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POINTWISE SIMULTANEOUS CONVERGENCE OF EXTENDED
LAGRANGE INTERPOLATION WITH ADDITIONAL KNOTS

GIULIANA CRISCUOLO, GIUSEPPE MASTROIANNI, AND PETER VERTESI

ABSTRACT. In numerical analysis it is important to construct interpolating poly-
nomials approximating a given function and its derivatives simultaneously. The
authors define some new good interpolating matrices with “many” nodes close
to the endpoints of the interval and also give error estimates.

1. INTRODUCTION

In numerical analysis it is important to construct interpolating polynomials
approximating a given function and its derivatives simultaneously. For this
reason we try to define new interpolating matrices with nodes easily calculable
and “small” Lebesgue functions or constants.

Very recently, the weights w;(x) = (1 — x)w(x), wy(x) = (1 + x)w(x),
and ws3(x) = (1 - x2)w(x) with w € GJ (cf. (2.8)), and the roots of the corre-
sponding orthonormal polynomials {p,(w)} and {pm(w;)} (i=1, 2, 3) were
considered in [2]. As it turned out, all the zeros of ¢y = pm(W;)Pm(w,) are
simple; a similar result holds for Gmy1 = Pms1(W)pm(ws). (See [2, Theorems
2.2 and 2.3].) These facts allow us to define two so-called extended interpolatory
matrices X; and X, having as nodes the zeros of ¢, and Gam41 , respectively,
and to consider uniform convergence of the corresponding Lagrange interpola-
tion. (See [2, Theorems 4.1 and 4.3].)

Extended interpolatory matrices were used for numerical quadrature (Kron-
rod formula) and for the numerical solution of singular integral equations by
several authors. The interested reader may consult the exhaustive survey papers
of Gautschi [5] and Monegato [6].

The main goal of the present paper is to achieve good simultaneous approx-
imation of a given function and its derivatives, using the above matrices X;
and X, and some additional nodes near the endpoints +1.

2. PRELIMINARIES

Lagrange interpolation. Let {Q,} be a sequence of polynomials (Q, € P,)
with zeros t; ,, j=1,2,..., n, satisfying

(2.1) —“l<thn<thpn<-<thn<l
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and

(2.2) I+t p~n 21—ty ,, neNn.!

Along with the matrix T ={t; ,, j=1,2,...,n}2, we consider additional
matrices ¥ ={y; », j=1,2,...,5}2,, Z _{z,,,,,j_l 2,...,112,,

r,s >0, where

-1 <Yi,n SyZ,nS"'Sys,n<tl,n <thhn<zZ1,n<zZ23 pn<-<Zpp < 1,
tl,n_ys,n"‘n_z"’zl,n_tn,n> neN.

Moreover, we define the polynomials

Aox)=1,  Adx)=][J(x-»n), s>0,

By(x)=1, B,(x)=1LI(x—Zj,n), r>0.

For a given matrix ¥ and bounded function f, denote by L,(V; f) the
corresponding Lagrange (Hermite) polynomial of degree k— 1. The polynomial
Lyiris(X; f) of degree n+r+s—1 basedon X =TUYUZ is

Lusrsd X £) = 4B Ly (T3 1) + 0L, (2: 5

AsB, " AsQn
(2.3) ; Q
+ B,QnL; (Y; TQn) ,
where
On(x)
@4 Ln (T’ 4B, ) Z Ot Al ) Bl (1)
. . _ f(zl,n)
Lr (Z’ A;0,° x) B As(zl,n)Qn(Zl,n)
(2.5) +Y (X =z )X = z2.0) (X = Ziztn)
i=2
X[Zl,nazz.n’---azi,n;%Qn )
. f . _ f(yl,n)
Ls (Y’ 3,0, ") = B0 )0n010)
(2-6) +Z(X_,Vl,n)(x_.VZ,n)"'(x_,Vi—l.n)

i=2

X [)”l.n,yz,n,-u,J’i,n; ?fé—
rxn

' If 4 and B are two expressions depending on some variables, then we write
A~ B ifandonlyif |4B~'| < const and |[4~'B| < const,

uniformly for the variables in question.
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Here, [u;, uy, ..., u,; g] is the divided difference of the function g at the
points u;, Uy, ..., up. If the function f is not differentiable, then we assume
that all the knots are different. When f € C9, g > 1, then the multiplicity of
each additional knot may be at most ¢, so we may have Hermite interpolation.
In the case r = 0 we set L, = 0, and similarly, if s = 0, then L, = 0.
Obviously, when r =5 =0 the right side of (2.3) becomes L,(T; f).

Special weights. Let v7-% be the Jacobi weight function

(1-x)"(1+x)? if x| <1,
2.7 79 (x) = JER.
@n v {o iflx>1, °F
We consider the generalized Jacobi weight w (w € GJ) defined as follows:
(2'8) w(x)z(p(x)v“vﬂ(x)’ a’ﬂ>_l7

where the modulus of continuity w(¢; ) of the function ¢ > 0 satisfies
Jo w(p; ' dt < co.

Then, let {pm(w)} be the system of orthonormal polynomials corresponding
to the weight function w € GJ, i.e.,

Dm(W; X) = am(w)x™ + lower-degree terms, am(w) >0,
and |
/_1 Pm(W 5 X)pn(w 3 X)W(X)dX = O, -
We denote by x; , = x; m(w), i=1,2,..., m, the zeros of p,(w), with

“l1<xim<Xym< - <Xmm<l,

and by 4; m(w) = Au(w; x; m(w)), i = 1,2,..., m, the Christoffel con-
stants, where

m(w; X) = [Zp, w; x]_l

is the mth Christoffel function.

Extended Lagrange interpolation. Let w € GJ be defined by (2.8). We consider
the weight functions

(2.9) wy(x) = w(x)(1 = x),

(2.10) wa(x) = wx)(1 +x),

(2.11) w3(x) = w(x)(1 - x?),

and the corresponding systems of orthonormal polynomials
{pm(wl)}’ {pm(wZ)}’ {pm(w3)}'

It is known [2] that the zeros x; ,,(w3) interlace with the zeros x; 4 (w),
ie.,

|I

Xim+1 (W) < Xi m(W3) < Xigp mpr (W), i=1,...,m, meN.

In [2] it is also proved that the polynomials p,(w;) and p,(w,;) have no
common zeros; further,

Xi m(wy) < xi m(wn), I=1,...,m, meN.
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Therefore, the zeros of p,,.i(w)pm(ws;) and those of p,,(w;)pm(w,) satisfy
conditions (2.1) and (2.2).
Moreover, we recall a more precise result on the distribution of the zeros of

Pm+1(W)pm(w3) and ppy(wy)pm(w?):

|
:I
[

(2.12) Xi,m(W3) = X;i mpr(w) ~ ~ Xig1,me1 (W) = Xi m(W3),

m

uniformly in 1 <i<m, me N,and x € [X; m1(W), Xit1, me1(W)],

- X

(2.13) Xi,m(W2) — Xi m(wy) ~ ~ Xip1,m(wy) = xi m(ws),

sﬁ

uniformlyin 1 <i<m-1, me N, and x € [x; m(w;), Xit+1, m(w;)]. (See
[2, Theorems 3.1, 3.2].)

Now, for a bounded function f, we define the “extended Lagrange interpo-
lating polynomial” Ly, s(w, ws; f) as the Lagrange (Hermite) polynomial
based on the zeros of p,,,1(w)pm(w3) and on the knots of the matrix YU Z .
Replacing Qn by pm+1(w)pm(ws) in (2.3), we get

L2m+l,r,s(w , w3 f 5 x)
= As(x)Br(X)Pms1 (W ; X)pm(w3; X)
x {MZH D f(xi,m+1(w))As—_l(xi,m+1('w))Br_l(xi,m+l('w))

et (W35 Xi ma 1 (W))Pm (W35 Xi my1 (W))(X = X my1 (W)

i=1

+Z S(Xi m(w3)) A7 (xi m(w3)) By (X0, m(w3))
Pt (W5 Xi m(W3))Pp (W35 Xi m(W3))(X = Xi, m(w3))

s
+ As(x)L, (Z > Aspm+l(w)pm(w3) ’ x)

. f 5
+ By(x)Ls (Y > Bipmir (W)pm(w3) ’ x) .

Recalling that

Pt (W5 X it (W) P (W35 Xi a1 (W)
= CA] by (W)(1 = X7y (w)) ™", i=1,...,m+1, meN,

and

Pt (W5 Xi, m(W3))Ppy (W35 Xi m(W3))
=—Cmd\y(w3), i=1,....,m, meN,

where Cp = am(Ww3)a,} (W) + amii(W)ay,! (w3) < oo (see [2, Theorem 2.2]),
and introducing the notation

Hu(w; £3x) =3 —22m®)pi o w)),

)
X —Xi m(w)

i=1




POINTWISE SIMULTANEOUS CONVERGENCE 519

we can write
L2m+l ,r,s(w , W35 f)
= Pm+1(W)Pm(W3)

—-1 R | f _ . f
X { C,, AsB, [H,,,“ (w, v AsBr> H, <w3, —_AsBr)]

)
AsPmy1(W)Dm(W3)

+B,L, <Y; Biomer (Q{))pm(ws) ) } '

Similarly, we define the “extended Lagrange interpolating polynomial”
Lyy r s(wy, wy; f) on the zeros of p,,(w;)pm(w,) and on the knots of the
matrix Y UZ by

Lom,r,s(wy, wy; f)

(2.14)

+ AL, (Z

= Pm(W1)Pm(W2)
<{ D548, [ (w330 "°AfB) H (w1001 2]
(2.15) sDr sBr
+ AL\ Z;
’ r( Aspm( pm w,) )

B Ls (Y; Brpm(w{)l’m(wZ) )} ’

with D), = apm(w)/am(wsz) + am(wsr)/am(w;) < co. (See [2, formula (2.17)].)
Finally, recalling that the zeros of the polynomial p,,(w)pm.i(w) obviously
satisfy conditions (2.1) and (2.2), we can also consider the “extended Lagrange
interpolating polynomial” Ly, s(w, w; f) on these zeros and on the knots
of the matrix Y UZ . Thus,
L2m+l,r,s(w ,wi f)
= Pm(W)Pmsr (W)

N R )

+ A L, (Z? Aspm(w{nmu(w)>

7 ) }
+B,L (Y; .
* B pm(W)pmy1(w)
Let us remark that the zeros of p,,(w)p..1(w) satisfy

(2.16)

(2.17) . ,+1}| i, m(W) = Xi myr (W]~ ——2=—,

uniformlyin 1 <i<m, me N,and x € [X; m41(W), Xit1,m+1(w)]. Compar-
ing (2.17) with (2.12) and (2.13), we deduce that the distribution of the zeros of
Pm(W)Pm+1(w) is different from those of ppy1(w)pm(w3) and pm(wi)pm(w2) .
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This fact causes the different behavior of the corresponding processes (cf. The-
orems 3.1 and 3.2).

3. CONVERGENCE OF THE EXTENDED INTERPOLATION FORMULAE

We define the space of functions C? on the interval [—1, 1] in the usual
way; thus, f € C? if and only if f is continuous with its derivatives f (),
Jj < gq,on [-1,1]. Furthermore, let Lipy,4, 0 < A < 1, be the class of
Holder-continuous functions, i.e, f € Lip,,4 if and only if f is continuous
and its modulus of continuity w(f ; ) satisfies w(f ;d) < Md*, M e R*.

Theorem 3.1. Let w, w;, w,, w3 € GJ be the weight functions defined by (2.8)-
(2.11). Let feC9, q>0,andlet 1 €{0,1,...,q}. Then,

ILfF ®x) - LY., (w, wy; f x>1|}

ILF ®x) = LY . (wi, was £ x)]|

3.1 I—h
(3-) V1 - x? 1 @. 1) logm
< const +— o[ —)—,
m m m) md
x| <1, h=0,1,...,1,

with some constant independent of f and m, whenever the integers r and s

Sulfill

(3.2) %+a+l§r<%+a+2,

(3.3) %+B+15s<%+ﬂ+z

Theorem 3.2. Let w € GJ be the weight function defined by (2.8). Let f € C9,
q>0,andlet [ €{0,1,...,q}. Then,

00 = L (o wi £ 501 (ViR o)

(3.4) V= 1>I—hw<f(‘”; l)logm
m

m? m) met

SCOHSI(
IXx|<l, h=0,1,...,1,

with some constent independent of f and m, whenever the integers r and s

Sulfill

(3.5) é+a§r<%+a+l,
[ [
(3.6) §+BSS<§+B+1.

To complete the previous theorems, we notice that the polynomial
Ly i(w, ws; f) interpolating f only on the zeros of pp,4(w)pm(ws3) gener-
ates an error given in [2]. Therefore, by the Gopengauz theorem and Markov’s
inequality, there follows

log m
mq—2h ’

h _
If W (x) = LY (w, ws; f; x)| < constama(f@; m™)
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where o, = max(m?*t2e m?*26) |x| < 1, which is weaker than the first in-
equality of (3.1). An analogous argument can be developed for the Lagrange
polynomials corresponding to the zeros of p,,(w))pm(w,) and py,(W)pmi1(W) .
Hence, adding knots near the endpoints +1 seems necessary to obtain good
interpolation processes. We recall also that, if w is a Jacobi weight, so are
w,, w,, and ws ; therefore, the interpolation knots are computable efficiently.
Finally, we remark that (3.4) (because of the factor v'1 — x2+m~!) is weaker
than (3.1). The reason probably is the distribution of the zeros (cf. (2.17)).
Inequalities (3.2) and (3.3) can be rewritten as

(3.7 r—é—2<a§r—é—-l,

/ /
(3.8) s—§—2<ﬂgs—§—l,
and (3.5) and (3.6) as

(3.9 r—é—l<a§r—

b

N~ N~

(3.10) s——é——l<ﬂ§s——.

Obviously, since «, # > —1, inequalities (3.7) and (3.8) imply r > //2 and
s > 1/2; similarly, (3.9) and (3.10) imply r > //2—-1 and s > //2—-1. In
any case, one can define infinitely many good matrices satisfying (3.7) and (3.8)
((3.9) and (3.10)) and the above condition for which (3.1) ((3.4)) holds true.

When the additional knots coincide with —1 and 1, as we have already
observed in §2, we obtain a Hermite interpolation process (r,s < g + 1).
Further, (3.1) and (3.4) can then be improved.

Theorem 3.3. Let f € C9, ¢q>0,andlet [ €{0,1,...,q}. Assume that the
values f(=1), i=0,1,...,s=1,and fO), i=0,1,...,r—1, with
r,s<q+1, are known, and let

(3.11) Vim=-1, i=1,2,...,5, Zim=1, i=1,2,...,r.
If r>1/2, s > [/2, and a and P satisfy (3.7) and (3.8), then
/™0 = LG, (w, wss x)]l}

ILF ™ (x) = LY | (wy, wa; f 5 X))

(3.12) ——\ Ih
m m) mi-!
x| <1, h=0,1,...,1,
with some constant independent of f and m.
Theorem 34. Let f€ C9, q>0,andlet [ €{0,1,...,q}. Assume that the
values f(=1), i=0,1,...,s—1,and fO), i=0,1,...,r—1, with

r,s<q+1, are known, and let (3.11) hold. If r > (/2 -1, s>1/2-1, and
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a and B satisfy (3.9) and (3.10), then
I B - L, (w,ws f 50V -x2

I—h
Ji=x?
(3.13) sconst( lmx) w(f(q);_l_) log m

m) ma-t’

x|<1, h=0,1,...,1,
with some constant independent of [ and m .

In both theorems we again define infinitely many “good” matrices. In the
estimates (3.1), (3.4), (3.12), and (3.13), the ordinary modulus of continu-
ity w(f9; 1/m) appears. In general, we cannot replace the term 1/m in
the modulus of continuity by v1 —x2/m + m~2 in (3.1) and (3.4), and by
V1 —=x2/m in (3.12) and (3.13). However, if the gth derivative of f is Holder
continuous, i.e., f(@ € Lip,, A, then we can state the following theorems.
Theorem 3.5. Let w, w;, wy, w3 € GJ be the weight functions defined by (2.8)-
(2.11). Let f € C1, q >0, and f@ € LipyA, 0< A< 1,andlet | €

{0, 1, ..., q}. Then, for any exponents o, f > —1, there exist positive integers
r, s defined by

(3.14) HT“O‘“SK#M”’
(3.15) Srpriss<ep
such that
IfF ®x) - L. (w, wss S X)ll}
1 Px) = Ly, , (wi, w23 f5 0]
(3.16)

I+A—h
1= x2
< const (V 2, Lz) log m
m m
x|<1, h=0,1,...,1,
with some constant independent of f and m.

Theorem 3.6. Let w € GJ be the weight function defined by (2.8). Let f € CY,

qg>0,and f9 € Lipyyd, 0<A<1,andlet | € {0,1,...,q}. Then, for
any exponents o, B > —1, there exist positive integers r, s defined by
(3.17) HTl+a§r<#+a+l,
A
(3.18) #+ﬁgs<%+/}+1,
such that

O = Ly, ws £ 300 (VIZ2+ )

[+A—h
(3.19) Y >+ log m
m

< N
< const ( -~ g

x| <1, h=0,1,...,1,

with some constant independent of f and m.
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Theorem 3.7. Let f € C4, ¢ >0, and f9 € LipyyA, 0 < A < 1, and let

le€{0,1,...,q}. Assume that the values f(-1), i=0,1,...,s—1, and
FO), i=0,1,...,r—1,with r,s <q+1, are known, and let (3.11) hold.
Ifr>(U+A)/2, s>({+4)/2, and a and B satisfy
(3.20) r—H—T'l—2<a§r—l+TA—l,
(3.21) L S DT LLLI
2 2

then

LS W) - LS, (w, wss £ x)]l}

(h) _ . f.

(322) I[f (X) Lzm,rys(wl9w2,f1x)]|

I+A—h
— y2
”mx) logm <1, h=0.1,... .1,

< const ( —
ma-!

with some constant independent of f and m.

Theorem 3.8. Let f € C4, ¢ >0, and f@ € LipyyA, 0 < A< 1, and let

ma-1’

le{0,1,...,q}. Assume that the values f()(-1), i=0,1,...,5s—1, and
SO, i=0,1,...,r—1,with r,s<q+1, are known, and let (3.11) hold.
Ifr>U+A)/2-1,s>(+A)/2-1,and a and B satisfy
(3.23) r—H_Tl—1<a§r—l+Tl,
(3.24) s—l—+—'1-l<,3§s—1—j—'1,
2 2

then

I Px) = LSy, s(w, ws f5 )]V =X

I+A—h
(3.25) < const (_\/l—x2 ) log m
= m

x| <1, h=0,1,...,1,
with some constant independent of [ and m .

Again, we have infinitely many “good” matrices.

4. PROOFs
Let
(4.1) #(x) = p(x)v"°(x) € GJ,
and denote by x; ,(u), i =1,2,..., m, the zeros of the mth orthonormal
polynomial p,,(¢) corresponding to the weight u.
For convenience, we collect some properties of the generalized Jacobi poly-
nomials pp,(u) which will be applied in the sequel. Set x; ,(u) = cosé; , for
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0<i<m+1, where xo,m(t) = =1, Xmr1,m(u) =1,and 0 < 6; p <.
Then

(4.2) 16, m — Ot m| ~m™",

uniformly for 0 <i<m, m € N [7, Theorem 9.22, p. 166]. We have

(4.3) Ao m(t) ~ (L= X ()24 X1 m ()24

uniformly for 1 <i<m, me€ N [7, Theorem 6.3.28, p. 120]. There holds
(4.4) |pm(i; x)| < const(vV1 —x + m™ )7 V2(VT+ x + m™1) 012
uniformly for —1 < x <1 and m € N [1, Theorem 1.1, p. 226]. In particular,

(4.5) (s )| ~m?* V2~ pp(us 1),  1-m2<x<I,
and
(4.6)  |pm(p; X)) ~ M2 p(uy 1), —1<x<-1+m72,

uniformly for m € N (see also [8]). Furthermore,

P2 (s X0, m())] ~ (1 = X2 () (/1 = Xi m(p) + m~")=27!
(4.7)

< (\/ 1+ Xi, m(u) + m=1)=271,
uniformly for -1 < x <1 and m € N [7, Theorem 9.30, p. 170].

Lemma 4.1 (Telyakovskii and Gopengauz). Let f € C?. Then for n > 4q + 5
there exists a sequence of polynomials {G,} such that for |x| < 1 and for
j = O b l E R q

b

q-J
(4.8) |f(”(X)—G$,j’(x)|sconst(”;ﬂ) w(f(q) ,/'__l_xz) |

n
with some constant independent of f and n.

Denoting by r, = f — G, the remainder term, we can state the following
lemma.

Lemma 4.2. Let w, w,, w,, w3 € GJ be the weight functions defined by (2.8)-
(2.11). Let L, and L be the polynomials defined by (2.5) and (2.6) with Q, =

Pmst(W)Dm(w3) or Qn = pm(w1)pm(w2). Then, for every function f € C1,
g>0,and he{0,1,...,q}, there exist positive integers r, s, defined by

h h
— <r< —
2+a+l_r_2+a+2,

ﬁ+/3+1§s§g+l3+2,

2
A, ’x>

'm
Z,
(7 4%
'1_x2+_1_ ‘Iw f(q)-"l_x2 1
m m? ’ m

such that

‘As(x>Qn(x)L,

(4.9)
< const (
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B()QuL: (¥: 5 x)
q
Sconst(' lr;xZ +_1_) w(f(q); I-x? +L> ,

m?2

(4.10)

with some constants independent of f and m .
Proof. In order to prove (4.9), we observe that by (4.5)

Pt (W5 D)pm(wss 1) ~ p(wy 5 Dpm(ws; 1) ~ m2@+2,

and so
|Qn(X)] ~ m?*2, Z1n<x<1.
Thus, by the Markov-Bernstein inequality,
105(x)| < const m?||Qulliz, .1y~ M*Qu(1),  z1n<x <1,

and /

L) || m?

= ~ s V4 <x< 1.
‘ (G, |~ [Q2)| a1 b

In view of the last inequality, and taking into account that
-1

o] - a5 () gl @

Jj=0

(see [7]), we deduce

(4.11) I [Q—l(x—)] .

Now, we recall that

21
< const ———, Z1n<x<1.

On(1)

1 1 1 =0
|:Zl,n> Z2,ns-++5 Zi,ns ASQn] = (l— l)! [As(x)Qn(X)]x=¢‘_ )

z1,n < & < z; n, where the identity holds also when arbitrarily many z; ,
coincide. So, by Leibniz’ formula,

1
Zi,ns Z2,ns -5 Zi,ns A
) ’ ) ASQn

1 i—1 i—1 1 ) 1 (i—1=1)
<2 1) |low.. |70l |
(-1 =0 On(x) | y=e, s(X0) | x=e,
Since the function 1/4,(x) and its derivatives are bounded for x > 0, we get
by (4.11)

l:z z Zi o 1 ] < const ! iz_i(i_l)mzl _mZi_Z
1,ns €2,ns -+« <i,n» AsQn - Qn(l) = l Qn(l)

Recalling the definition of L.(Z; r,/(4:;Q,)), taking into account that
(x=zi,n)(X—22,0)(x = 2zi—1.n) < (VI=x+m~1)¥-2 for |x| < 1, and
observing that by Lemma 4.1

Ir)(x)| < const m=24+2% (@ ; =2y Zim<x<l1, k=0,1,...,q,

r<qg+1,
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we deduce by Leibniz’ formula that
_9y r—1
(1 m) I = x)m? + 17,

r
L |Z; —'";x) had VAR R
’ ( 4,0, Q. ()m¥
where |x| < 1. On the other hand, if ¢ =0,
r e X-—2zi Fo(Zk m)
L Z; m ;x) — r,m m ,m .
’ ( AsQhn Z ]'_‘[ Zk,m — Zi,m As(zk,m)Qn(zk,m)

k=1 i=1
i#k

(4.12) < const

Since

r

X -2z
H—’—’L”— < const(mv1 — x + 1)>72, x| <1,

z — Zj
i=1 k,m i,m

i#k
we again deduce (4.12). We first assume |x| < 1 — m~2; then by (4.12),
r o(f9D; m1V1 - x2) _
L Z L_Tm < > _ r—1 )
(7 iy )| < coms g im0

Recalling that Q,(1) ~ m?**2  we obtain

@ - =11 — x2
L,(Z' fm_ . >§constw(f e I - x?)

-, X
’ AsQn ’ m2g—r+a+2)

where |x| < 1 — m~2. The hypothesis r < h/2 + a + 2 assures that q/2 —r +
a+2>0. Then, since m—2 <1 — x2, we can write

JT=x2\? JT -2
L, (Z; r—'";x)l < const I-x ol f9; vi-x*
AsQn m

m
x (1 __x)a+l(l +x)—r+a+2’ le <1- m=2.

Since |A4s(x)] £ (VI +x +m~")¥, and observing that by (4.4)

(1-x)",

[Pms1 (W5 X)pm(w3; X)| < comst(l —x)™* (1 +x)A~1 x| <1-m2,
|Pm (w1 3 X)Pm(w2; x)| < const(l —x) ™11+ x)7A71, x| <1-m2,
we have
q
I'm V1-x2 1 —x2
As(x)Qn(x)L, <Z, AsQn’x) < const( - ) w(f : -
x (1 +x)s—r+a-/}+l , le <1- m—2‘

From this last inequality, (4.9) follows immediately for 0 < x < 1 — m~2.

On the other hand, if —1 + m~2 < x < 0, it is sufficient to observe that the
assumptions s > h/2+8+1 and r < h/2+a+2 assure that s—r+a—-f+12>0.
Finally, if |x| > 1 — m~2, then inequality (4.9) follows immediately by (4.12).
Similarly, one can prove inequality (4.10). O

We omit the proof of the following lemma, since it is very similar to that of
Lemma 4.2.
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Lemma 4.3. Let w € GJ be the weight function defined by (2.8). Let L, and L;
be the polynomials defined by (2.5) and (2.6) with Qn = pm(W)pms1(w). Then,

Jor every function f € C?, ¢ >0,and he€{0,1,...,q}, there exist positive
integers r, s, defined by
h h 3 h h 3
b) DY = = <s< = el
2+aSr52+a+2, 2+ﬂ_s_2+ﬁ+2,
such that
As(x)Qn(x)L, <Z§ Arr& ',X) ( 1 —x2+ %)
s<n
(4.13) < . 1_x2+L qw f(q). 1_x2+L
< cons — 5 s 3]
o (1 ) (75 )
r<n
(4.14) )
AT @, vi-x? 1
< const +— | o|f9; T
m m m m

with some constants independent of f and m.

Later we need the following result. For any weight function x € GJ and for
every x € [-1, 1], we have

m
Z.(_I;M<00nst VAl xX+m- 2/7 llogm

wis o e
. k#c

I |
75P=7

1
( + X, m(1)” < const(V1 +x +m~ 12 logm
mlx xk m Iu)l

(4.16) k#
1 1
if —-<o<=
i 5 S0< 5,
where ¢ denotes the index corresponding to the closest knot(s) to x, and p, o
are real numbers. The proof of these inequalities can be found in [3].
Now we prove the theorems stated in the previous section.

Proof of Theorem 3.1. We start with the case # =0 in (3.1). Let r,y = f — G,
where G,, is the polynomial defined by Lemma 4.1. Then,

(4.17) |f(x)"L2m+l,r,s(w ,wiy; f x)| < Irm(x)‘+‘L2m+l,r,s(wa w3 I, X)|.
Recalling (2.12), and applying Lemma 4.2 with & =/, we find
|Lams1,r,s(W, w3; ;X))

q
V1—x? | 1 —x2 |
< const i) wlse, X
m m?2 m m?2

+ |As(X) B (X)Pms1 (W 5 X)pm(w3; X)|

sl Im
H, . (w,v AsBr’x)H}'

+

|

Hm<w3;;—';'3—;x>
s&r
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By

[4;(x)B;(x)| < (VI+x+m ) (VTI-x+m ™),  |x|<1,
and Lemma 4.1, we obtain

|Lamsr,r,s(W, W35 Im 5 X)|
w (4), m—l
18)  <const 2L g ) B (x)ppas 0 3o )
X (| (135 0927792755 0)] o [Hpg (5 0927710027541 )
=X +3.

As above, let ¢ be the index of the knots x; ,(ws3) corresponding to the closest
knot(s) to x. Then, inequalities (4.3), (4.4), and (4.7) allow us to write

lc,m(w3)
|X = X, m(w3)|

Thus, applying again inequalities (4.3) and (4.4), we deduce
@ m-!
Z] S const %(V 1 - X+ m_l)z(r—a—l)
x (V1+x+m1)2s=8=D

p4/2-r+e+3/2,q/2— 5+ﬂ+3/2( m(W3))

(4.19) |Pm (W35 X)Pmar (w5 X)|

> X = X m(w3)]
< const% V1—x+m H)Hr—e-D
x (V1+x+m1)2s=A=D
§ Z vli2- r+a+3/2 1/2—s+ﬂ+3/2(xiym(w3)) ,
o m|x — x;, m(w3)|
forevery /€ {0,1,...,q}. Since //2-r+a+1<0 and //2-5s+8+1<0,

we have

@) ;-1
Zl < constg% ,/1 _x+m—1)2(r—a—1)
x (VI +x+m~)Hs=A=1

{ \/l —x+m- 1 2r+2a+2 Z +x, m w3))1/2—5+ﬁ+3/2

m(x — xi, m(ws))

(1 - Xim w3 )1/2 r+a+3/2
m(x;, m(wsz) — x)

i<c

\/l+—x+m l 2s+2ﬂ+22

i>c
By (3.2) and (3.3) we have —§ < //2—s+f+3/2<1/2 and —1/2 <[/2—r+a+
3/2 < 1/2; whence (4.15) and (4.16) can be applied with p=1//2-r+a+3/2
and 0 =1/2 -5+ f + 3/2, respectively. We get

w(f@;m™")

mi

¥, < const (V1-x2+m Y logm.




POINTWISE SIMULTANEOUS CONVERGENCE 529

Similarly,

o(f@; m™")

md
These relations, together with (4.18), give us

|Lom+1,r,s(W, w35 Iy X)|

V1-x? 1
m

* o

¥, < const (V1-x2+m Y logm.

(4.20)

!
w <f(q); i) logm‘

< const
m) ma-!

Then, by (4.17), and in view of Lemma 4.1, we deduce the first inequality in
(3.1) for A =0. In order to prove (3.1) for 1 < h </, we recall that if R, is
an algebraic polynomial of degree n such that

Nl v
lnx + l) , x| <1,

|Rn(x)| < const ( 2

where v is a real number, then for any integer j

v-j
vVi-xz 1
nx +_2) ) |x|517

n

IRY)(x)| < const (

for some constant independent of v and j. (See [4].) So, by (4.20), we can
write

m ma—! "~

I-h
\/l_x2+L © f(")-i logm
m 2 "m

|L2m+l r, s(w s, W35 Im s x)l < const I:

Therefore,
If ®(x) — L®

h h
et e s, wss 50 O+ L, L (W, w35 e X))

2m+1,r,s

Finally, estimating |r,,, (x)| by Lemma 4.1, we deduce the first inequality of
(3.1) also for 1 < h < [. The proof of the second inequality of (3.1) is simi-
lar. O

Proof of Theorem 3.3. We first observe that by (3.11) we have A;B, = v"%.
Now, let r,, = f — G, where G,, is the polynomial of Lemma 4.1; then
rﬁ,’,‘)(:tl) =0, k=0,1,..., q. Therefore, recalling (2.14), since r,s <g+1,
we find

|L2m+1,r,s(w s, W35 Tm s x)l
= const v ¥ (X)|Pmy1 (W5 X)pm(w3; X)|

(4.21) {HH'"(wa’ r,s, )”+ m+l< > lrm; )”}

=: const{S; + S»}.

If we assume X, ;(w) < X < X, m(w), then we can proceed as in the proof of
Theorem 3.1. Indeed, in this case, v'1 — x2 > m~!, and by (4.19) we have

o)

(4.22) Lzm+1,r,s(w,w3;rm;X)Sconst< ol

for xm (W) < X < X, m(w).
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On the other hand, if x,, m(w) < x < 1, then by Lemma 4.1, and in view
of the inequalities (4.3), (4.5), and (4.19),

2 a/2-r+a¥3/2,0/2-54B+3/2(x (1py))

'U"S(X) ( 1 >
S, < (q). 2a+2
1 < const {—-—————mq ol f Y ; m(x — Xp i(wy))

. (\/?)qw<f(q);_;_l)}

r.s m=2 . [/2—r+a+3/2,1/2—5+§+3/2 )
< const v_—z(xz)w (f(q); _1_ v (Xm,t(’U)l))
e m) MO = o, (1))
q
V1= x2

+ I-x w(f9; l

m m
<

v"5(x) @. 1
const {W——Taw <f 5 E

Xm,m—1(W) 1 u 1/2—s+p+1
x / (l _ u)1/2—r+a+l ( + )
-1 X—U

. (\/?>qw<f(q);%>}_

The last integral can be easily estimated. Indeed, since //2—-s+ 8+ 1> —1,

du

X, m—1(W) 12— |
/ 1 (1 )1/2 r+a+l_(_1_+—u)/__":f+__du
—Uu
{/ /Xm m— l(w)} (1 )1/2 rrasl (1 + u)//Z s+B+1 in
1/(1—- rta
<constq 1+ (1 _x)l/Z—r+a+1/ /(1=x) )_’[/Z—M_dy |
(I=Xm m—1(w))/(1—x) y_ l

Further, since —1<//2-r+a+1<0 and y > 1, we can write

Xm,m—1(w) e I
/ | (1- u)//Z—r+a+|£_1_-}_-_u_)_/_5_+B_+_ "

-1 X—U
< const(1 — x)!/2=r+*logm .

Therefore, (4.21) is still valid when x,, m(w) < x < 1, and similarly for —1 <
X < Xm,1(w). Then, by (4.17) and Lemma 4.1, we deduce the first inequality
of (3.12) for h = 0. Proceeding as in the last part of the proof of Theorem
3.1, we can obtain the first inequality of (3.12) also for 1 < 4 < /. The proof
of the second inequality of (3.12) is similar. O

The proofs of Theorems 3.2 and 3.4 are analogous to those of Theorems 3.1
and 3.3, respectively. We omit the details.
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Proof of Theorems 3.5 and 3.7. Proceeding as in the proof of Theorem 3.1, we
find

const
\Lamst,r,s(W, W35 s X)| < —mg | As(X) By (X)Pm1 (W5 X)Pm (W35 X))
X{IHm(w3 : ,Uq/2+1/2—r,q/2+)./2—s : x)l
+ !Hmﬂ(’w . ,Uq/2+}./2—r+1 ,q/2+4/2—5s+1 : x)l} ,
instead of (4.18). Then, by the same steps as in the proof of Theorem 3.1, we
obtain the first inequality of (3.16). The second one can be proved analogously.

Furthermore, if the additional knots satisfy the relation (3.11), then from
(4.21) and by Lemma 4.1,

const
Ty V" (X)|Pmet (W X)Pm(w3; X))
X {|Hp(ws ; v¥274275; x)|

+ |Hm+l (w : ,vl/2—r+l JA[2—s+1 : x)l} ,
and proceeding as in the proof of Theorem 3.3, we deduce the first (or second)
inequality of (3.22). O

'L2m+l,r,s(w s W35 Im s X)| <

Theorems 3.6 and 3.8 can be proved similarly as Theorems 3.5 and 3.7,
respectively. We omit the details.
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