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NUMERICAL SCHEMES FOR CONSERVATION
LAWS VIA HAMILTON-JACOBI EQUATIONS

L. CORRÍAS, M. FALCONE, AND R. NATALINI

Abstract. We present some difference approximation schemes which converge

to the entropy solution of a scalar conservation law having a convex flux. The

numerical methods described here take their origin from approximation schemes

for Hamilton-Jacobi-Bellman equations related to optimal control problems and

exhibit several interesting features: the convergence result still holds for quite

arbitrary time steps, the main assumption for convergence can be interpreted as

a discrete analogue of Oleinik's entropy condition, numerical diffusion around

the shocks is very limited. Some tests are included in order to compare the

performances of these methods with other classical methods (Godunov, TVD).

1. Introduction

We are interested in the approximation of the entropy weak solutions in the

sense of Kruzkov [15] of the following scalar conservation law:

(u, + f(u)x = 0      inRx(0,oo),

1 u(x, 0) = u0{x)   in M .

The connections between this problem and the theory of generalized solutions

(see, e.g., [7, 6, 8, 16]) to the first-order Hamilton-Jacobi equation

(vt + f(vx) = 0      inRx(0,oo),

\ v(x, 0) = v0(x)   inR

are known. Roughly speaking, if v is a viscosity solution of (HJ), then u := vx

is an entropy solution of (CL) (for the precise results see §2). This relation

has been used also for numerical purposes in order to derive schemes for (HJ)

from the large collection of methods for (CL). In fact, it has been shown that

integrating a scheme converging to the entropy solution of (CL) (called CL-

scheme in the sequel), one can obtain a scheme converging to the viscosity

solution of (HJ) (HJ-scheme in the sequel). This technique has been applied

by several authors; e.g., Kruzkov in [17] and Crandall and Lions in [9] have

studied numerical methods derived from first-order schemes for (CL), Osher
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and Sethian in [25] have obtained schemes for (HJ) starting from ENO schemes

(see also the recent paper of Lions and Souganidis [22] on the convergence of

MUSCL schemes). We also use this relation for numerical purposes but in the
opposite direction. The numerical approximation of (HJ) has the advantage

that we deal with more regular solutions (typically they are locally Lipschitz

continuous) and we take a discrete derivative in x on the numerical solution
of (HJ) to go back to u. Another advantage is that the expressions of the

schemes for (HJ) are relatively simple in comparison with their analogs for
(CL) (see §5). Our main result is the following. Assume we have a numerical

scheme approximating the (unique) viscosity solution v of (HJ), where the

Hamiltonian f isa W1 convex real function on R and v0 £ ¡VX'°°(R) (we will

comment on the nonconvex case in Remark 5.1). Let Ax and Ai be respectively
the space and time steps and set, for some fixed N e N, T := NAt. Let v" be a

numerical approximation of v at (jAx, «Ai), for jeZ and n £ {0, ... , N} ,
and let us define, for example,

(,.i) "»-—"sr1"
We define on R x (0, 77) the piecewise constant function wA as follows:

1
J+2 )uA{x, t):=u"j       if (x, t) £   ( j - ^ ) Ax,

and we do the same for vA .

Theorem 1.1. Assume that for any t £ (0, T), the sequence vA converges in

L°°(R) to the viscosity solution of (HJ) as Ax and At go to zero, and the
following properties hold:

(i) there exists a constant Cx such that for any j £ Z and for any integer
ne{0,...,N}

(1.2)
vj+i - ""

Ax
<CX ;

(ii) there exists a constant C2 such that for any j £ Z and for any integer

n£{0,...,N}

(1.3)
v"   -2v? + v"J       A¿      J     ^

Lx
'loc to the entropyThen for any t £ (0, T) the sequence uA converges in

solution u of(CL).

Notice that the assumption (i) only implies the weak convergence of uA to u.

Since assumption (ii) is a discrete equivalent of the celebrated Oleinik's entropy

condition, this result can be stated saying that from an "entropie" scheme for

viscosity solutions satisfying a bound on the discrete x-derivatives one can
obtain, by (1.1), a scheme which converges strongly to the entropy solution of

(CL). Notice that the forward difference in (1.1) is taken just for simplicity but

that the result is still valid when using centered or backward differences. For

initial data with compact support for (CL) the condition (1.2) can be dropped

since it is implied by (1.3) (see Proposition 4.2).
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An example of methods satisfying assumptions (i), (ii) is given by a class

of schemes studied by Falcone and Giorgi [11] (see also [10] and references

therein). These schemes have been developed for the Hamilton-Jacobi-Bellman
equation related to a finite horizon optimal control problem but can be adapted
to (HJ). Since they can be written in the form

V] = min{v"-x(jAx - aAt) + Atf*(a)} ,

where /* is the Legendre transform of /, one can interpret them as a discrete
version of the Lax-Oleinik-Hopf representation formulas (see [19, 23, 14], and
[21]) for the viscosity solutions of (HJ), see also [24]. An interesting feature
of these schemes is that they do not work on a fixed number of nodes, since

the stencil depends on the ratio At/Ax which may be nonconstant. Choosing a

large time step will only increase the width of the stencil in such a way that the

domain of dependence of the conservation law will always be contained in the

numerical domain of dependence. Naturally, this will require a larger number

of operations at each time step but, as we will show in the sequel, the global

CPU time necessary to obtain accurate results is even lower than that needed by

some classical schemes (see §6). The HJ-schemes produce accurate approximate

solutions both for smooth and for discontinuous solutions. We refer to [12] and

[20] for a study and numerical experiments related to other difference schemes
with large time step.

The outline of the paper is as follows. In §2 we review the relations be-

tween (CL) and (HJ), establishing some results about the precise correspon-

dence between entropy solutions and viscosity solutions. In §3 we consider

general classes of approximation schemes for both problems and prove the rela-

tions between them. Section 4 is devoted to the proof of our main convergence

result, Theorem 1.1. In §5 we study the schemes derived from optimal control
problems and prove that they satisfy the assumptions of the general convergence

theorem. Some remarks on the CFL condition, the local truncation error and

other properties of HJ-schemes are also included in this section. Finally, §6 is
devoted to numerical results for some typical examples. We compare the accu-

racy of our methods with other more classical schemes (Godunov, TVD) and

we compute the approximate rate of convergence obtained in our tests.

2. Preliminaries: relation between conservation laws
and Hamilton-Jacobi equations

In this section we shall present for completeness some simple results about

the equivalence of (HJ) and (CL) from an analytical point of view. First we

quote a preliminary result from [21, Theorem 16.1, p. 268].

Proposition 2.1. Let f £ C(R) and assume v £ WX'°°(R x (0, T)) to be a

solution of(HJ). Then u := vx is a weak solution of(CL).

Our first result is the following

Theorem 2.2. Let /eC'(R), v0 £ rVx-°°(R). If v £ WX>°°(R x (0, 77)) is the
(unique) viscosity solution of(HJ), then u:=vx is the (unique) entropy solution

of(CL).
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Proof. As proved in [9], the viscosity solution v  is the limit as e —> 0+ in

L°°(R x (0, 77)) of the regular solutions ve of the following problems:

( vf + f(vx) = evxx   inRx(0,r) ,

1 ' } \ ve{x,0) = v0(x)     inR.

Hence, we have for any tp e Q°(R x (0, T))

rT   r rT

lim/    / vx<pdxdt = -lim /       ve<pxdxdt
e—OJo    Jr «—OJo    Jr

= -       I v<pxdxdt= \    I vx<pdxdt
Jo  Jr Jo  Jr

Obviously, the function ue := vx solves the derived problem

(22) Í u\ + f{u% = euxx   inRx(O.r) ,

I ue(x,0) = v0x(x)     inR ,

and, according to [15], the sequence ue converges in L,'oc(Rx(0, 77)), as e -+ 0,

to the entropy solution u of (CL).

Then, for any tp £ C0°°(R x (0, 77)),

lim /    / uEtpdxdt =        / utpdxdt .
e^oJo   Je Jo   Jr

Consequently,

/    / vxq>dxdt= /    / utpdxdt,
Jo  Jr Jo  Jr

and vx = u a.e. in R x (0, T).   D

A converse of these results also holds true:

Proposition 2.3. Let f £ C(R) and assume u £ L^c(l x (0, T)) to be a weak

solution of(CL). Let

v(x,t):= Í K(i,0d£
Ja

for a fixed «el. Then v £ ^°°(R x (0, T)), and v is a solution of(HJ)

almost everywhere.

Proof. Since u £ Lj£(R x (0, T)), there exists a set A c (0, T), with Lebesgue

measure m(A) = 0, such that for any t £ (0, T)\A, u is defined a.e. on R

and u(-, t) £ L¡£(R). Then for such values of t, v(-, t) £ L^.(R). Moreover,

for any t £ (0, T)\A and any tp £ C0°°(R x (0, 77)),

[ v(x,t)<px{x,t)dx= [ \[ «(£,*)d{
Jr Jr Ua

Jr

9x(x, t)dx

u(x, t)tp(x, t)dx .
IR

Thus, integrating on (0, T), one has u = vx in the sense of distribution and

almost everywhere. Since m is a weak solution of (CL), we have, for any tp £

c0°°(Rx(o,r)),
rT    r rT

/    / f(u)tpxdxdt = - /    / u<ptdxdt
Jo   Jr Jo Jr

= -/       vxtptdxdt = +       / vtptxdxdt
Jo Jr Jo  Jr
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So there exists vt in the sense of distribution, and vt = -f(u) = -f{vx).

Therefore, v £ W^°°(R x (0, 77)), and v is a solution almost everywhere of

(HJ).    D

For any u £ C([0, T] ; LX(R)), we set

(2.3) v(x,t):= f w(í,í)dí.
J — oo

Therefore, for any t £ (0,T), the function v(-, t), is absolutely continuous

and vx = u a.e.

Theorem 2.4. Let f £ CX(R) and u0 £ L°°(R) nL'(R). Assume that u e
L°°(R x (0, 77)) n C([0, 77]; LX(R)) is the (unique) entropy solution of (CL);
then the function v given by (2.3) is the (unique) viscosity solution of(HJ), for

vo(x):=jx_oouo(^)di.

Proof. Since u £ C([0, T] ; LX((R)), we have that v £ L°°(R x [0, T]). As in
the previous proposition, it is easy to show that v £ WX'°°(R x (0, 77)) and

that it is a solution almost everywhere of (HJ). Also,

lim \v(x, t) - v0(x)\ < lim /    |w(¿, t) - k0({)| di = 0 .
t—*0 t—*v J—oo

Now, suppose v is not the viscosity solution of (HJ), and denote by v the
(unique) actual viscosity solution. So, by Theorem 2.2, vx is the unique entropy

solution of (CL) and therefore, for any tp £ Q°(R x (0, T)),

//<
(v - v)tpxdxdt = 0 .

Hence, the conclusion follows from the arbitrariness of (p .   D

Remark 2.1. It would be interesting to prove this analytical equivalence with-

out using the known results about existence, uniqueness, and convergence of the
viscosity approximation. As far as we know, this proof has been obtained by the

viscosity approximation only in the convex case and in the case of piecewise

regular solutions (see [8]). More recently, Caselles [4] has proved the equiv-

alence in a direct way for the stationary problem. It is probably possible to

extend his methods to deal with the time-dependent problem.

3. Relations between CL-schemes and HJ-schemes

Here we consider the numerical aspects of the correspondence between en-

tropy solutions of a conservation law and viscosity solutions of a Hamilton-

Jacobi equation.
To approximate the solution u of (CL), we consider the class of finite dif-

ference schemes depending on (2p + 1) grid points and written in conservation

form, i.e.,

(3-D up=up^\7j+h-Tj.h].

Here, Ax and At are the mesh sizes, u" is the value of the approximation

of the solution u at the grid node (jAx,  nAt), for j £ Z, n £ {0,... , N}
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and fj+i = f(u"_p+x, ... , Uj+P) is the numerical flux, where / : R2p —► R is a

regular function.

For Ax and Ai fixed, the approximate solution is given by

uA(x, t):=unj   for (x, t) £lj,n,

where, for ;' e Z, n £ {0, ... , N},

Ij.n := (j--jAx,(j+2JAxjx[nAt, (n + l)At)

We assume for simplicity

(3.2) {""};eze/, ,        V«>0.

From (3.1) it is enough to assume (3.2) only for n = 0.

Now we set, for 0 < n < N,

7-1

(3.3) v] := ]T ulAx .
l=-oo

So, we can reverse this relation to obtain

_ vJ+i V :

(3-4) Uj -       ^

and therefore, by using again (3.1), we obtain a finite difference (2p + l)-point

conservative scheme which approximates (HJ), namely

vn+l ^ „n= v»-Atfl
- ivp+x V

J-p
V

J+p
VJ+P-A

vX )(3,5) Ax '•"•' Ax

The approximate solution for (HJ) is then given by

vA(x, t) := vnj    for (x, t) £ Ij>n .

Theorem 3.1. If for any t £ (0, T), the sequence uA(-, t) as Ax and At go

to zero, converges in LX(R) to the entropy solution u of (CL), then, for any
t £ (0, T), the sequence vA(-, t) converges in L°°(R) to the viscosity solution

v of(HJ).

Proof. For any (x, t) £ R x (0, T) let j £ Z, n £ {0, ... , N} be such that
(x, t) £ Ijt„. Since from Theorem 2.4 the function v given by (2.3) is the

viscosity solution of (HJ), we have

I fx
\vA(x,t)-v(x,t)\ = \vp        u{Ç,t)dÇ

I J—oo

£ unjAx- f M(i,0di
, J—oo

M,t)-u(Z,t))dZ- [X        «(í,í)d{
•/(;-l/2)Ax

Hence,

IK(- ,t)-v(-, r)IU~(R) < II"a(- , 0 - "(•, OIL'(R) + «Ajc|I"IIl-(rx(o,D).

and the theorem is proved.    D

/=—oo

U-1/2JAX

/J — C

[uA(
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Remark 3.1. The extension of Theorem 3.1 to the case when (3.2) does not hold

is straightforward. Notice that the conservation form (3.1) allows the simple

expression (3.5), but in principle Theorem 3.1 holds true for any finite difference

scheme.

4. A GENERAL CONVERGENCE RESULT

In order to obtain numerical schemes for conservation laws from those for

Hamilton-Jacobi equations, we need to reverse the arguments of the preceding

section.
Let y" be the approximation of the solution v of (HJ) at the grid point

(jAx, nAt), given by a general finite difference scheme

vn+x = F(v" v"   )uj        l yuj-p > ■ ■ • > uj+p> '

and define u" , for example, as in (1.1). As above, uA and vA will denote the

corresponding approximate solutions.

We recall that, if the function / is strictly convex and v is the viscosity

solution of (HJ), there exists a constant K such that, for any t > 0,

(4.1) vxx<K   in 9'(lx(0, T))

if the same inequality holds true at t = 0 (see [21, Theorem 16.1, p. 268] for

a proof).

Lemma 4.1. Assume v £ WX'°°(R) and suppose there exists a constant K such

that

(4.2) vxx < K   in 3>'(R) .

Then, for any h and any x £ R,

v(x + h)-2v(x) + v(x-h) < K

The proof is omitted.

Proof of Theorem 1.1. It is clearly sufficient to work with the more convenient

convergence in L,20C. Let v be the viscosity solution of (HJ). We set

ÙA{x,t):=v(U+l)Ax,nA£-v(jAx,nAt)    for (jf> f) £ ^ .

Let / be any fixed bounded interval of R. We have

/ \uA(x, t) - u(x, t)\2dx < 2 / \uA(x, t) - üA(x, t)\2dx

+ 2 i \üA(x, t)-u(x, t)\2dx

=: 2(7, + h) •

First step: the estimate of Ix. Let S = {jx, ..., jm} ÇZ be such that
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for any j¡ £ S. Then, if i e [nAt, (n + l)At), we have

h = / \uA(x, t) -uA(x, t)\2dx

sE '"+i - v" _ v(U + 1)Ajc , nAt) - v(jAx, nAt)

Ax Ax
Ax .

jes'     — — '

With the notation w" := v" - v(jAx, nAt), the above inequality becomes

jes

a>;
Ax

Ax

where l±x

we have

y to i i

A+ is the forward first difference operator. Thus, setting S' = S\{jx}

Atwl

jes

A+w? A+wï      „      Atw" -A~w"
,n x    Jm       „„«    x    J¡        \    ...n    x    J_x    J   a v

- ¿^ WJ Ax2
jes1

— id" Jm   — in" J

~Wjm + l     Ajc Wn     Ajc

< sup \v" - v(jAx, nAt)\
j,n

E
jes1

A2V¡

Ax2
+

A2ü(;'Ax, «Ai)
Ax

Ax2

+ 2(C1 + ||t;||fK,.=o)

where we have used (1.2) and the definition of w" . Now, from ( 1.3) we deduce

for any jeZ and n= 1,... , N,

unj - unj_x < C2Ax ,

and therefore, setting z" := u" - C2jAx , we obtain

_n      <  -n
Zj+l S Zj ,

for any j £Z and n = 1, ... , N. Then we have the following inequality:

Ax = £ \unj - unj_x\ < £ \z] - z]_x\ + C2(jm - jx)Ax

jZS' j€S'

= zl-znjm + C2(jm-jx)Ax

= ul-unjm+2C2(jm-jx)Ax

<2(C,+C2|7|) .

In a similar way we can estimate the term ^,e5-    *   ¡¿Î       Ax by using

Lemma 4.1.
Finally, setting

E
J'€5'

^xv]

Ax2

we get

C3:=4(C, + \\v\\m. ~) + 2(C2 + K)\I\

(4.4) Ix = / \uA(x, t) - uA(x, t)\2 dx < Ci sup \v" - v(jAx, nAt)\
Jl j,n
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Second step: the estimate of I2. We continue to use the previous notations.
Then

h = I \uA(x, t) - u(x, t)\2 dx

\v((j + l)Ax, nAt) -v(jAx, «Ai)/»0+l/2)A*

jeSJ(j-l/2)Ax Ax

v(x + Ax, t) -v(x, t)

+ 2I v(x + Ax, t) -v(x, t)

Ax
-vx(x, t)

Ax

dx

=: 2(JX + J2) .

It is easily seen, from the Rademacher theorem, that

(4.5) J2 = 0(Ax) .

To estimate the term Jx, we shall follow the first step of the proof. Set

w(x, t) := v(jAx, nAt) -v(x, t)      for (x, i) e l¡%n .

Then
r(j+l/2)Ax

j€SJ(j-l/2)Ax

w(x + Ax, t)     w(x, t)

Ax Ax
dx

U+l/2)Ax \2w(x,t)  ,
™(x,t) x ̂  ' dx

jes1 Jv

Ajm+y 2)Ax          Jw(x,t)-w(x-Ax,t)

/ w(*.0( Ax2-
J(jm + l/2)Ax V AX

,(j, + l/2)Ax /W(x + Ax,t)-W(x,t)\    .
/ «;(ar,0(—-¿2-^^Jdx
J(i,-l/2)Ax \ ax* .J

jeS> J(J-l/2)Ax

r(;m+3/2)Ax

-  / IÜ
/0m + l/2)Ax

rü.+l/2)Ax /w(x + Ax,í)-

'0"i-l/2)Ax \ i**

Since v G WX'°°(R x (0, 77)), we have immediately

\w(x, t)\ < ||v||iyi,oo\/Ax2 + Aí2 .

Therefore, by using again Lemma 4.1, we have the following inequality:

\A2v(jAx, «Ai)Jx < ||t;H^i.» v/Ax2 + Ai2 Y,
¡■jes-

+u
Ax2

(j+l/2)Ax

(j-l/2)Ax

Ax

Afo(x,i)
Ax2

dx

<IM Jfl.oo
VSr^iE^"^|A5»(,,<)

LjeSpAj-l/2)Ax Ax2

dx + 4||u||ryi,oo

dx

+ 6||u||v..«+2Ä'|/|
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To conclude the proof, we only have to estimate the sum in the last inequality.

Define
.    v(x + Ax,t)-v(x,t)

Ua{x , t) .= --_-.

By Lemma 4.1, we have for any (x, i) £ R x (0, T),

itA(x + Ax, t) - K(x + Ax) < uA(x, t) - Kx .

Consequently, we can easily show, using the above arguments, that

uA(x, t) - uA(x -Ax, t)\r(j+l/2)Ax

^, J(j-I/2)AxpcC'-'O
Ax

dx

< j_
Ax\L

(j^+^|2)^x

t/". + l/2)Ax:

(ma(x - Ax, t) - K(x - Ax)) dx

-L<Jm + l/2)/Lx

+ K\I\(ûA(x, t) - Kx) dx
I Um-1/2)Ax

< 2\\v\\wx.oc +2K\I\ .

We conclude that

(4.6) Jx < C4||v||iyi,=cV/Äx2TÄi2,

where
C4:=8||t;||w,...o+4tf|/| .

The assertion follows from (4.4), (4.5), and (4.6).   D

We remark that the inequality (1.3) is a discrete analogue of the celebrated

Oleinik entropy condition [23].

Remark 4.1. The proof of Theorem 1.1, for simplicity, has been given using a

forward finite difference representation for vx . The same result (and the same

proof) holds true for centered or backward differences.

Remark 4.2. For compact support initial data for (CL), the condition (1.3)

implies (1.2). In fact, we have the following

Proposition 4.2. Let {Vj} be a real-valued sequence, j£Z,and M, R, ho, K

some positive constants such that:

(a) for \hj\ >R,for all « e (0, «0) and j £ Z

Vj+l =Vj\

(b) for all A € (0, A0) and j £ Z

Vj+x -2vj + Vj_x

h2

Then, for all A £ (0, A0), j £ Z, we have

\Vj+l-Vj

< K.

<K(2R + ho).

Proof. Set, for any j £

Wj = Vj
1
K(hj)2.
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Then, by calculation,

(4.7) Wj+i - Wj < Wj - Wj_x,       Mj.

By applying (4.7) iteratively we can determine an upper bound for Wj+X - Wj

which is independent from M. In fact, for \hj\ <R,\se have

Wj+i - Wj

h
<^K(2R + ho),

and therefore

\Vj+l-Vj <
Wj+X - Wj

+ ^Kh(2j+l)<K(2R + h0).   □

Remark 4.3. Let I be any fixed interval of R, and S = {jx, ... , jm} ÇZ be
such that

7n (/,-5) Ax,   (jt + tyàx)* 0

for any ;', £ S.   From (1.1) and (1.3) we have, for any 7 6 Z and n =

U...,N,
«"-""-1 <C2Ax ,

and therefore, setting znj := u'J - C2jAx ,

ZL., < z" .!j+\

Consequently, we have the following inequality for the total variation of u"- on

the interval I :

YVi(W) < £ \ul -up I < Y, K - 4-il + C2Um - h )Ax
1=2 1=2

= zl-znjm + C2(jm-jx)Ax

= ul-unJm + 2C2(jm-jx)Ax

<2(d + C2|/|) .

Thus, our schemes are locally TVB (i.e., they have bounded total variation).
Nevertheless, we cannot use Harten's theorem [13] since, in general, they are

not in conservation form (see also Proposition 5.3 and the Remark 5.1).

5.  CL-SCHEMES DERIVED FROM HJ-SCHEMES

As we mentioned in the introduction, we can construct schemes satisfying

the assumptions of the general convergence theorem, starting from the schemes
which have been studied to obtain an approximation of the value function of a

finite horizon optimal control problem.

We briefly describe here the origin of these methods referring to [11] and
[10] for details.

Consider a system of controlled ordinary differential equations

(5.1)
y(s) = b(y(s),s, a(s)),

y(t) = x,

s£(t,T),
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where a(-) £ s/ := {a(-) : [0, T] —► A, measurable} is the control, A is a

given subset of Rm and y £ R" the state. The cost functional related to the

finite horizon problem is

J(x,t,a(-)):= [Tg(y(s),s,a(s))e-^-Us
(•>•■£■) Jt

+ ¥(y(T))e-«T-<K

where A is a positive real parameter.

The value function is defined as

ti;(x,i):=   inf  J(x,t,a(A).
a(-)esf

It is well known that, via the Dynamic Programming Principle, one can prove

that w satisfies the Hamilton-Jacobi-Bellman equation

(HJB)
r - d̂t
J aeA

\ w(x, T) = y/(x)   in!".

Moreover (see, e.g., [21, §8.4]), w is the unique viscosity solution of (HJB).

The scheme for the approximation of the value function w is based on a

discretization in time (step k := At) of the control problem (5.1), (5.2). A
Discrete Dynamic Programming Principle leads to a discrete (in time) version
of (HJB). Adding a grid in the space variable (step A := Ax ), one can get an
approximation scheme ([11]) which, in the one-dimensional case, is

^w +Xw + sup{-b(x,t,a)-Vxw-g(x, t,a)} = 0   inR" x (0, T),

(HJB)
k

"uyjn -r iy,uyjn, nn.,

+ k, g(jh, nk, a)}

w(jh, nk) = min{e     w(jh +kb(jh, nk, a), (n + l)k)
aeA

[w(jh, Nk) = y/(jh),

where n = 0, ... , N and Nk = T.
With wj denoting the approximate solution obtained by applying the above

scheme, the following estimate holds (see [11]):

(5.3) \w(jh, nk) - w]\ < Cxk± + C2h + C3^ .

We now show how this scheme can be applied to solve (HJ). We start recalling

that whenever / is a convex function, (HJ) can be written as

f vt + sup{avx - f*(a)} = 0   in R x (0, T),
(5.4) { «eR

( v(x, 0) = Vo(x) in R,

where f* denotes the Legendre transform of /, that is,

(5.5) f*(x) = sup{ax-f(a)}   for any x £ R .
aeR

By applying to (5.4) the change of variable

v(x, t) = w(x, T -t)ekt,
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we transform the original Cauchy problem for v in the following problem with

a terminal condition:

f - w, + Xw + sup {awx - f*(a)e-^T-¡)} = 0   in Rx(OJ),
} aeR

{ w(x, T) = vo(x)   in R,

i.e., we get the (HJB) corresponding to the control problem with b(x, t, a) =

-a and
g(x,t,a) = r(a)e-«T-'K

In order to have a scheme for (HJ), we do now the same, but in the opposite

way, for the discrete problem. Then, introducing the change of variable

w(jh, nk) := v(jh, T - nk)e-^T~nk),

we transform (HJB \ ) into the following scheme for the Cauchy problem:

f v(jh, nk) = inf{v(jh + kb(jh, T- nk, a), (n - l)k)
Ü.C.IX

(5.6) + kg(jh,T-nk,a)eXnk},

[v(jh, 0) = y/(jh),

which, in the special case of problem (5.4), corresponds to

f v" = inf{v"-x(jh - ka) + kf*(a)},
(5.7) \    '     aeR

\v] = Vo(jh),

where vn(x) := v(x, nk). To recover the information on the approximate

solution of (CL) we just use (1.1) or any other discrete representation of vx

(see Remark 4.1).
However, there are two main difficulties for computing the solution by (5.7).

The first is related to the evaluation of the infimum, since we have to solve an

extremum problem over an unbounded domain (notice that we are looking for

the global minimum) and /* may be hard to compute. An algorithm for the

computation of the Legendre transform has been proposed in [3], and precise

error estimates (in L°° ) have been established in [5].
The second difficulty is related to the observation that (5.7) is not a standard

finite difference scheme, since in the right term appears v"~x(jh - ka), that

is, vn~x computed on points which in general are not grid points. If this is

the case, we replace vn~x(jh - ka) with the convex combination of vp and

vp , where q £ Z is such that (jh - ka) £ [qh, (q + l)h].

Let us look more closely into the problem of computing the minimum in

(5.7). Notice that, when / e C2(R) is strictly convex, we can find an analytic

expression for the convex function /*. In fact, under these assumptions, for

any x e R there will be a unique a such that x = f'(a). Since the supremum

in (5.5) is achieved for a = (f')~x(x), the Legendre transform can be written

as

r(x) = x(fp(x)-f((fp(x)).
Another useful property of the Legendre transform is the following: let / be

such that

(5.8) lim   QQ =+œ;
M-»+oo   |i>|

then f satisfies (5.8) too, [14].
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The following proposition shows that, if (5.8) holds, then the search for the

supremum can be done over a bounded set.

Proposition 5.1. Assume that v £ WX'°°(R) for any t > 0. If f is strictly

convex and satisfies (5.8), there exists a bounded interval A := [-M, M],

M > 0, such that

(5.9) sup{avx-f*(a)} = sup{avx - f*(a)}.
aeR aeA

Proof. Clearly, to get the result, it suffices to prove that there exists a constant

K such that the set

AK:={a£R:avx-f*(a)>K}

is bounded and not empty. For any a £ A¡c, we have

/*(") + * <iri
\a\       - '    '

Since (5.8) holds and \\vx\\ < V, the set Ak is bounded for any K. To obtain

Ak =¡¿ 0, we can choose

K = -\ä\v-r(ä),
where a is any fixed value. In particular, (5.9) holds for the set

A:={a£R:-\a\V-f*(a)>-f*(0)}.   D

Notice also that (5.9) holds only if we assume that / is Lipschitz continuous.

In fact, by definition, in that case, f*(x) = +oo for all x, \x\ > Lf. More-

over, when (5.9) holds, if we let A(x) := arg supa6/4 {ax - f*(a)} , the argument

associated with x £ [-||uollw".°° •  lluo||n".°°] » then at least formally

j¿{ax-f*(a)}a=h{x) = 0,

i.e.,

(5.10) CT)'(A(x)) = x.

Since
/(x) = A(x)x-r(A(x)),

differentiating and using (5.10), we obtain

f'(x) = h(x) + h'(x)x - (r)'(h(x))h'(x) = h(x)

and in particular f'(vx) = h(vx). The last implies that A D [-R, R], where

R = sup |/'(x)|.

As an example, consider the case f(v) := \v2, which corresponds to the

Burgers equation. It is straightforward to show that

riv) = \v2,

and the supremum in (5.9) is achieved in the interval [-IWlif.°°.  Il^ollw"^] •
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Remark 5.1: Representation formula for a nonconvex flux and approximation.

Let / be locally Lipschitz continuous and vo be Lipschitz continuous and

convex; by LVo and Lf we will denote respectively their Lipschitz constants.

Then the following representation formula for the solution of (HJ) holds (see

[14, 1]):

(5.11) v(x, t) = sup inf{u0(z) + y • (x - z) - tf(y)}.
yeRzeR

By the definition of the Legendre transform it is easy to prove that (5.11) can

also be written as

v(x,t) = (vo* + tf)*(x).

Under the above assumptions the search for max and min can be restricted to

two bounded closed intervals ([5]), A ç {y : y £ B(0, L)} and B = {z : z £

B(x, Lft)} , so that

(5.12) v(x, t) = maxmin{ti0(z) + y -(x - z) - tf(y)}.
y€A   zeB

Then we can apply twice the algorithm studied in [3, 5]. We remark that

the representation formula (5.12) also suggests an approximation scheme which

can be interpreted in terms of differential games. Let x = jh, t = nk, and

z = jh- ka; substituting in (5.12), we have

(5.13) v" = max min {vn~x(jh - ka) +yka - kf(y)}.
yeA \a\<Lf

An algorithm for similar problems related to pursuit-evasion games has been
studied in [2].

Now we want to prove that the HJ-scheme (5.7) satisfies the assumptions of

the general convergence theorem when (5.9) is true. Let a £ [-M, M]; the

point

(jh - ka) £ [(j + i)h, (j + i + l)h) =: lJf

if and only if

fl€f-(i + l)£,  -i^jn[-M,M)=:Ai,

where p := |M + 1 and i £ P := {-p, ... , p - 1} . Then the scheme can

be written as

(5.14) vp =min{vp},

where

(5.15) vp := min { (l + / + \ a) v]+i - [i + * a) v»+l+x + kf(a)} .

Theorem 5.2. Assume that vo satisfies (1.2), (1.3), and let (5.9) be true. Then

the scheme (5.14), (5.15) satisfies assumptions (i) and (ii) of Theorem 1.1.

Proof. We first show that the scheme satisfies (i).
In fact, let

vj+x =v*+ij{,       where ix £ P,
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and

v" = vf ¡2,        where i2 £ P.

We have

(5.16) V}+x-v] = vJ+Uii-v]<h < v]+Uh-vjth .

Assume ax and a2 are the points in i-(/2 + 1)£ , -i2\ n [-M, M], where

the minimum in (5.15) is achieved, respectively for v"+l ¡ and v"i2. Then

(5.16) becomes

v]+x - v» < (l + i2 + * fll) vp+l2 - (i2 + \ fll) vp+l2+l + kf*(ax)

- (1 + h +* û2) <-; + (i2 +* fl2) «;-.;+1 - fc/«(a2)

<(i + /2 + ^2)(,;+-11+l2-,;+-,1)

-[i2 + ^a2yvp+i2+l-vp+l)

<max{(vp+i2-v]P, (vp+l2-vp+l)}.

In the same way we get

»JV, -1>; > mm««^, -t£}J), («J&,, - vp+l)},

and (i) is proved by induction on the initial vector {Vyjyez •

We now prove (ii). Set

W/H-fy+i.i,.        where/! G P,

u" = Uy ,2, where i2 £ P,

v"_x = Vj_Xi ,        where z'3 6 P.

Then
w;+1 - 2W; + «;_, = v;+1>/| - 2«;til + «;_,,,•

<^+i,l2-2t;;>(-2 + t;;_1>f2.

With a- , a2, and «3 chosen as before, the above inequality becomes

«;+I - 2^; + »;_, < (1 +12 +1 a2) t;;-,^ - (i2 + £ a2) «;-¿+2

- 2 (l + ,-2 + £ fl2) i;-; + 2 (/2 + I a2) vp+x

+ (1 + h + \ a2) ^r;+;2 - (12 + ^2) »;-¿

= (l + Í2 + ta2)(vp+¡2-2vp+vp_i)

-('2 +foi) (»^-2»;^ +«S)
<max{(,-;+I-2^;+^_1), («;+-/;+2-2t;;-/j+t;;-/;)}.
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Again, (ii) is proved by induction on the initial vector {v^j^z ■   □

Theorem 5.2, by Theorem 1.1, gives a convergence result when the HJ-

schemes converge, in particular, using (5.3), when A = o(k).

We consider now the particular case when |M < 1.

Proposition 5.3. Let f M < 1, (5.9) be true and A =: [-M, M]. Then the CL-
scheme derived from the HJ-scheme (5.7) is a TVB, conservative and consistent

three-point scheme, it is also consistent with the entropy inequality. Furthermore,

if the CFL-number X := | is small, the scheme is monotone.

Proof. Since \M < 1 the CL-scheme is given by

Vj = min{tT"; v"},

where

and

vi :=   min
J        ae{0,M)

{(l-jpj^J-' + jat/;.-,'+*/•(«)

v-r-.^S,\{l + kT,ap-khav^ + kna)}

If v" = v" , then, by using (1.1), we have

v" := vp +   min   {-kaup + kf*(a)\ .

(5.17) P j     =   min   l-aup +f*(a)\
v      ' k ae\o,M] I      j-i    j  y i\

ae[0,M]

So,

v? -v1~x

ae[0,M]

In the same way, if v" =y_",we have

(5.18) PJ     =    min    \-aup +f*(a)\
K        ' k ae\-M,0\ I        J K  Jl

Since

i     vï±\-vï     VP~VP
ui = unrx+ A+ -

J       J     '        h h

u„_x     v]+x-vp     vj-vp

J     ' h A

from (5.17) and (5.18) we have the conservation form (3.1) if we define the

numerical flux function to be

Tj+h:=rna^[ma^aupr(a)],     m^, - /»]} •

The consistency of the scheme, i.e., f(u) = f(u, ... , u) for any u £ R, can
be obtained simply using the definition of the Legendre transform. Moreover,

the scheme is TVB from Remark 4.3 and the consistency with the entropy

condition follows directly by (1.3). Finally, using the above definitions, we can
easily prove that the function

H(u"]+X, unj , u"j_x) := u) - X[TJ+{ - TjP
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is monotone nondecreasing with respect to all its arguments, if X is small

enough.   G

Remark 5.2: Conservation form and CFL condition for the HJ-schemes. Two

different situations must be considered. The first is when j is constant. Then

the scheme is in conservation form and consistent but, in general, not monotone.

Its convergence is guaranteed by Remark 4.3.

When | is not constant, the CL-scheme obtained from the scheme (5.7) is

not in conservation form, according to the classical Lax-Wendroff definition. In

fact, the number of points involved in the scheme varies according to the ratio

|. However, it is interesting to notice that the CFL condition is not violated

by the scheme, since the domain of dependence of the finite difference method

includes the domain of dependence of the differential operator. More precisely,

if (5.9) holds, then for a fixed time step k the domain of dependence at the grid
point Xj is given by the interval [Xj-kM, Xj+kM] for any A. Now, by using

(5.3), it is possible to increase the number of space grid points, without loss of
stability. A numerical discussion of this point will be made in the following

section (see, in particular, Tables 9 and 10).

Remark 5.3: Monotonicity for general HJ-schemes. In general, the monotonic-

ity property will not hold for HJ-schemes. Consider the scheme (5.14), (5.15),

so that the corresponding scheme for (CL) can be written as

n.n+l _ t-i+I 1

un+i =   j+i       J     = i(minü"+1   - min^1).
1 h A   ieP   J+i'1     ieP   J'1

Assume that the the first minimum is obtained for i = ix and the second for

i = h ; by (5.15) we get the following explicit scheme:

(5,9)    „r. . W«?* + ™„ {_ (,, + *.) „jtl+j| + |rw}

-;ä:H'2+rH'p+!/,<<4
If z'i < i2, we will have

7)" _ vn ¿2—¿1—2

(5.20) >+1+\    J+h=~   E   "7+i+,-
i=0

Since all the terms ul 1+/ +i, s=l,...,j + i2-l, appear only in that sum,

the scheme is not monotone with respect to these arguments.

Remark 5.4: Discretization of the Lax-Oleinik-Hopf representation formula. It
is known ([19, 23, 14, 21]) that, when / is convex and x e Rn , the solution

of (HJ) can be written as

(5.21) v(x, t) = mf jwo(z) + if* (^f1) } ■

As we have already noticed,

z := jh - ka £ Ij¡   if and only if a 6 A¡ .
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We also have

z = (l + i + j-a) (j + i)h - (i + j-aj (j + i + l)h.

Moreover, we can always extend v" by linear interpolation on any interval

[jh, (j+l)h), j£Z,i.e.,

vn(z) := (l + i + | a) v]+i -\i + j a) vJ+M .

Then, substituting in (5.15), we have

vp = min{vn(z) + kf*(a)} .

Recalling that IJ,e/> M = [—M, M] and that, under appropriate assumptions,
the minimum for a £ R is achieved in a bounded interval [-M, M], we can

interprete the scheme (5.14), (5.15) as a discrete version of (5.21).

Remark 5.5: Local truncation error for the scheme related to the viscosity solu-

tion. Even if it seems difficult to derive a local truncation error for the general
HJ-scheme for (CL), owing to its rather involved formulation (see Remark 5.3),

we can derive it for the viscosity solution.

Let v be a sufficiently smooth solution of (HJ) and / be smooth. We set

x = jh , t = nk, and we define the local truncation error for the scheme (5.7)

(remember that in Proposition 5.1 we have already shown that the infimum is

achieved on a compact set A) by

j   i        y       !
Lk(x, t)= j- v(x, t) - min{v(x -ka, t - k) + kf*(a)}

aeA

Denoting the difference in the square brackets by Dk(x, t) and developing by

Taylor expansion, we get

Dk(x, t) = v(x, t) - min{u(x, i - k) + vx(x, t - k)(-ka)
aeA

+ vxx(x,t-k)(ka)2 + --- + kr(a)}

= v(x, t) - v(x, t - k)

+ kma\{vx(x, t - k)a - vxx(x, t- k) ka2 H-\- f*(a)}
aeA

= vt(x, t)k + ^vtt(x ,t)k2 + 0(k2) + kf(vx(x, t - k))

= v,(x, t)k + -D„(x, i) k2 + 0(k2)

+ k[f(vx(x, t)) + f'(vx(x, 0) (vx(x ,t-k)- vx(x ,t))+ ■■■].

Since v is a solution of (HJ), we can conclude that

Lk(x, t) = -£ =vtt(x, t)k2 + 0(k2) + f'(vx(x, t))vxt(x, t)k2 + = 0(k).

6. Tests, examples and numerical efficiency

The numerical results in this section deal with the solution of the Burgers

equation ut + (\ u2)   =0. In this example, (5.7) is
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k
V;   = min ív"-x(jh-ka) + ^a2\  ,

ae[-M,M]

where M is the Lipschitz constant of the initial data for the corresponding

problem (HJ).
As one can observe, the number of space nodes necessary to compute vj at

each time step depends strictly on h and k . If, for example,

y   fl   <  1
«

(6.2) A1'0'-1      Vae[-iW,M],

the scheme is a three-point scheme and

(6.3) v] = min{v1; v]},

where

(6.4)

and

(6.5)

;":=   min   (fi-£aW
1       ae\0,M\ \\        h   )   '

1 + Tavp +
h    } ' H

Vj •= min
{(

1 + A%~' AûV.' + 2a
a€[-M,0]

A simple case study leads to the following explicit formulas:

vp

vn~x - —
J     h2

if v"~x <v"~x
7-1 '

\{vp)2+ \{vpx)
n-l\2 vpvp

1 <vp <vp +Mh,

,n-l n-li__Af[w»-_up.] + _-M2

if Vi - -v    = «j-i

if vp+Mh <vp ,

'vp

VLj=   «

if «;-' < vp,

vn~x - —
J        A2

1 n-l„,7i-l

j
¿(vpy + ^(vpy-vpv

if v"~x <vp <vp +Mh,j+i "■ "j     - "j+i

v"-' - rM«r' - «fr,1] + %M2   if t;"-,1 + A/A < v"-1 .
17 h J 7+1 J      2 ;+1 J

In contrast, if we choose h = W2 to respect (5.3) and get the estimate

\\w-w^\\Loo<Ckx/2 ,

the number of points increases, the accuracy of the method increases too, and

for the computation of the minimum we repeat the same arguments as before

with more cases to be considered. For a general convex flux /, one should use

(5.7) and an approximation of /* (e.g., by the algorithm described in [3, 6]).
For the numerical experiments, we have chosen for (CL) three initial data uq

such that the corresponding vq has Lipschitz constant M = 1 . In all figures

the exact solution is represented by a continuous line, whereas the approxi-

mate solution is represented by small circles. All the tests have run on a VAX

6500/510, and the CPU time reported in the tables (see Supplement) is in the
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form min:sec.dec. or sec.dec. As we have already remarked, one can use any

discretization of vx ; the numerical results in all the tables refer to a centered
difference scheme. In all the tests we have set the viscosity coefficient for the

Harten scheme equal to 0.25 .

Test 1. The initial data is
\ 1    for x€[-l, 1],

[ 0   elsewhere,

and we have looked for the solution at time T = 2. Using characteristics, one
can easily prove that the exact solution has a shock at that time.

uo(x)

< numerical sol.

enact sol. o numerical sol

- exact sol.

GODUNOV scheme:

(a)

HAßTEN SCHEUE

(b)

o numerical sol

- exact sol.
o numerical sol

- exact sol.

(0 (d)

Figure 1. Test 1 : exact versus approximate solutions at time
T = 2

(a) Godunov : space nodes = 270, time nodes = 405

(b) Harten : space nodes = 270, time nodes = 405

(c) H-J scheme k < h: space nodes = 270, time nodes = 405

(d) H-J scheme h = k3¡2 : space nodes = 233, time nodes = 30
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Figures lc,d show the numerical results for the three-point scheme, and for
the general scheme where A = k}l2. They are compared with the results ob-

tained by applying the Godunov scheme and the Harten scheme [13] to the

same problem (Figures la,b). The same number of nodes in space and time has

been used for the three-point HJ-scheme, Godunov and Harten methods, since

for these methods a condition of type (6.2) is needed. It is rather interesting to

compare the results; in particular, notice that lc is almost equal to la and that

the general HJ-scheme converges even better where the solution has a jump with

roughly the same number of nodes in space and less steps in time (30 instead

405). In Figure Id one can see a strange oscillation around the exact solution

but the corners of the entropy solution are picked up very well, and the diffusion

around the shock is almost negligible (1 node).
Table 1 contains the errors (in the L'-norm) of our methods for different

mesh sizes and time steps. This table confirms that, in this test, the general

HJ-scheme is more accurate and requires less CPU time.

In Table 2 we compare the orders of convergence in L1 for all the above

schemes. Notice that the general HJ scheme has a higher order of convergence
(0.9 instead of 0.8) and it is not very far from the order of convergence of

Harten's scheme.
We have computed the approximate order of convergence y in terms of the

space step A . Assuming for the error in the L'-norm the estimate

Err(A) = 0(hy),

we have computed the error for hx and A2 to obtain

Errfo)  _n(h\
Err(A2)     U\h1) '

Typically for the methods satisfying (6.2), we have chosen A2 - Ai/2. The

order for the HJ-schemes where h = k% has been computed always in terms of

the space step A , choosing k2 = kx/4, so that A2 = Ai/8 .

Test 2. The initial data is

_ f 1 -x for x £ [0, 1],

\ 0 elsewhere,

and we have computed the solution up to time T = 0.7.
Again, we compare our methods with Godunov and Harten schemes in Figure

2. The general HJ-scheme behaves very well also in this test (see 2d), staying

close to the sharp cusp, while the other methods smooth it out. Notice that the

result of Figure 2d has been obtained using only 20 nodes in time.
For this example we have computed the errors in Lx and L°° ; they are

shown in Table 3. The difference between the errors in L°° of Tables 3a and
3b is very large but also the difference in terms of the Lx error is substantial if

we compare the errors which correspond to similar CPU times.

Finally, Table 4 shows the order of convergence in L1 and L°° . In this test

the general HJ-scheme has the best order of convergence (even better than the

order of Harten's scheme).



NUMERICAL SCHEMES FOR CONSERVATION LAWS 577

o numerical sol.

- exact sol.

-OS -0.» 0

(a) (b)

o numerical sol

- exact sol.

o numerical sol

- exact sol.

-0.5 -OÍS 0 0.» OS O.TS -os       -an        o OH        OS        0 75

(c) (d)

Figure 2. Test 2: exact versus approximate solutions at time
T = 0.1

(a) Godunov : space nodes = 270, time nodes = 405

(b) Harten : space nodes = 270, time nodes = 405

(c) H-J scheme k < h:  space nodes = 270, time nodes = 405

(d) H-J scheme h = k2¡2 : space nodes = 306, time nodes = 20

Test 3. This test shows the behavior of HJ-schemes when the solution is smooth.

The initial data is u0(x) = 0.5 + sin(Ttx) with periodic boundary conditions,

and the solution is computed up to time T = 0.2.

We have taken advantage of the periodic boundary conditions in the imple-
mentation of Godunov and Harten schemes. Notice that this cannot be done

for the HJ-schemes since the corresponding initial condition for (HJ) is not
periodic.
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< numerical sol.

- exact sol.

o ois        os        on

(a)

IS tS I.7S

o numerical sol

- exact sol.

o numerical sol.

- exact sol

(c) (d)

Figure 3. Test 3: exact versus approximate solutions at time
7 = 0.2

(a) Godunov : space nodes = 60, time nodes = 90

(b) Harten : space nodes = 60, time nodes = 90

(c) H-J scheme k < h: space nodes = 60, time nodes = 90

(d) H-J scheme h = k}!1 : space nodes = 64, time nodes = 2

In Figure 3 we show the drawings corresponding to the above methods. The

approximate solution corresponding to the general HJ-scheme stays close to the

solution also near the local maximum and minimum points (where the solutions

obtained by the other methods differ from the exact solution). Notice that the

result of Figure 3d has been obtained using only 2 nodes in time (i.e., k = 0.1 ).

Table 5 contains the errors in Lx and L°° and the CPU times corresponding

to a number of different time steps and mesh sizes. In 02.28 seconds the general

HJ-scheme produces a solution with an L°° error of 0.0154.The Harten scheme
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uses 3.01 seconds to obtain a similar L°° error and the other methods never

reach that accuracy. In Table 6 we show the orders of convergence in Lx and

L°°. Table 9 contains the results for a HJ-scheme where the choice of A is

independent from k. In fact, even if the a priori estimate (5.3) suggests that
the choice A = k3/2 is optimal, a different choice is still possible. The best result

is obtained with only two steps in time and the smallest mesh size (A = 0.001).

The orders of convergence are always close to, or above, 1.

Test 4. This test shows the behavior of HJ-schemes in smooth regions after a
shock appears. We have considered the same initial data (with periodic bound-

ary conditions) of Test 3 but the solution is computed up to T = 1. As one
can easily prove, the entropy solution has a jump. In Tables 7 and 8 we com-

pare the methods in term of the errors, CPU time and order of convergence.

In this example we have computed also the L°° error related to the region

where the solution is smooth (in particular, this error refers to the set I\Io,

where Io = (x-0.1, x + 0.1) and x is the point of discontinuity). Notice that
HJ-schemes fit well the exact solution in the regularity region.

Tables 11 and 12 contain the results for an HJ-scheme where the choice of

A is independent of k . Also in this test, the best result is obtained with only
two steps in time and the smallest mesh size. The approximate solution stays

very close to the exact solution in the region of regularity (the corresponding

L°° error is about 10-2 or less). The orders of convergence are close to 1.

Conclusion. The numerical results show that the HJ-schemes that we propose

are very accurate and faster than our implementation of the methods of Go-

dunov and Harten. We observe that the general HJ-scheme stays very close to

the solution wherever it is continuous (in particular, look at the results for Test

2): in fact the main contribution to its Lx error is given by the jump around

the shocks (see Test 4). Even better results can be obtained for large time steps

and small mesh sizes (see Tables 9 and 11).

Finally, we observe that, for the same Lx error, the CPU times of the general

HJ-scheme are drastically lower than those of the other methods.
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Table 1. Test 1: maximum L1 errors and CPU times.

(a) (H)= Harten scheme, (G)= Godunov scheme, (HJ)= H-J scheme with * < A

(b) H-J scheme A = i3'2

Time Step

* = 0.066666

k = 0.033333

k = 0.016666

k = 0.008333

Mesh Size

ft = 0.300000

ft = 0.150000

ft = 0.075000

ft = 0.037500

LT Error

(H) 0.446665
(G) 0.474162
(HJ) 0.526606

(H) 0.226174
(G) 0.266013
(HJ) 0.313992

(H) 0.116579
(G) 0.173682
(HJ) 0 177846

(H) 0.056856
(G) 0.091962
(HJ) 0.103086

CPU

(H)   0.75
(G)   0.68
(HJ) 0 63

(H)   1.07
(G)   0.69
(HJ) 0.58

(H) 2.38
(G) 0.83
(HJ) 0.78

(H) 6.40
(G) 1.22
(HJ) 1.13

(a)

Time Step Mesh Size ¿' Error CPU

k = 0.200

k = 0.100

it = 0.080

k = 0.050

k = 0.040

lb = 0.025

Jfc = 0.020

A = 0.089442

A = 0.031622

ft = 0.022627

A = 0.011180

ft = 0008000

ft = 0.003952

ft = 0.002828

0 154003

0.055008

0040224

0.021983

0.014811

0.008301

0.006038

00.75

01.33

01.55

04.56

05.63

29.91

57.19

(b)
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