numerical values for v = -50\(2)-22\ and -10j(2)-2j,

Obtained by use of D. E. Amos' package [2]. See also comments made below on validation.
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while the results were correct at intermediate values of v . (This similarity of be-

havior with BESJR reflects the identity Yv(x) = (-l)nJ_v(x) when v = n-\,

n being an integer.)

A second type of failure is the generation of results which, while not com-

pletely inaccurate, contain errors greatly in excess of the accuracy claimed in the

documentation. One example is provided by the routine BESYR mentioned in

the preceding paragraph. The documentation claims at least 12-digit accuracy

when the order v is an integer. In itself this claim is careless because it takes

no account of the inevitable loss of relative precision in the neighborhoods of

zeros. But the situation is actually much worse. With v = 119 and 120, for

example, we found that in the range x = 848(0.1)852 the accuracy often fell to

8 or 9 digits, even well away from the zeros of Yxxg(x) and YX20(x). Another

example is provided by the routines AIRYA and AIRYAD (§§8.1 and 8.3) for

the Airy function Ai(x) and its first derivative. In both routines at least 13-digit

accuracy is claimed when -10 < x < 100. But we found many values of x

in the (zero-free) range 5.2 to 5.8 for which they yielded only 8 or 9 correct

digits.
The third type of failure arises when the UL Library generates an inac-

curate value, but the user is warned by an error message such as "unable to

compute the ... function with acceptable accuracy" or "numeric overflow in

the ... function". However, if these failures occur too frequently, then there will

be huge gaps in the effective ranges claimed for the variables. Such is the case

with the routines CHGFU (§9.2) for generating the confluent hypergeometric

function U(a, b, x), and HPRGMT (§20.1) for generating the hypergeometric

function F (a, b ; c ; x).

CHGFU employs two algorithms. The first is evaluation of the asymptotic

expansion of U(a, b, x) for large x, which is quite sound. The second is based

on a formula that expresses U(a, b, x) as a difference of two Af-type confluent

hypergeometric functions, which is unsound because of the potential for massive

numerical cancellation. In consequence, although the documentation claims

that the effective ranges of the variables are given by

-50<a<50,    -50<6<50,    -100<x<100,

with the exclusion of integer values of b and nonpositive integer values of a,

extensive regions are inadmissible. These include, for example,

a = 0.5,  b = 0.5,  7.4 <x< 19.9; a = 2.7,  6 = 5.4,   10.1 < x < 437.4;

a = 20, b = 2.5, 0.34<x<20,000.

For HPRGMT the documentation states that a and b can have any real

values between -1010 and  1010, c can have any real value between -1020
20

and 10 (other than a negative integer) and x can have any real value between

-10    and 1. But, again, these claims are misleading. For example, when x is
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in the interval [0,1) HPRGMT sums the hypergeometric series

f(M;^)=Ê"ltlHI"':"?|H":(H'-^.
v ¿-( c(c+l)---(c + n-l) n\

n=0

Since the radius of convergence is 1 the algorithm must fail for values of x

sufficiently close to 1. Sample intervals of failure were found to be:

a = ¿» = 100,       c=l,    0.95 < jc < 1 ;

a = b =10000,    c=l,    0.0013 < jc < 1 ;

a = b =10\        c=l,    10_10<x<l.

Even when failure does not occur, execution can be extremely slow. Thus for

a = b = c = 1 and x = 0.99999, 20 minutes elapsed on an IBM PS2 computer

before the answer was produced.

The weaknesses in the algorithms used for Jv(x), Yv(x) and U(a, b, x)

were avoidable, if only because robust software for generating these functions

is already available; see, for example, [3], [8]. We also observe that instead of

normalizing the trial values of Jv(x) obtained in the Miller algorithm via a

single value of Jv(x), the identity

i v\"
(v + 2k)T(v + k)

r=zZK " ¿V " ;w*)>   "#0,-1,-2,...,
k=0

[6, equation (9.1.87)], could have been used instead. This is the appropriate

generalization of the identity

1 = J0(x) + 2J2(x) + 2J4(x) + ■■■

that the authors use in a routine BESJ (§8.7) for generating functions of integer

order. Again, a stable way of generating U(a, b, x) is backward integration

of the confluent hypergeometric equation, with initial values derived from the

asymptotic expansions of U(a, b, x) and dU(a, b, x)/dx for large x.

In addition to occasional poor choices of algorithm, we noticed instances of

poor choices of the actual functions being generated. Thus, functions that ex-

hibit exponential growth or decay when the argument x is large would have

been better replaced by their logarithms. This would greatly increase the thresh-

old at which overflow or underflow occurs. Such functions include the Gamma

function, T(x), the exponential integral, Ei(x), the complementary error func-

tion, erfcx, the Airy functions, Ai(x) and Bi(x), the incomplete Gamma

function T(a,x), the modified Bessel functions Iv(x) and Kv(x), and the

confluent hypergeometric function M (a ,b,x). In the case of T(x), a sepa-

rate routine is given for ln|T(x)| in § 13.3 but since this is constructed simply by

taking logarithms of the values obtained by the library routine for T(x) there

is no increase in the overflow threshold. It is the logarithm that should have

been generated first!
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Troublesome singularities can sometimes be avoided by introduction

of appropriate factors. Thus each of the functions M(a,c,x) and

F (a ,b;c;x) has poles at c = 0, -1, -2, • • • , but both M (a, c, x)/T(c) and

F (a ,b;c; x)/Y(c) are entire functions of c ; this was pointed out many years

ago in [7]. On the other hand, there is a nonsensical statement in §9.2 that

U(a, b, x) is not well defined when a and b are negative integers and |¿| >

\a\. In fact, as noted in [7, p. 258], U(a, b, x) is entire in a and b . It is the

poor algorithm used to compute U(a, b, x) that may fail when a or b is an

integer or close to an integer.

We could continue in this vein and we could also provide a substantial list

of typographical errors in the manual and operational defects in the software.

Instead, let us turn now to the topic of validation. Several articles have been

written on the difficulty of checking software for the generation of mathematical

functions; see, for example, [3]. How were the UL Library routines validated by

the authors? The only clue supplied in the manual appears to be the statement

on p. 36 that the least accurate results in the output of an algorithm always occur

at the interface with another algorithm. Presumably this means that there has

been substantial cross-checking at these interfaces. This is indeed a powerful

type of check, but one that does not guard against all types of algorithmic and

programming errors, as we have already observed with the routines BESJR and

BESYR.
In fairness to the authors there are two subsections (§§6.2, 6.3) in which

they encourage users to check output by using identities satisfied by the higher

transcendental functions. For example, the error and Bessel functions are both

special cases of confluent hypergeometric functions. However, these kinds of

identities are rather specialized, and there is always the danger that they may

have already been used in constructing the library routine. For example, there

are identities that relate the Airy functions Ai(x), Bi(x) and their derivatives

to Bessel functions and modified Bessel functions of orders ±1/3, ±2/3 . But

if these identities are used as cross-checks, then the inaccuracies we noted above

for the routine, AIRYA and AIRY AD may not show up because the same kind

of inaccuracy is present in a (parent) routine BESKR (§8.14) for the modified

Bessel function Kv(x). In contrast, a powerful form of cross-check that is not

mentioned in the manual, but which is widely applicable, is to employ identities

of Wronskian or Casoratian type, for example,

Ai(jc)Bi (x) - Ai'(jc)Bi(x) = 1/ff,

Jv+lix)Y„(x) - Jv(x)Yv+x(x) = 2/(nx).

For example, there is a statement on p. 24 that the computer will halt when a library routine

is called and a co-processor is not present. We found that is not always true; furthermore, instead

of identifying the absence of a co-processor as the problem, the error messages misleadingly report

errors in the library routine.
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These were the checks that we used ourselves to detect errors in the UL Library

routines as well as to ascertain whether or not the UL Library output is correct

in cases of discrepancy with output from other libraries.

Let us summarize our findings. The UL Library provides PC users with a

new set of routines for generating an extensive collection of higher transcenden-

tal functions, indeed most of the functions tabulated in the N.B.S. Handbook.

The library is relatively easy to install and its price is reasonable. It will pro-

vide a useful tool for mathematical physicists and other scientists, especially

those engaged in calculations of exploratory type. However, in our compara-

tively small sample we encountered failures of various kinds, including some

extremely serious ones. Because of this, we conclude that the authors may have

lacked some experience and expertise, or perhaps just the necessary time, for

the mammoth task of constructing a robust library of the kind intended. In

consequence, users will need to exercise great care with any output from the li-

brary, applying independent checks wherever possible. Furthermore, users must

also be prepared for disappointments: the viable ranges of a routine may turn

out to be a good deal less than is claimed in the documentation, especially in

the case of functions that have not been treated by earlier software workers.

For heavy systematic computations many users will find the more robust

IMSL and NAG libraries [4], [5] to be preferable. The variety of functions

covered in these libraries is not as large, but the viable ranges of the variables

are considerably more extensive and the precision is often higher. Moreover,

both IMSL and NAG provide many desirable features, such as linear algebra

packages, in addition to routines for generating higher transcendental functions.

In preparing this review I am heavily indebted to Dr. Daniel Lozier of the

National Institute of Standards and Technology who helped devise and carry

out the numerical testing, and also to Sang Chin, a student at Duke University,

who assisted.
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The book under review is the second edition of a text which appeared first as

book in 1972 and which is an expanded version of three review papers which

appeared in the mid-sixties. It has now appeared ás volume 2 of a series with the

promising title "Classics in Applied Mathematics". The book consists of three

chapters, entitled Lie groups and Lie algebras, Representation theory, Construc-

tive methods, and an extensive bibliography of pre-1972 references.

In the first two chapters the authors explain the notions of Lie groups and Lie

algebras and their basic properties. All proofs are omitted. Instead, extensive

references are given. As an example of the narrative style we quote the definition

of a Lie algebra: "Abstractly, a Lie algebra L is a vector space equipped with

a product [x, y] satisfying certain axioms (references to Freudenthal-de Vries,

Dynkin, Jacobson and van der Waerden). We shall continue to use the bracket

notation for products when we deal with any Lie algebra. One of the axioms

for a Lie algebra is that the product [x, y] be bilinear, that is, linear in x

and y separately. We also assume that the Lie product is anticommutative,

[x, y] = -[y, x]. Finally we assume that the Jacobi identity, [x, [y, z]] +

[y, [z, x]] + [z, [x, y]] = 0, holds for all vectors x, y, z in the Lie algebra." As

examples, the applications of Lie groups and algebras in classical and quantum

mechanics are described in a few pages. The description of classical mechanics

looks incomprehensible for readers without a background in physics. Such a

background is not necessary to understand that the basic definitions of pure

states and transition probabilities in the section on quantum symmetries are

wrong.

The third chapter focusses on the calculation of weight multiplicities of ir-

reducible highest weight representations and the decomposition of tensor prod-

ucts. This chapter is without doubt the most interesting. Physicists and applied

mathematicians will find here the basic ideas behind the tables and the computer

algebra packages which they use for their calculations.

Many books have been written on Lie groups and algebras. Some are called

"Classics". The omission of the beautiful proofs of, e.g., the Weyl character

formula, and the sloppy treatment of applications, suggest that this book hardly

deserves this title. The third chapter, however, is still well worth reading for

everyone who occasionally uses Lie algebra representations.
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