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FINITE ELEMENT APPROXIMATIONS
OF NONLINEAR ELASTIC WAVES

CHARALAMBOS G. MAKRIDAKIS

Abstract. In this paper we study finite element methods for a class of prob-

lems of nonlinear elastodynamics. We discretize the equations in space using

Galerkin methods. For the temporal discretization, the construction of our

schemes is based on rational approximations of cosx and ex . We analyze

semidiscrete as well as second- and fourth-order accurate in time fully dis-

crete methods for the approximation of the solution of the problem and prove

optimal-order L2 error estimates. For some schemes a Taylor-type technique

is used so that only linear systems of equations need be solved at each time step.

In the proofs we need various estimates for a nonlinear elliptic projection, the

proofs of which are also established in the paper.

1. INTRODUCTION

In this paper we shall study finite element methods for a class of problems

of nonlinear elastodynamics. In particular, we consider the following initial-

boundary value problem: Let Q be a bounded domain in R^, N = 1,2,3,

with smooth boundary dSi (Si is viewed as the reference configuration of a

homogeneous elastic body), and let 0 < T < oo. We seek a displacement

function u: Si x [0, T] —> RN such that—index notation and the summation

convention will be generally employed—

ü¡(x, i) = daSia(Vu(x, t)) + f(x ,t)   in Q x [0, T],

(1.1) m(jc,í) = 0   on<9Qx[0,r],

u(x, 0) = u°(x),    u(u,0) = ux(x)   inQ,

where dots denote differentiation with respect to t and da = d/dxa . Further-

more, 5 is a given smooth N x N matrix-valued function defined on RNxN

which characterizes the material—the Piola-Kirchhoff stress tensor—and / is
the body force. Also, u° and ux are given smooth functions which represent
the initial displacement and the initial velocity, respectively. For a complete

discussion of the physical background of the elasticity equations, cf., e.g., [15].
We shall discretize (1.1) in space using Galerkin methods. For the tempo-

ral discretization, since (1.1) is a wave-type equation, the construction of our

schemes is based on rational approximations of cosx and ex , cf. [l]-[3], [5].

We shall analyze semidiscrete as well as second- and fourth-order in time fully
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discrete methods for approximating the solution of (1.1). Before describing the

results in detail, we proceed to introduce notation and list our assumptions for

the problem.
We shall assume that the stress tensor S has the following properties, cf.

[10]:
S is the gradient of a scalar-valued "stored energy function". Hence, if

Aiajß(n):=-^-Sia(ri),        neRN*N,

we shall assume that the elasticities Aiajß satisfy

(SIa) Aiajß = Ajßia,        \<i,a,j, ß < N.

In addition, we assume that a strong ellipticity condition is satisfied in an open
set cf in the domain of Aiajß , i.e., that there is a positive constant Mi such

that

(Sib) ^/¡(^CaC^^MilCI2^!2

for all // € cf and £, Ç e R^ . Here, | • | denotes the Euclidean norm on R^ .
Following standard notation, we let Ws'p := Ws'p(Si)N be the usual Sobolev

space of vector-valued functions whose generalized derivatives of order up to s

belong to Lp(Si)N . We denote the corresponding norm by || • \\s¡p , by \ -\S,P

the seminorm of order 5, and put Hs := Ws<2 with norm || • ||^. Also (-,-),

resp. || • ||, will denote the inner product, resp. norm, on L2 :— L2(Si)N or

L2(Si)NxN , while | • |oo will be the norm on L°° . In addition, let H¿ be the

subspace of Hx consisting of the elements of Hx that vanish on dSi in the

sense of trace.
Assuming (Sla, b), Dafermos and Hrusa [10], and Chen and v. Wahl [8],

establish the existence of a unique local solution to the problem (1.1). In par-

ticular, the main result of [10] can be stated roughly as follows: Let Aiajß

and / be sufficiently smooth and let u° e Hm , ux e Hm~x for some integer

m > [N/2] + 3. Assume further that (Sla, b) hold, that the initial data satisfy
the natural compatibility conditions of order m , i.e., that the initial values of

time derivatives of u up to order m - 1 (as computed formally in terms of

w° and ux using (1.1)) vanish on dSi, and that Vm°[Q] c cf. Then there is a

T > 0 for which (1.1) has a unique solution such that

m

ueÇ)Cm-*([0,T];Hs).

By the Sobolev imbedding theorem the solution will be classical provided m >

[N/2] + 3 . We shall therefore assume in the sequel that the above assumptions

are fulfilled for m sufficiently large to allow a unique solution u of (1.1) to
exist which is smooth enough for our purposes. Furthermore^we assume that

there is an open convex set J?, with JH ccf, such that Vm[Q x [0, 7"]] c J?

(see the proof of [10, Theorem 5.2]). If S is the distance of J? from dcf, and

Jt6 := {// e RNxN: infff6^ \n-a\<ô}, we let

Z := {<D e L°°(Si)NxN: <D(x) eJTs, xeSi}.
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We will need Z in the error analysis; this is the set which is expected to contain

the gradients of the approximations of u ; thus, (S2b) below will hold for these

functions.
We now define the following forms:

N

a((j>, y/)=Y^ (sia(V<t>),day/i),       <t>,y/eHx,
i ,a=\

and

N

ä(v;<p,y/)=     Y,    (Aiajß(^v)dß(pj, day/¡),        v,(f),y/€Hx.
i,a,j,ß=l

Using (SI) and the definition of Z, we have

(S2a) ä(v; </>, y/) - ä(v; y/, 4>),       v,4>,y/eHx.

Further we assume that for Mo > 0 we have

(S2b) ä(v;<p,<p)> M0\\V</3||2,       v, <f> e Hx, Vv e Z.

(S2b) is a stronger assumption than (Sib). In particular (Sib) implies that

ä(v; (f>, cf>) > Afo||V<?!>||2-/i||</>||2,/i > 0, v, <f> e Hx, Vv e Z. We note, how-
ever, that the techniques of this paper can be extended so that our results are

valid under this weaker condition. A variational form of the problem (1.1) can

now be stated as follows: Find u(-, t) e H¿ , 0 < t < T, such that

(ü(t),v) + a(u(t),v) = (f(t),v),    VveHx1

u(x, 0) = u°(x),    u(x, 0) = ux(x),       x e Q.

Finite element discretization. We shall approximate the problem (1.2) by the

finite element method, using, for the discretization in space, the usual piecewise

polynomial shape functions, cf. e.g. [9, §2.2]. Specifically, for 0 < h < 1

we assume that we are given a family Sh of finite-dimensional subspaces of
Wx »°° n HQX such that for some integer r > 2 and small h ,

(i) infx€Sh{\\v-X\\+h\\v-X\U}<Chs\\v\\s,  \<s<r, veHsnHx.

Now let A : Hx —» S h be the nonlinear operator defined by

(1-3) (Av,X) = a(v,x),    VxeSh.

Also, for given v e Hx, we consider the linear operator L(v): Hx -> Sh given

by

(1.4) (L(v)4>,x) = à(v;cp,x),    VjeS,,, <psHl.

Further, we assume that the following inverse inequalities hold:

(ii,a) There exists a positive constant Q such that for every ^ € 5/,

ira <<:<,*-'||*||  and  ivxioo^cyr'ixioo.

Note that as a consequence of (S2b) and the definition of L(v) there exist

positive constants C\, C2 such that

Ciiiv^ii2^^^)*,*)^^-2^!!2

holds for all v e Hx with VveZ and x € Sh .
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(ii,b) There is a constant C3 such that for every x S Sk

IV^loo < CjA-^HV^H   and   \X\œ < Clh-N'2\\x\\.

Let P: L2 -* Sh denote the L2-projection operator onto Sh . Then, a con-

sequence of the assumption (i) is that there exists a constant C such that

(iii)
\\v-Pv\\<Chs\\v\\s,       l<s<r, veHsnH0l.

We define now a nonlinear elliptic projection of the solution u of (1.1),

denoted by W(t) (or w(t) in §4) as follows. For 0 < t < T, let W(t) e Sh be
the solution of the nonlinear system

(1.5) a(W(t),x) = a(u(t),X),    V/cS,.

It is known, cf. Dobrowolski and Rannacher [12], and Rannacher [19], that

the equation (1.5) has a locally unique solution W(t) e Sh for 0 < t < T.
Furthermore, W has the following approximation properties:

(iv,a) There exist constants Cs(u) that depend on u such that

\\u(t)-W(t)\\<Cs(u)hs,        2<s<r,

and

\u(t) - ^(i)|oo < Cs(u)hs\ log/z|e<r>,       2 < s < r,

where d(r) = 0 if r > 2 and 6(r) = ^ + l>0 if r = 2. (For a proof of these
estimates, cf. [12] for r > 2 and [19] for r = 2 with a different technique.)

In addition, we shall prove in §5 that for the time derivatives of W there
holds

(iv,b) \\UU)(t) - WU)(t)\\ < CSJ(u)hs, 2<s<r, j = 0, 1.
Finally, we shall suppose that there exist constants C7, independent of h,

such that

(v) ||^'Wlli,oc<Q,  7 = 0,1.
In §5 we shall establish that (i)-(iv) imply (v) under the restriction that r -

N/2 - 1 > 0.

Summary of results. We consider first the semidiscrete analog of problem (1.2)

on Sh , namely the problem of finding uk:[0, T]—* Sh such that

(1-6) (üh,X) + a(uh,x) = (f,X),    V/6 5A,

given initial values M/,(0) and «/¡(0) approximating «° and ux in Sk.

In §2 we shall show that the problem (1.6) has a locally unique solution and

that the optimal-order L2 error estimate

max \\u(t) - uh(t)\\ < C(u)hr

holds, under the assumption that r-N/2-l > 0 and for an appropriate choice
of initial approximations.

For work on semidiscrete approximations to scalar nonlinear wave equations

of the form vtt + ££, djF^Vv) = g, cf. [11].
In §3 we construct two two-step fully discrete schemes to approximate (1.1)

in time as well, that are based on second-order accurate approximations to the

cosine. They are both second-order accurate with respect to the time step k.

Computing the approximation U" e Sh of u(tn), t„ - nk, n = 0, 1,... , J,
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tj = T, with the first scheme requires the solution of a system of nonlinear

equations for each n , while the second scheme only requires solving one linear

system of equations for each n . Under certain smoothness assumptions on the

solution of (1.1), we show in §3 that these approximations satisfy

max \\u(t„)-Un\\<C(hr + k2),
0<n<J

under the restrictions:
a)  k = o(hx<2) and hr~xl2 = o(k), when N=\,
ß)  k = o(h), r > 2, and hr~x = o(k), when yV = 2 and

(y)  k = o(h3/2), r > 3 and A'"3/2 = o(k) when N = 3.

In [6], Bales and Dougalis analyzed fully discrete fourth-order accurate in

time cosine schemes for the nonlinear scalar wave equation

N

(1.7) v„ - Y, dj(aij(v)diV) + a0(v) = g(v)

U=i

and proved optimal-rate L2 error estimates in space and time. Our general

plan of error analysis in §3 follows that of [6]. We shall consider only second-

order accurate schemes since, owing to the special form of the equations of

nonlinear elastodynamics, it is not clear how to construct useful fourth-order in

time cosine-type schemes. Note that in [17] up to fourth-order accurate cosine-

type schemes have been analyzed for the equation (1.7) in the more general case
where the function g depends on ut and V« as well.

In §4 we shall study single-step fully discrete methods for the approximation

of u that have temporal order of accuracy 2, 3, or 4. In order to construct

these schemes, we first write the semidiscrete problem (1.6) as a first-order in

time system of ordinary differential equations, that we then discretize in time
using methods based on rational approximations of the exponential, cf., e.g., [1,

3]. With suitable choices we derive fully discrete schemes in which computing

the approximations (^'„) « (¿[J"j) needs only the solution of linear systems of

equations at each time step.   Moreover, in §4, we prove that if the quantity
k~xh~NI2(hr + kv) remains small as k, h -> 0, then

(1.8) mzx(\\u(tn)-U?\\ + \\U(tn)-U?\\)<c(hr + k1'),        ^ = 2, 3 or 4,
0<n<J

i.e., that an optimal-order in space and time L2 error estimate holds for the

approximations of the displacement u as well as of the velocity ù. (Note that
the restriction that k~xh~N/2(hr + kv) remains small as k, h —> 0 follows, if

v = 2, from the mesh conditions (a), (ß), (y) stated previously. If v = 3 or

4, it follows e.g. from the weak mesh condition that kv~x = o(hN¡2), hr~Nl2 =

o(k) provided that r > y.)
In [4], Bales considers the nonlinear scalar hyperbolic problem (1.7) and

analyzes fully discrete schemes of up to fourth-order temporal accuracy that

are generated by rational approximations of ex. Under the restriction that

r > 3 and v > 3 for N = 2,3 he proves optimal-order L2 error estimates for

the approximations of v . The general plan of our error analysis in §4 follows

that of [4], and also that of Bramble and Sammon [7], in which fully discrete

approximations for parabolic problems are analyzed. However, in our analysis

we use a stronger norm for the estimates. This preserves the optimal order of
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convergence, cf. Lemma 4.1 below, and also allows us to handle the effect of

the presence of Vu in the operator S in a satisfactory manner. (Of course,

we must require that k~xh~Nl2(hr + kv) be small, a restriction inherent in the

problem itself rather than in the techniques used for the error analysis, cf. the

analogous restrictions in §§2 and 3.) Note also that, if one applies our technique

in the case of Bales' schemes for (1.7) one can prove the analogous estimates,

but without the restrictions r > 3 , v > 3 .

2. Semidiscrete approximations

As stated in the Introduction, the continuous-in-time finite element approxi-

mation (semidiscrete approximation) wA: [0, T] —> Sh of the solution of (1.1)
satisfies the following initial value problem in Sh :

(üh,x) + a(Uh,x) = (f,X),    VxeSh, 0<t<T,

uh(0) = u°h,        uk(0) = uheSk.

We have now the following result:

Theorem 2.1. Let u be the solution o/(l.l). We assume that r - N/2 - 1 > 0

and that the initial values u°h , u\ e Sk have been chosen such that

(2.2) ||Mo_iF(0)||i + ||Mi_^(0)||<cArj

where W(t) is the solution of (1.5); then the semidiscrete problem (2.1) has a

locally unique solution that satisfies, for a constant c independent of h,

max \\uh(t)-u(t)\\ <chr.
0<t<T

Proof. Let uh -u = (uh - W) + (W -u) =: 9 + p . Then, using (1.2), (1.5), and
(2.1), we have

(2.3) (6,x) + a(uh,x)-a(W,x) = -(P,X),    *X e Sh.

In the sequel we shall use the following formula (Taylor's theorem): If

Vv , Vu; e Z, there holds

N rx   d
(2.4) Sia(W) = Sla(Vw)+ £ dß(Vj-Wj) /   -—Sia(Vw+x(V(v-w)))dx.

Since Z is convex, the term in the integral remainder is well defined.

Let us assume for a moment that Vuh G Z. Then, since for h sufficiently

small, VIF e Z as a consequence of (ii,b) and (iv,a), we have, using (2.4),

a(uh,x)-a(W,x)= I ä(W + x(uh-W); 6, X)dx,       X e Sh.
Jo

Hence, (2.3) takes the form

(2.5) (6,x)+ I ä(W + x(uh-W);8,x)dx = -(p,x).
Jo

Given W = W(t), we consider a form defined for $, y/, x e Sh (with

V</> e Z) as follows:

A(cp;y/,x)= [ ä(W + x(<j>-W);y/,x)dx.
Jo
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Consider the following subset of Y := C([0, T) ; Hx ) n C1 ([0, T] ; L2) :

S = {¥:[0,T]-+Sk,

where  max (\\y/(t) - W(t)\\{ + \\y/(t) - W(t)\\) < Ct(u)hr,

andVy/(t)eZ, 0<t<T},

where C*(m) = C, is a positive constant which will be specified later. It is

obvious that J*" is not empty, since W e J?. Also, if a sequence {y/n}„*L\ c/

converges in 7 to y/ e Y, we see easily that y/ e S . Hence, J? is a closed

subset of Y.
With this notation, define a mapping ./f on y as follows: If <£ G J*", the

image JV(<\>) =: u^ is given by the relations

(2.6) «¿(0) = Kg,     m¿(0) = k¿,    fori = 0,

and u^(t) e 5A , for 0 < t < T, such that

(2.7) (6<t,,x) + A(<i>;d4>,x) = -(p,X),    V* € Sfc, 0 < r < 7\

where d^^u^-W. In order to complete the proof of the theorem, it suffices

to show that JV has a unique fixed point in y. Indeed, if Vh is this fixed

point, then vk satisfies (2.5) and Vvh G Z; therefore vh satisfies (2.3) too, i.e.,
is a solution of (2.1). Furthermore, since u/,e/, the approximation property

(iv,a) implies that maxo<,<r \\vk(t) - u(t)\\ < chr.
We will establish the existence of a unique fixed point in J? by showing

that the pair y, JV satisfies the assumptions of Banach's fixed point theorem,

namely that
(a) yy(y) c y,
(b) JV is a contraction with respect to d(-, •),

where for <p, y/ g S, d(4>,y/) := maxo</<r(||0(O - V(0lli + 11^(0 - ^(011) -
(Note that we can show, by a similar argument as in the proof of (b) below, that

if uh and üh are two solutions of (2.1) with Vma , Va/, g Z and ||m - uh\\,

\\u - üh|| < Chr, then «/, = «/,.)
For (a), we first observe that JV is well defined. Indeed, if <j> G J2", since

VW belongs to Z, the element W + x(4> - W), 0 < x < 1, is such that
V(W + x(<t> - W)) g Z, and the bilinear form A(4>; -, •) is symmetric and

positive definite. Hence, the relations (2.6) and (2.7) describe u^: [0, T] —► Sh
uniquely as the solution of an initial value problem of a second-order system

of ODEs.
Now putting x - Q(t> m (2.7), we have for 0 < t < T

(d4>,d^) + A((p;d4>,d4>) = -(p,è(t>),

or

= -(p,è4>)+    T    x/  (dAAiajß(VW+xV(ct> -W))]dj6^ß , did^ajdx.
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Since A(4>; •, •) is positive definite, integration yields for 0 < t < T

(2.8)

||ö^)||2 + M0||Vfy(i)||2

<C(||^(0)||2 + ||fy(0)||2) + e" f\\p\\2ds+ f\\942ds
Jo Jo

+     É     \ í  Í WtWwWW + xV(<t> - W))}djd^ß, did^») dxds.
i,aj,ß=\      J0  J°

From (iv,b) we have /0' \\p\\2ds < ch2r. Also, (2.2) and (2.6) give ||0¿(O)||2 +

||0<¿(O)||2 < ch2r. Finally, to estimate the last term of (2.8), observe that

dt(Aiajß(VW + xV(<t>-W)))

N      ~j

= £ -s~-(^w + ^(<f>-w))dy(wk + x(4>k-wk)).
k,y=\ ar,ky

Using the fact that the values of VW + xV(<f> - W) lie in a bounded set of

RNxN t the smoothness of Aiajß , and (v), (ii,a,b), we have that

N     1   i*1

£   Ö /  ißt[Aiajß{VW + tV(</> - WWjO^j , did^a)dx

<c\W\itOO\\d42 + c\^-W\U0O\\d42

< c-iiö^ii2 + ch-l-N'2M - w\\ ÏÏ642 < cwe^w2,

where in the last inequality we used the fact that, since r > 1 + N/2, <p ê/,

we can choose an ho such that for h < ho we have ch~x~Nl2\\4> - W\\ < 1 for
0< t<T.

Combining the above estimates in (2.8), we have

l|0,(OII2 + Mo||vö0(OH2 < ch2r + c f(\\d42 + \\dt\\2)ds.
Jo

Hence, using Gronwall's lemma, we obtain that for some constant Ci(m) inde-

pendent of h

llfy(Olli + IIWII<C,(w)A',        0<t<T.
Now tracing back constants through the previous estimates, we observe that the

constant C\(u) does not depend on C*(u) and on <f>. Consequently, setting
C*(w) := C\(u) in the definition of y , we have

l|0*Wlli + IIWH <C.(u)hr,        0<t<T.

From (iv,a), (ii,a), we conclude that there is an hi > 0 such that for h <h\

we have \Vu(t) -*-VW(t)\oo < Ô/2. Consequently, choosing h2 > 0 so that

for h < h2, |Vw^(i) - VfF(0U < e"A-^2||ö^(i)||i < cC,(u)hr~N/2 < Ô/2,
we obtain that Vm¿ g Z. Hence, we establish the validity of (a) by choosing

h < h* = min{Ao, h\, h2} .
For the proof of (b) let R = <j> - <j>' and 0 = u$ - Up , where <f>, <t>' G y .

Then (2.7) gives

(6, x) + A(4>; e,X) = A(4>' ; Op ,x)-A((t>;d4>,,x),        0 < t < T.
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Letting x — 6 » in the same way as before we get

(2.9)

||0(OH2 + A/o||V0(i)||2

< / ||0||2 ds + cl {A(<t>' ; 6# , 0) - A(<f>; 6# ,Q)}ds
Jo Jo

+ c     E     \Í I (dt[Aiajß(VW + tV(</> - W))]dß0j , daS,) dxds.
i,aT,ß=x 2 Jo Jo

For h < ho and <p ey we have

JL       1     /•!
£   \ I (d,[Aiajß(VW + xV(4> - W))]dß0j , dae¡) dx < c\\e(t)\\]

Now using (ii,a,b) and the fact that  Aiajß  are smooth (and in particular

Lipschitz), we have

\A(<l>';64,,è)-A(<p;8+,,è)\
N -i

£   J (Aiajß(VW + xV(<t>' - W))dß0v j , daèi) dx
i,a,j,ß

N

-   £    / (Aiajß(VW + tV(<¿ - W))dp6fj, daèi)dx
i,a,j,ßJ°

< c||V(0 - cf>')\\ |0^|1>oo||Vè|| < cy(h)\\VR\\ ||0||,

where y(h) = hr~x~N/2. In the last relation we used that u^ ey .

Combining the above estimates, and applying Gronwall's lemma in (2.9), we

have, since 0(0) = 0(0) = 0,

m« (||0(Olli + 110(011) < y(A)C2(M)ornax.||Ä(OI|i.

Since r - I - N/2 > 0 we can choose an A3 such that for h < A3 we have

y(h)C2(u) =: L < 1 ; i.e., taking A < min{A,, A3}, we see that (a), (b) hold,
and so the proof of the theorem is complete.   D

3. Two-step fully discrete schemes

of second-order temporal accuracy

In this section we shall construct two fully discrete schemes for the approx-
imation of the solution of (1.4). These schemes are based on second-order

accurate rational approximations to the cosine, cf. [2, 5, 13]. For real x we

consider a rational function of the form

.   .       l+P\X2 nrW = TT^'      qi>0>

approximating cosx. For accuracy purposes we assume that p\ = q\ - 1/2,

which implies that in general r(x) = cos* + 0(xA), as x -> 0. We shall also
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assume that q\ > 1/4, which ensures that the stability condition \r(x)\ < 1 is

satisfied for all xeR. Let k > 0 be the (constant) time step and tn = nk,

« = 0,1,...,7, Jk = T. As a consequence of the second-order accuracy

of r(x), for every smooth function y = y(t) on [0, T] we have (with y(;) :=

dJy/dti)

(3.1) (/ - k2qid2)(y(tn+l) +y(tn-l)) = 2(1 - k2Pld2)y(t„) + 0(k4y^).

Motivated by the above relation and (1.4), we can now define the following

fully discrete schemes. We first seek Vj £ Sh , 0 < j < J, approximating uj =
u(tj) for 0 < j < J by defining recursively Vn+X e Sh for n = 1, ... , J - 1

as the solution of the nonlinear system of equations

(!/"+' - 2V" + V"-x, x) + k2qxa(Vn+x, X)

(3.2) - 2k2pxa(Vn , x) + k2qxa(Vn~x, x)

= k2(qxfn+x - 2pJ" + qj"-x ,X),    VX€Sh,

where Vo, Vx will be given in Sh and /" := Pf(t„).
We may also construct a scheme that requires solving only linear systems of

equations for each n: Consider first the following Taylor formula for v , w G Z

and each pair of indexes i, a:

N ß„

Sia(W) = Sia(Vw) +   £   dß(Vj-Wj)—^(Vw)

N

(3-3) +     Y     dß(Vj-Wj)ay(vk-wk)
j,ß,k,y=\

dS
(Vw + xV(v - w)) dx.IJo dr\jßdr\ky

For a given function y(t) defined on [0, T] let

(3.4) yn+x =2y"-yn~x.

(Then for y smooth enough, yn+x - yn+x = 0(k2).)

Now putting v = wA,+1 and w = unh+x in (3.3), dropping the last term of

the resulting equation (presumably of 0(k2)), and using (3.1), (1.4), and (3.4),

we arrive at the following fully discrete scheme: Seek Uj e Sh, 0 < j < J,
approximating uj = u(tj), by defining U"+x G S„ as the solution of the linear

system

(Un+X - 2U" + Un~x, x) + k2qxä(Un+x ; Un+l - Û"+x, X)

(3.5) + k2qxa(Un+x, X) - 2k2Pla(Un , X) + k2q,a(Un-1, x)

= k2(qjn+x - 2pJ" + qjn~x , X),    VX€Sh,

with U°, Ux given in Sh .
In the sequel we shall first analyze the error of the method (3.5) and show

that, if the initial values U°, Ux are chosen so that

(3.6) \\EX - E°\\2 + k2(\\E°\\2i + \\El ||2) < cÂ:2(Â:2 + hr)2,
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where Ej = Uj - W>, then

max \\Un-u(tn)\\ <c(hr + k2),
0<n<J

under the assumptions (a), (ß), (y) of §1. A similar result, cf. Theorem 3.2,

holds for the solutions V" of the nonlinear scheme (3.2).

For the error analysis we shall compare U" with the nonlinear elliptic pro-

jection W" of the solution u(t„) of (1.1), defined by (1.5). We shall need the
following consistency result, the proof of which can be found in the Appendix

of [18]; see also [16].

Lemma 3.1. For A sufficiently small and 1 < n < J - 1 there holds

(Wn+X - 2Wn + W"-x, x) + k2qxä(Wn+x ; Wn+X - Wn+X, X)

+ k2qxa(Wn+x, x) - 2k2pxa(Wn , X) + k2qxa(Wn~x, X)

= -(An,X) + k2(qJ«+x-2pxf + qJn-x,X),    VXeSh,

where An satisfies

\(An,X)\<ck2(k2 + khr-l+hr)(\\X\\+k\\VX\\),       XeSh.   D

Now let E" = Un - Wn. Then, using (3.5) and Lemma 3.1, we obtain for

xeSk
(En+X -2En + E"-x ,x)

+ k2qi[ä(Ün+x ; Un+X - Ûn+X, x) - ä(Wn+x ; Wn+X - Wn+X, X)]

+ k2qi[a(Ûn+x, x) - a(Wn+x, x)] - 2k2Pl[a(Un , X) - a(W" , X)]

+ k2qi[a(U"-x, x) - a(W"-x ,x)) = (A„,X),       1 < n < J - 1.

For purposes of easy reference, we rewrite Taylor's formula (3.3) as

(3.8) a((p, x) - a(y/, x) = ä(y/; 4> - y/, x) + b(<t> - y/, x),

where we have assumed that V</>, Ví¿/gZ, <p, yi G Sk, and where

N /

b(4>-W,X)=        £ ( dß(4>j - y/j)dy((pk - y/k)
i,a,j,ß,k,y=\  \

x f »Î!SL   (^¥ + rV(cp-y/))dx,dax].
Jo   dt]jßdr]ky J

Using the fact that S¡a are smooth functions, we have that

(3.9) \b{<p -W,X)\< c\V((l> - ^UI|V(0 - y/)\\ \\Vxl

Let us assume that VUn+x, VU"+X G Z. Then it is easy to verify, using

(3.8), that

[ä(Un+l ; Un+X - Un+X, x) - ä(Wn+x ; Wn+X - ÍVn+x, X)]

+ [a(Û"+x,x)-a(W"+x,x)]

(3.10) = ä(Wn+x ; Un+X - Wn+X, x)

+ [ä(Un+x ; Un+X - Ûn+X, x) - ä(Wn+x ; Un+l - Un+X, x)]

+ b(Un+x -Wn+X ,x).
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Starting from (3.7), using (3.10), and applying (3.8) for <p = Uj, y/ - WJ',
j = n, n - 1, we finally come to the following error equation, which holds for

all x € Sh if VW € Z, j = n, n - 1, VL>+1 g Z:

(3 11)     {E"+l ' 2E" + E"~l ' X) + kl~a{W" ; qiE"+l ~ 2piE" + qiE"~l ' X)

= (Pf, x) + (P2" , X) + (B¡ ,X) + (K ,X),        l<n<J-l,

where

B\ = - qik2[ä(Un+x ; Un+X - Un+X, x) - ä(Wn+x ; Un+X - Ûn+X, x)],

B\ = - k2[qxb(Un+x -Wn+X, x)-2pxb(U"-Wn, x) + qxb(Un~x-Wn~x, X)],

P3" = - qxk2{[ä(Wn+x ; E"+x ,X)-ä(W"; En+X, X)]

+ [ä(W»-x ; E"-x, x) - ä(W" ; En~x, X)]}.

Choosing X = En+X - E"~x in (3.11), using the symmetry of ä((j>; -, •),

V(f> G Z, summing from n = 1 to M, \ <n < M < J -\, and estimating the

B" terms, we can prove the following proposition, whose proof is also given in

[18], [16].

Proposition 3.1. Assume that the initial values U°, Ux G Sh are chosen so that

(3.12) ||£' - £°||2 + ^(HVE'll2 + ||V£°||2) < ck2(k2 + hr)2.

IfU", 0 < n < M+ \<J, exist in Sh andsatisfy VU" eZ, 0 < n < M, and
VUn+x G Z, 1 < n < M, then, there exists a positive constant c independent of

h and k such that

(3.13)
ÏÏM+X < cMk(k2 + khr~x + hr)2k2

M

+ ck £{||£"+l - En~x ||2 + k2(\\VEn+x ||2 + ||V£"||2 + ||V^""11|2)}

n=\

M
?n-l\+ c£A:2(|v£ n+1|oo + \VE "^H + |V£"|oo + \VE

n=\

xdlV^+'lp + HV^f + IIV^""1!!2),        l <n<M,

where

(3.14)
r„ = \\E" - E"~x\\2 + k2M0(qx +px)/2\\V(E" - En~x)\\2

+ k2Mo(qx-px)/2\\V(E" + E"-x)\\2

and M0 is the constant appearing in (S2b).   G

We are now ready to state and prove the convergence result for the scheme

(3.5).

Theorem 3.1. Assume that the initial values U°, Ux G Sh satisfy (3.12), and

suppose that k, A satisfy the mesh conditions (a), (ß), (y) o/§l. Then there
exists a positive constant C independent of h and k such that

(3.15) max \\U" - u(t„)\\ < C(hr + k2).
0<n<J

Proof. We observe that if the terms IV-E^oo , j = 1, ... , M, in (3.13) can be

bounded by k, then applying Gronwall's lemma, we are led to (3.15). In order
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to do this, we will use an induction argument. The induction hypothesis on M

is
(I) UJ G Sh, j = 0, 1, ... , M, and VU* G Z, ; = 0, 1, ... , M, and

VÛJ+xeZ, j = l,2,...,M;

(II) for ; =» 1.M there holds |V£>|oo < k.
It is easy to see that (3.12) and (ii,b) give (I), (II) for M = 1. Suppose now

that (I) and (II) hold for some M, with 1 < M < J — 1. Then the hypotheses
of Proposition 3.1 are fulfilled, and (3.13) gives

M+l

8*+i < ck2(k2 + khr~x + A')2 + ck £ £„,„_,,

n=\

where

£„,„_, = \\E* - E"-1!!2 + k2\\V(E" + E"-x)\\2 + k2\\V(E" - E"-x)\\2.

When tji > 1/4 it follows that px + qx > 0 and qx- px > 0. Hence, we can

choose a fc0 such that for k < ko we have

M

Em+i,m < C*k2(k2 + W~x + hr)2 + Ck££„,„-!,
«=1

where C» is a constant independent of h , k but also independent of M. We

shall follow this convention in the sequel as well; i.e., C* will denote a positive

constant, not necessarily the same at any two places, but always independent of
h , k, and M.

The discrete Gronwall lemma now gives

(3 16) En+X>n < Ck2(k2 + khr~x + hr)2exp(Ckn)

< Ck2(k2 + khr~x + hr)2,        n=\,2,...,M.

Since \\E"\\ < £"=11|£7 - &~l\\ + \\E°\\, taking square roots on both sides of

(3.16), and using (3.12) once more, we have

(3.17) \\E" || <Ct (k2 + khr~ x+hr),        n = 0, 1,2.M+l.

Now (ii,b) and (3.16) give

IV^+'U < C*A-^2||VJEM+1|| < Cth~N'2(k2 + khr~x + hr)

and
|V£M+2|oo < C*h-Nl2(k2 + khr~x + hr).

From our hypotheses we have IV^+'I^, |V£iM+2|0o < S/2 for sufficiently

small  A   and  k.    Taking  A   small enough so that   \WM+X - uM+x\Xt0O,

\WM+2 - ûM+2|i)0O < S/2, we have VUM+X, VÛM+2 G Z, i.e., that (I) is

valid for M + 1.
For the proof of (II) we observe first that (3.16), (ii,b) give (C3 is the constant

in (ii,b))

|V£"+1|oo < C3A-JV/2||V£A/+1|| < C3Cth-N/2(k2 + khr-x+hr),

and we distinguish the following cases:

( 1 ) When /V = 1, then from our assumptions it follows, for sufficiently small

k and A , that IV^+'I«, < k , i.e., that (II) holds.
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(2) When N = 2, the assumption (ß) of §1 yields

3C3C»Ä:A-1 < 1,    3C3CtA-2Ar < kh~x   and   r > 2,

and therefore that |V£M+1|oo < k .

(3) When N = 3, for \VEM+X I«, < ¿fc to hold, it suffices that 3C3C.A:A-3/2 <
1 and 3C3C«ArA-3/2 < k or 3C3CA-3Ar < kh~3'2 < (3C3C.)_1. This rela-

tion is a consequence of assumption (y) of §1 for small A .

In conclusion, therefore, we have proved that (I), (II) hold for M + 1, and

thus (3.17) holds for any M with 0 < M < J - 1 ; the proof of the theorem is
complete.   D

Remark. A possible choice of the starting values U°, Ux is: Let £7° = W°

and Ux = W° + kPux + k2Pë2\0)/2, where P is the L2 projection on Sh ,

and w(2'(0) is computed using (1.1). This choice requires the solution of one
nonlinear system. One can verify that the U° , Ux defined above satisfy (3.12).

A completely analogous result holds for the nonlinear scheme (3.2). In par-

ticular, we have the following theorem whose proof is given in [18], [16], and

is carried out using Banach's fixed point theorem.

Theorem 3.2. We assume that the initial values Vo, Vx e S h for the scheme

(3.2) satisfy (en = V" - W")

(3.18) He1 - e°||2 + fc2(||Ve' ||2 + ||Ve°||2) < ck2(k2 + hr)2.

Ifk,h satisfy the mesh hypotheses (a), (ß), (y) of §\, then for every n, 2<

n < J, the solution V" of (3.2) exists in S h ■ Moreover, there exists a constant
C independent of k, h such that

(3.19) max \\V-u(tn)\\<C(hr + k2).   o
0<n<J

4.  HlGH-ORDER SINGLE-STEP FULLY DISCRETE SCHEMES

In this section we shall construct high-order in time single-step fully discrete

schemes to approximate the solution of (1.1). To motivate the construction,

consider the semidiscrete approximation of u, Uh : [0, T] -> 5/,, which satisfies

(1.6) with given initial values uh(0) and uh(0) in Sh . If

the semidiscrete equation can be written as a first-order system

(4.1) (%,,,*)-(j/%,0) = (F,<D),    WeSjxSj,

where si : Sh x Sh —> Sk x Sh is the operator defined by

and A has been defined by (1.3), and where by (•, •) we denote the L2 x L2
inner product as well.

The fully discrete schemes which we are going to construct are based on up to

fourth-order accurate rational approximations to the exponential. Following [1,

3, 4], we consider the rational function r(z) = P(z)/Q(z), where P and Q are
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relatively prime polynomials of degree up to two, given by P(z) = \+pxz+p2z2,

Q(z) = 1 + qxz + q2z2. We suppose that f has the following properties of

accuracy and stability: There exists an integer v,  1 < v < 4, such that

(Ri) \f(z)-ez\<c\z\v+x,        |z|->0,

(Rii) \f(z)\ < 1    for z G iR.

An immediate consequence of (Rii) is that

(Riii) Q(z) / 0   for z G z'R.

It is easy to see now that for any smooth function y = y(f) and k > 0, there

holds

(4 2) ^ + k) + qiky'^ + k) + q2k2y"^ + V

= y(t) +P\ky'(t) +p2k2y"(t) + 0(kv+xy^+x)).

Motivated by (4.2), we proceed to the construction of the scheme. The first

derivative %,z 1S given by (4.1). For the approximation of the second deriva-
tive we have

<*»■»• MUX)-*)+((/)■*)■  oes»*s"
The definition of A yields for X e Sh

(dt(Auh) ,X)=      £      (^¡fß(VUh)dßuhj, daX)j
ii, a, j', /?—1

= à(uk;ûk,X) = (L(uk)ùk,X).

From the above relations we have for %n :— %k(tn), t„ — nk, k = 0,1, ... ,/,

Jk=T,

(4.3) %?n+x +kqx*/ %f"+x +k2q2tf'Zfn+x « Wn+ kpxs* W+ k2p2¿¿?'%fn+ Fn ,

where we denote

(4 4) F"--( k2(q2f»+x-p2f») \

1     ' U(ii/"+1 -Pif) + ki(q2fW»+x -p2fW)J '

/" := Pf(tn), /("" := Pf(tn), and s/': Sh x Sh ^ Sh x Sh is the operator
defined by

x\ = ( ~AWX  \       ('//x']
. G Sh x Sh.

¥2/

Let U" G S h be the approximation of u(t„) which we shall compute from our

scheme. Also let U"+l be a linear combination of previous values U(, n-m<

j < n, which approximates u(tn+x); for the specific formula cf. (4.6) below.

Starting from (4.3), putting v = U"+x and w — UxnJrX in the Taylor formula

(3.3) and dropping second-order terms with respect to V(U"+X - U"+x), we

finally obtain the following linear fully discrete scheme to find approximations

U" « (Jg),  U" e Sh x Sh : Let W G Sk x Sk, 0 < j < n < J - 1, be given.
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Then define U"+x G S h x Sh as the solution of the following linear system

U"+x + kqxX+x U"+x + k2q2^2+x Un+X

/k2q2AÛ?+x\     fk2q2L(ÛrlWrl\

\kqxAÛï+x )     \kqxL(Ûln+x)Ûin+x )

-(U" + kpxsf U" + k2p2sé'Un) = F" ,

where

-2"+1 = \-L(Ûxn+l)   OJ-

Our aim, now, is to show existence, uniqueness, and convergence of these

approximations to the solution u of (1.1) as k, A —► 0. In particular, we shall

prove in this section that if k~xh~Nl2(hr + k") is small then, cf. Theorem 4.1

below,
max (\\u(tn) - C/fH + \\u(tn) - C/2"||) < c(hr + k").

0<n<J

We first introduce a family of norms to be used in the error estimations. If

w(t) := W(t) is the elliptic projection of the solution u(t) of (1.1), defined by

(1.5), we denote

and W" :— W(t„). We define now the following inner product in S h x Sk:

Suppose that A is sufficiently small to ensure that Vw" G Z, and let <P =

© . * - (g) € Sh x Sh . Putting

((<¡>,V))n = (L(wn)<f>x,y/x) + (<fi2,y/2),        0<n<J,

we observe, since Sh C HQX and L(w") satisfies (ii,a), that ((•, •))„ is an in-

ner product on Sh x Sh with corresponding norm |0|2 := (L(wn)4>x, <f>x) +

(02, <t>i) = \\Lxl2(wn)<j)X\\2 + \\4>i\\2 » 0 < n < J. Define now two operators of a

form similar to ¿¿?„ :

"S" = \-L(w")   OJ    and   ^n+x = \-L(w"+x)   OJ'

We observe that ((^„<D, <D))„ = 0, VO G Sh x Sh .

Consistency. Assume that for a smooth function y = y(t), the approximation
y-n+\ Ä yn+\ js defined for /j > 3 by

(4.6) yn+x = axyn + a2yn~x + a^y"'2 + a4y"-3,

where the numbers ax, a2, cxt,, a4 are chosen such that \yn+x - y"+1| < ckv

for every n, 3 < n < J — 1. (Obviously, we may take a4 = 0 if v — 3,

a4 = e*3 = 0 if f = 2, etc.)

We have now the following result.

Lemma 4.1. For 3 < n < J — 1 ez/iúf A sufficiently small, we have

Wn+X +kqx^n+xWn+x +k2q2^2+xWn+x

_ //c2^w"+lN\       //C2<72L(U>"+1)TA>n+1\

V^i^i&"+1 J + Vfc#1L(u)',+1)u;n+1 J

- (2T" + â:/j,j/ sr« + /c2p2^' ar") = p" - r„,
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where Tn e Sh satisfies

|r„|„ < ckv+x(k2h~x + k2hr~3 + k3h~2 + 1) + ckhr(\ + kh~x).

Proof. For the terms of first order in k we have, choosing A small enough to

ensure Vw(t)eZ, 0<t<T, that

(4.7)

0
kqx^n+xW"+x  - [KkqiAÚjn+x) + ykq{L(ßn

0

= kqxsa Wn+X - kpi

kpxstf Wn

'+( ° )
\kqxB(W+x,w'>+x)J'

where the operator B: 5/, x Sh -* Sh is defined as follows: For every X G Sh

(4.8)

(B(<p, y/),x)=        £ (dß(<Pj - Wj)dy(h - Wk)
i,a,j,ß,k,y=\  \

x/o dnj

dSia

ißdflky
(Vy/ + xV(<p-y/))dx,daXi\.

For the estimation of B(wn+X, wn+x) we use (v), (iv,a,b), (4.6), and the

smoothness of 5/Q , so that

KP^1,^1),*)!

N

£       (dß[(WJ+x - Uj+Ï) - (w]+x - ûj+l)]

i,a,j,ß,k,y=\

xdY(w"k+x-wnk+l)IP,daXi)

<

+

N

£      (dp(uj+l-û]+l)

i,a,j ,ß ,k ,y=\

X dy[(w"k + X - M»+1) - (W"k + X - UI+1)]IP , daXi)

N

£ (dß(Uj + X   -   ûj^dy^    -   ûl+X)I?  ,   daXi)
i,a,j ,ß ,k,y=\

< ckv+xhr-x\\Vx\\ + ckv+2\\Vx\\   for x e Sh,

dSit
-(Vwn+x+xV(wn+x-wn+x))dx   and   i:= (i, a, j, ß, k, y).

where

/.- - /'
Jo  dnjßdnky

Using (ii,a), we conclude

(4.9) /c||P(u;n+1,ii>"+1)|| <cku+x(khr-2 + k2h-x).
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In order to complete the estimation of the right-hand side of (4.7), we just

substitute kqxsf Wn+X - kpxsf W" by

kqxsf W"+x - kpxsé W"

(4.10) / kqxw"+x - kpxw" \ _ ( 0 \

= \kqxPü"+x - kpxPü")     \kqxf"+x - kpxf") '

where we have used that Aw" = Au" and (1.1) (Au" = f" - Pu").

For the estimation of the terms with coefficient k2 , we observe, using (3.3)

and (4.8), that

'^.^ - (k2q2Á*n+Í - ^"+>"+1) - k2p2^'W"

= k2q2rt'W"+x-k2p2X?'W"+(^     k]q2i{xWn^"2 ■  +X
y \k2q2[L(w"+x) - L(w"+X)]w"+X)

From (ii,a), (4.9) we have

(4.12) /c2||L1/2(u;',+1)P(u;',+1, w"+x)\\ < ckv+x(k2hr~i + k3h~2).

Also, the definition of L(-) and relations (4.6), (iv,b), (v) give

\([L(w"+x) - L(w"+X)]w"+X, x)\ < c\\w"+x - w"+x \\x\w"+x\x ,oo||Vx||

< c(\\(wn+x - u"+l) - (w"+l - w"+1)||, + ||u"+1 - iî"+1||i)||V/||

<c(kvhr-x+kv)\\Vxl

Hence, using (ii,a), we obtain

(4.13) k2\\[L(wn+x) - L(wn+X)]w"+X\\ < ckv+x(kh~x).

For the other terms of (4.11) we observe that differentiating Aw = Au with

respect to t and using (1.1), we obtain

k2q2sf'W"+x - k2p2s/'W" =[,';" . .  ^
yi \-k2q2L(w"+x)wn+x +k2p2L(w")w")

(4 \4) - (k2Q2p(ün+x - wn+x) - k2p2P(u" - w")\

(     k2q2w"+x - k2p2w"     \_f   k2(q2f"+x-p2f")   \

\k2q2PuW"+x - k2p2PuW")     \k2(q2fW"+x -p2fW"))'

Using (ii,a), (iv,b), we have

(4.15) fc2||L1/2(ii>n+1)[P(M"+I - wn+x)]\\ < ckhr(kh~x).

Note also that

(4 16)    W"+x-W"=(Wn+X-Wn\ + ( ° 1
y      ' \P(ù"+x - ù")J     \P[(w"+x - w"+1) - (w" - u")]J '

where (iv,b) again gives

(4.17) \\P[(w"+x - ù"+x) - (w" - ü")}\\ < ckhr.
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Summarizing, we need finally an estimate for

_ / wn+x -w" \     ,( qxw"+x -pxw" \

' " \P(Ü"+X-Ü")) +   \qxP[ü"+x -pxü"]J

+ k2(       q2w-p2w"
q2PuW"+x - p2PuW",

Using (4.2), (ii,a) and (iv,b), we obtain, putting p(t) = w(t) - u(t),

||L1''2(ii;"+1)[(w"+I + kqxwn+x + k2q2w"+x) - (wn + kpxw" + k2p2w")]\\

< c\\(u"+x + kqxù"+x + k2q2ün+x) - (u" + kpxu" + k2p2u")\\x

+ c\\(p"+x + kqxp"+x + k2q2p"+x) - (p" + kpxp" + k2p2p")\\x

<ckv+x(\+hr~x).

Also, from (4.2) we have

||Pp"+1 + kqxün+x + k2q2u^)n+x) - («" + kpxu" + k2p2u^")}\\ < ckv+x.

Therefore, we obtain

(4.19) |r?||„+i <ck"+x.

Now combining (4.7)-(4.19), we obtain the desired result.   D

The basic error equation.   Let E" = U" - W" . Using the fully discrete scheme

(4.5) and Lemma 4.1, we have for 3 < n < J — 1,

E"+x +kqx(&n+xUn+x -X+xW"+x) + k2q2(^+xU"+x -^2+xW"+x)

ik2q2[(AUx"+x - L(UX"+X)UX"+X) - (Aw"+X - L(w"+X)wn+X)]\

~ \kqx[(AUx"+x - L(Ûx"+x)Ûxn+x) - (Aw"+X - L(w"+X)w"+X)] )

= E" + kpx(s#U" - sf W") + k2p2(sf'U" - stf'W") + T".

In the sequel we assume that Vc7" , VU"+X e Z. Then it is easy to verify that

- (L(Uxn+x)Ux"+x - L(w"+X)w"+X) - (AUX"+X - Aw"+X)

+ (L(ÛX"+X)ÛX"+X - L(w"+X)w"+X)

= -L(w"+x)(Ux"+x - wn+x) - B(ÛX"+X, w"+x)

- [L(C>i,+,)(C/1"+1 - Ûxn+X) - L(w"+x)(Uxn+x - Uxn+X)],

and

L(Ûxn+x)UÏ+x -L(w"+X)w"+X = L(w"+x)(UZ+x -w"+x)

+ (L(ÛX"+X) - L(wn+x))U!/+x.

Noting also that AUx"-Aw" = L(w")(Ux" -w") + B(Ux", w") and L(UX")U^-
L(w")w" = L(w")(U!/ - w") + (L(UX") - L(wn))U% , we come to the basic error
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equation: If VUX" , VÛxn+x G Z, then there holds

(4.20)

En+X + kqxX+xE"+x + k2q2J?n2+xE"+x

= E" + kpxSenE" + k2p2^f2E"

+
/k2q2[L(Ux"+x)(Ux"+x - Ux"+X) - L(w"+x)(Uxn+x - Ûx"+X)}\

\kqx[L(Û"+x)(U"+x - Ûx"+X) - L(w"+x)(Ux"+x - ÛX"+X)]J

'k2[q2B(Ûxn+x, w"+x) -p2B(Ux" , wn)]/k¿[q2B(Uxn+i, wn+l) - f

+ \k[qxB(Û"+x,w"+x)-p\"+x, w"+x) -pxB(Ux" , w")]

0
" \k2[q2(L(Ûxn+x) - L(w"+x))U!/+x -p2(L(Ux") - L(w«))U¡] + Y"

=: E" + kpxXEn + k2p2^2E" + A"x + A\ + A? + Y",        3 < n < J - 1.

Now letting

Q«+i = Q(k3í,+i),    Qn = Q(k5?n),    and   Pn = P(k&„),

we can give the error equation (4.20) the form

(4.21) Qn+\E"+X = PnE"+A"x+A"2+A"3+Y",        3<«</-l.

Properties of the operators Qn, Qn, P„.   In what follows we shall show some

properties of the operators occurring above. First note that

(I) lOIIU, <(l+c/c)|0|„,       WeShxSh.

Indeed, from the definition of | • |„+i we have |<t>|2+, = (L(w"+X)<j>x ,00 +
(<fo > 02) ; hence (v), (ii,a), (S2b), and the definition of L(v) give

1*15+1 - lililí2« = ([E(w"+X) - L(w")]cj>x, 4>x)

<ck      sup      |ti;(5)|i,Ool|V0,||2<i:/:(L(ti;")01,0i)<cÂ:||O|2,
se[t„-i ,tn+{]

or |<D|2+1 < (1 + ck)¡n2n < (1 + e*/2)2||<D|l2, which gives (I).
An immediate consequence of (I), of the fact that 5Cn has purely imaginary

eigenvalues, and of the stability assumption on f is that

(II) |Pn<I)|„+i<(l+c/c)|||ß^«U,    Viesas».

We also need an estimate for |(<2„+i - ß/i+ü^IU+i • F°r this, first observe

that

(ß„+, - 4+i)0 = kqx ([L(tó„+1) _°L{wn+i)](j)l)

2    i[L(wn+x) - L(w"+X)](f>x

q2\[L(w"+x) - L(w"+X)]<t>2,

Relations (v), (ii,a) give

\([L(w"+x)-L(w"+x)]<f>x,x)\<ck      sup      \w(s)\x, oo||V0i || HVxIl
se[í«_i,/«+i]

<ckh-x(L(wn+x)<j>x,<l>x)xl2\\x\\
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and k2\([L(w"+x) - L(w"+X)](t)2, x)\ < c/c(/c2A-2)||02|| \\X\\. Similarly, using
(ii,a), (v),

k2\(Lxl2(wn+x)[L(wn+x) - L(w"+X)]<f>x, x)\

<ck3     sup     \w(s)\Xt00\\Vcf>x\\\\^Lx/2(w"+x)X\\
J€[/„-i ,i„+i]

<ck(k2h-2)(L(w"+x)4>x,cf>x)x/2\\X\\.

Since now ((-S^O, <P))„ = 0, V<P G Sk x Sh , we have for any <P G Sk x Sh

lQn+xn2n+l = \\Lx'2(w"+x)h\\2 + (q2x -2q2)k2\\L(w"+x)ct>x\\2

+ qÍk4\\U'2(w"+x)ct>x\\2 + ||02||2 + (q2 - 2q2)k2\\Lx'2(w"+x)(p2\\2

+ qlk4\\L(wn+x)<j>2\\2.

Note that if v > 3, then (4.2) implies that t?2 = |?i - ¿ • Hence, a straightfor-
ward computation shows that if q2 = 0 for v = 2 (no real restriction), then

q\ - 2q2 > 0 for v = 2, 3, 4. Therefore, we have

("i) l&+i*£+i>l*£+i.   vogs.xs,,

Consequently, we have proved the relation

(IV)  ||(Q„+1 - Qn+lmn+l < ck(kh-x+k2h-2)\jQn+x<t>j\n+x,    V<D G Sh x Sh.

Now using (4.21) and (I)-(IV), we finally obtain

«ß„+,P"+1|„+, = lP„Enln+i + |||(Q„+, - Qn+X)E"+X\jn+X

(422) +|A,+A2+A5 + P|„+1
< (\+ck)lQnE"\\n + ck(kh-x+k2h-2)\\Qn+xE"+x\\n+x

+ |AÏ+A2+A?+rB|„+1,       3<«</-l.

Convergence. At this point, to complete the first phase of the error estimations,

we need estimates for |A"|„+1, i = 1,2,3. This is done in the following
proposition, the proof of which can be found in [18], [16].

Proposition 4.1. Assume U", U"+x, U"+x e Sh x Sh and VUX", VÛX"+X G Z.

Then for 3 < n < J - 1 there holds

\\Qn+xE"+xln+x<(\+ck)lQnE"\\n

+ ck{kh~x + k2h~2 + (A-1 + kh~2)\E"x+x | x¡00}t\Qn+xE"+x |„+1

(4.23) +c/c{/cA-1+/c2A-2 + (A-1+/cA-2)(|fi,+1|i,oc + |^|i,oo)

x (IQnE"i\n + |f2„-,£"-1|„_i + ¡Qn-2E"-2\ n-2

■n-3 II
+ iiie„_3P"-ji„-3)}

+ ckv+x(\ + kh~x + k2hr-3 + k3h~2) + ckhr(\ + kh~x).   u

We are now ready to state and prove the following convergence result.

Theorem 4.1. We assume that UJ e Sh x Sh, 7 = 0,1,2,3, have been chosen

in such a way as to satisfy \\QjEj\\j < c(k" + hr). Then for every n, 4 < n < J,
the element U" e Sh x Sh exists uniquely as the solution of the linear system

(4.5). Let kh~x < a for some a > 0 and k~xh-N/2(hr + k") < C, where C is
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a sufficiently small constant and suppose that the rational function f(x) satisfies

(Ri), (Rii). Then, there exists a positive constant c independent of k, h such
that

max lQnE"\\n<c(kv + hr),
0<n<J

and consequently

max (\\u" - Un + \\ù" - U2"\\) < c(kv + A').
0<n<J

Proof. We shall show the desired result by induction on M, 0 < M < J - 1.

The induction hypothesis on M is

(a) U> exist in ShxSh, j = 0, 1, ... , M, and VU{ eZ, j = 0, 1, ... , M,

and VÛ{+1 gZ, j= 1,2,... ,M+\;

(b) for j = 1,..., M there holds IVP/U < k .
Since tQjEJjj < c(kv + hr), j = 0,1, 2, 3, we have the validity of (a) for

W/ = 3. Also, using (ii,b), we see that \E{\lt00 <ch-Nl2(hr+kv), j = 0, ..., 3,

which gives (b) for M = 3, taking k~xh~N/2(hr + kv) sufficiently small.

We observe first that if (a) holds, then (ii,a) gives that ¿m+\ has purely

imaginary eigenvalues. Therefore, by (Riii), UM+X exists in S h as the unique

solution of the linear system (4.5).

Suppose that (a) and (b) hold for some M with 3 < M < I - 1. Then the
assumptions of Proposition 4.1 are fulfilled and (4.23) takes the form

\\Qn+iE"+x\\n+x < (1 + Ck)iQnE"i„ + CtkiQn+xE"+%+x

+ CMîQn-iÊn-x\\n-x + ■■■ + ||<2„_3^"-3IU-3)

+ C*k(kv + hr),

where the constant C is independent of A, k but also independent of M. In

the sequel, C» will denote a positive constant, not necessarily the same at any
two places, independent of A, k, and M.

Letting ¥" = \QnEnl„ , we have for sufficiently small k that

ip+i _ yn < c,k(Vn + ■ ■ ■ + y-3) + C*k(kv + hr),       n = 3,...,M.

Using now ^ < C»(/c1' + Ar), j = 0, ..., 3, and summing from n = 3 to M,

we get

M

VM+X < C*(kv + hr) + C./c £*F.

7=0

The discrete Gronwall lemma therefore gives that

(4.24) VM+1 < C(k" + hr)exp(CtkM) < C,(kv + hr).

Now (4.24) and (ii,b) give (a) for sufficiently small A, k. Choosing C small

enough, we get, using again (4.24) and (ii,b), that IPf+'l^oo < k, i.e., that (b)

holds for M + 1. Consequently, (a) and (b) hold for every M, 3 < M < J.
Hence, (4.24) holds for every M, 0 < M < J - 1. Now using (III), (ii,a),
(iv,a,b), and the Poincaré inequality, we complete the proof.   D
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Remark. We may choose the starting values as Ux° = w°, U$ = Pux and for

7 = 1,2,3:

u{ = w° + p£ ^w(/)(0),      u[ = p £ ÍAM('+D(o).
/=1        ' /=0

The terms w(m)(0) are computed in terms of the initial data, using the equation

(1.1). With this choice we have \QjE% < c(kv + hr). We omit the proof.

5. Approximation properties of the elliptic projection

In this section we shall justify, under certain assumptions on S h , the prop-

erties (iv,a,b), (v) of the nonlinear elliptic projection W(t), which has been

defined in § 1 as the function in 5/, satisfying

(5.1) a(W(t),X) = a(u(t),X),    VXeSh,0<t<T.

For the existence and uniqueness of W and the validity of (iv,a), we refer to

Dobrowolski and Rannacher [12] and Rannacher [19]. Also, it can be proved,

Rannacher [20], following the analysis of Rannacher and Scott [21], that

(RS) \\u-W\\XtOC<chr-x.

In the sequel we shall use (RS) to avoid the restriction hypothesis r-N/2-1 > 0

in the proof of (iv,b) for 7=1. However, our proof of (iv,b) for j > 2 needs

this assumption.

We proceed now to show (iv,b), (v) for 7 = 1. Differentiating (5.1) with

respect to t, we get

(5.2) ä(W(t) ; W(t), x) = ä(u(t) ; ù(t) ,X),    V* G SA , 0 < í < P.

For the Hx norm estimate we first assume that A is small enough to ensure

that VW g Z. Using (5.2), (ii,a), (S2b), and (iii,a), we obtain

Mo\\V(W -ü)\\2<ä(W; W -ü,W-ü)

= ä(W; W -ù,Pù-ù)

+ [ä(u ; ù, W - Pu) - ä(W ; ù, W - Pu)]

< chr~x\\W - à||, + chr-x\\P(W - ù)\\x.

Hence, since ||Pv||i < c|M|i and Sh c H0X , we have

(5.3) \\W - ù\\x < chr~x,        r>2.

The relations (iii,a) and (ii,a) give (v) for 7 = 0. For 7 = 1 we have, cf. [6],

llalli,oo<||^- "111,oo + ||w||l,oo< ll^-^|ll,oo + l|W-^||l,oo+C

< ch-N'2(\\W- ft||, + ||« -x\\x) + \\ù-xh,oo + c   for any X e Sk.

If the element 0 G Sh satisfies ||0-w|| i )0o < chr~x, putting in the above relation

X = 0, we have

l|^||i,oo<cA'-^2-1+c.

Hence, (v) holds for j = 1 if r - N/2 - 1 > 0.
In the sequel we consider the following linear boundary value problem: For

given g g L2(Si)N let v G H¿ be the solution of

(5.4) ä(u;v,<t>) = (g,4>),    V0G//o',
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where u is the solution of (1.1). The problem (5.4) has a unique solution

v e H0X, which satisfies the elliptic regularity conditions, cf. [14],

(5.4a) IM|*+2<«*,    ^>0.

Now let Vh be the solution of the following discrete problem in Sh : Find

vh G Sh such that

(5.4b) ä(u;vh,X) = (g,X),    VX£Sh;

then it is known that we have, cf., e.g., [12],

(5.5a) \\v-Vh\\ + h\\v-vh\\x<Chr\\v\\r,

(5.5b) ||v-t;Ä||oo + Ä||t;-WA||i,oo< CA'llQgA^llvllr.oo,

where 6(r) = 0 if r > 2 and d(r) = f + l>0ifr = 2.

We return now to the error ù-W. For the proof of the L2 estimate, let *F

be the solution of the boundary value problem

(5.6) ä(u;V,<p) = (u-W,4>),    V0Gtfo1-

Then we have

\\Ù-W\\2 = â(u;x¥,ù-W).

Also, (5.2)gives à(u; ù-W, x) = ä(W; W, X)-ä(u; W, x), X e Sh . Hence,
if Wh is the solution of the discrete problem in Sh corresponding to (5.6), we
obtain

(5.7) ||« - W\\2 = ä{u;V-Vk,ü-W) + [ä(W ; W, Vh) ~ ä(u; W, Vk)\.

From (5.3), (5.5a), and (5.4a) we see that

(5.8) \ä(u ; ¥ - *¥h , « - W)\ < cAH^A'"1 < chr\\ù - W\\.

For the estimation of the last term of (5.7) we first observe that

\ä(u;W,Vh)-ä(W;W,Vh)\

<\a(u;W-ù,Vh)-â(W;W-ù,Vh)\ + \a(u;ù,Vh)-a(W;ù,*¥h)\

< \ä(u; W-ù^h-^-^W; JF-«,¥,,-»F)|

+ \à(u; W -ù,xY)-à(W; W -ù,*¥)\

+ \a(u;ù,x¥h-V)-a(W;ù,xl'h-y)\ + \a(u;ù,V)-a(W;ù,x¥)\

=: ax +a2 + ai + a4.

Since |« - W\x j00 < c, we have as in the proof of (5.8),

ax = \ä(u; W -ù,x¥h-'V)-à(W; W - ù, *Yh ~ *)| < cAr||w - W\\.

For the term a2 we distinguish the following cases:

(a) N = 1 ; then W¥\\XiO0 < C\yV\\2 , and hence

a2 = \à(u; W-ù,x¥)-à(W; W -ù,T)\ < chr\\ù - W\\.

(b) N = 2, 3 ; then, using (RS), we obtain

a2 = \à(u; W-ù,xY)-à(W; W - ù, V)\ < cA2r-2||»F||i < chr\\ù - W\\.

Since |ii|i ,oo < c, there holds

û3 = \ä(u ,ù,x¥k-xV)-à{W;ù,yVk- «P)| < ch'W^h < chr\\ù - W\\.
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For the estimation of a4 we shall use the following Taylor formula:  For

v ,w ÇlZ there holds

ä(v; 0, y/)-ä(w; 0, y/)

£        (dy(vk-wk)dß<Pj-^-iyw),dayfi
i,a,j,ß,k,y=i ^ ^ky

N /

+ £ I ds(v, - wt)dy(vk - wk)dß(j)j
i,a,j,ß,k,y,l,S=\ V

'   d2Aiajß
i
Jo

(Vw + xV(v -w))dx, day/i
o  dr¡¡0dnky j

=: b(v , w , 0, y/) + d(v , w , 0, y/).

Taking A sufficiently small to ensure that VW e Z, we apply the above formula

for W, ù, *P and w, w, *F :

aA = \ä(W; ù,V)-a(u;ù, ¥)| = \b(W, u,ù, *¥) + d(W, u,ù, ¥)|.

For the estimation of b(W,u,ù,W) we use the Gauss-Green Theorem and

the fact that Sh C H0X, and obtain

J        £        {dy dßuj^l(Vu), d^i (Wk - «,)} dx\b(W,u,ù,x¥)\ =

'i,a,j,ß,k,y=l

< Cllólb.oollwlb.ooll^lbll^ - "H-
Since u is smooth enough, using (5.4a) and (iii,a), we obtain

\b{W,u,ü,*¥)\ <cAr||îV-^||.

In the same way as before we estimate the term d(W,u,ù,xY): In partic-

ular, if

(a) N = 1, then, since ||V||i >00 < Q^lk , we have

|í/(ÍF,M,íV,xF)|<cAr||M-íF||,

and if
(b) yV = 2, 3, using (RS), we see that

\d(W, u,ù,W)\< ch2r~2fY\\x < chr\\ù - W\\.

Summarizing the above estimations for ax, a2, a-¡, and a4, we obtain

(5.9) \ä(W; W, Vh) - ~a(u; W, Vk)\ < chr\\ù - W\\.

Combining (5.7), (5.8), and (5.9), we finally conclude

(5.10) \\ù-W\\<chr,

which is (iv,b) for 7 = 1. The proof for j > 2 is given in [18], [16].
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