
mathematics of computation
volume 64, number 210
april 1995, pages 807-818

ADAPTIVE SEARCH IN QUASI-MONTE-CARLO OPTIMIZATION

CHRISTIAN BIESTER, PETER J. GRABNER,
GERHARD LARCHER AND ROBERT F. TICHY

Abstract. Motivated by a linear time-complexity result for an adaptive Monte

Carlo algorithm, we propose and analyze an adaptive deterministic algorithm.

We restrict a grid search to nested subregions that promise to provide improve-

ment of the current solution, and we obtain an exponential rate of convergence

in function evaluations. For proving the main result we restrict ourselves to

functions on hypercubes. In a final section we outline how to extend the method

to the general case and give some numerical examples.

1. Introduction

Let S be a closed and bounded subset of R" , fa continuous real-valued

function defined on S, and y* := max^s f(x). In [8] a pure adaptive search

algorithm for the approximate calculation of y* is introduced provided that

/ is concave on a convex body S, and that y* = f(x) has a unique solution

X = X* .

Algorithm 1.

Step 0. Set k = 0, So = S and yn < minx6s f(x) =: yk
Step 1. Generate xk+x uniformly distributed in Sk+X := {x\x e Sk and f(x)

>yk)

Step 2. Set yk+x = f(xk+x). If a (preset) stopping criterion is met, stop. Oth-
erwise set k :—k+l and return to Step 1.

By construction, yk is an increasing sequence of points that almost surely

converges to y*. It is shown in [8] that for the expectation value E(yk) (in the

standardized case y» := minxe5/(x) = 0, y* = 1, y0 = y»)

(1.1) E(yfc)>l-(^T)fe.

Received by the editor July 6, 1993 and, in revised form, March 14, 1994.
1980 Mathematics Subject Classification (1985 Revision). Primary 65C05, 11K45, 65D99,

65K10.
The second and fourth authors are supported by the Austrian Science Foundation project Nr.

P-10223-PHY.

©1995 American Mathematical Society
0025-5718/95 $1.00+ $.25 per page

807

808 CHRISTIAN BIESTER ET AL.

Furthermore, the probabilistic estimate

katm := min^ k\ Pr (yk > 1-) > 1 -a >

(1.2)
<2(n + l)log(^m(l + -j=X\

holds for all m > 1 and 0 < a < 1.
These results are shown by considering the worst case of this algorithm, i.e.,

taking f = g, where

(1.3) g(x) := inf{y\(x, y) e convex hull of (x*, y*) and (S, y»)}.

In applications of Algorithm 1 some striking problems occur: The authors of

[8] write, "However, at the present time we do not have efficient procedures for

generating uniformly distributed points in general convex regions." The actual

and much more serious problem is that in Step 1 of Algorithm 1 it is assumed
that the new set 5^+1 is given explicitly (in a constructive way). But this, of

course, in general is not the case, and so for practical purposes a further step

would be necessary where Sk+X is determined or at least estimated. In this case

it is doubtful whether the bound (1.2) remains linear in the dimension n or

not. We remark here that in the forthcoming paper [10] linearity with respect
to the dimension is extended to the case where / is 1-Lipschitz-continuous.

Another disadvantage (as is characteristic for all pure Monte Carlo methods)

is, of course, that the results are merely probabilistic. The aim of the present
paper is the presentation of an adaptive Quasi-Monte-Carlo algorithm which

is now practicable in the form as stated. Furthermore, deterministic error esti-
mates are established, and for a large class of functions exponential convergence

to the maximum is shown.

2. The algorithm

Let for simplicity S = [0, 1]" be the «-dimensional unit cube, / : 5 >-> R be

a function which is n-Lipschitz-continuous with 1 < n < 2. This means that

there exists a constant L > 0 such that for all xo € S there is an A(xq) e R"

satisfying

(2.1) \f(x) - f(x0) - A(x0)(x - x0)\ < L\\x - xotl"

for all x 6 S. (By || • || we denote the maximum norm.)

Of course, if n > 1 then A(xq) = grad/|jco (by the definition of differentia-

bility), and if n = 1 then we may take A(xq) - (0, ... ,0).
Let maxxeSf(x) =: y* and e > 0. We want to determine a point x e S

with y* - f(x) < e .

Algorithm 2.

StepO. /0:=S = [0, If
Step 1. Ik is a union of cubes of the form

n
i=l

a, Qj + 1
2* ' 2k

with 0 < a, < 2k

ADAPTIVE SEARCH IN QUASI-MONTE-CARLO OPTIMIZATION 809

Construct Ik+X in the following way: Divide each of the subcubes of

Ik into 2" subcubes of half side length in the natural way and set

Mk+X := max{f(x)\x is vertex of one of the new subcubes }.

Take Ik+X as the union of all new subcubes which have at least one

vertex x with

f(x) > Mk+X - ^¡¡.

Step 2. Take xk+x such that Mk+X = f(xk+x). If ¿¡sttw < e ta^e x '■- xk+\ •
Otherwise set k := k + 1 and return to Step 1.

3. Analyzing the algorithm

We first need the following

Lemma. Let W:= n"=x[b¡, b¡ + p] ç [0, 1]" be a subcube of S with vertices
xx, ... , x2n, and let f be n-Lipschitz-continuous on S with constant L. Then

(3.1) maxf(x)- max f(Xi)<Lpn.

Proof. Let f(x0) := maxxefVf(x). Then f(x):=f(xo) + A(xo)(x-xo) takes
its maximum in W at one point x¡ so that

f(x¡) := max f(Xj) > f(x0) = f(x0)
j

and

\f(Xj)-f(xj)\<L\\x0-Xj\\'><Lpl,

from which the result follows. D

For every cube W with side length ^ and with f(x¡) < Mk - ^ for all

vertices x¡, by the lemma we have f(x) < Mk < y* for all x e W . It

follows that x* e Ik for all x* € S with f(x*) = y*. Therefore, we obtain

\Mk - y*\ < ¿fc < e if k := [^ log2 7I, where \x] denotes the least integer

larger or equal to x.
Hence, one has to run through the algorithm [^ log2 j~\ times. As a measure

for the complexity of the algorithm we have to consider the number of function
evaluations needed. Trivially, in any case, at most (2k + l)n evaluations are

needed to determine Iq , Ix, ... , Ik . So in the worst case we need N = (2k + l)n

points to achieve an error less than

(32) 4 =_±_y > 2kr> (Nxln - l)'? '

which is the usual rate in nonadaptive Quasi-Monte-Carlo-optimization (see [4]

or [6]).
In many cases we will now get much better estimates. The quality of these

estimates depends on the behavior of / in the neighborhood of its maximum

points. From now on we make use of the following three assumptions:

(A) There are at most finitely many points x*, ... , x^, with f(x¡) = y*.
(B) If

y := sup{/(x)| x is point of a local extremum of / and x ^ x* for all /'},

then let b := y* - y > 0.

810 CHRISTIAN BIESTER ET AL.

(C) There are constants ô, c, y > 0 with y* - f(x) > c\\x* -x\\y for ail x

with ||x* -x\\<ô and every i - 1,... ,w.

We will show

Theorem. With the above notation let Ik be a dyadic cube such that for every

point x G Ik the estimate y* - f(x) < e holds. For the determination of Ik by
Algorithm 2 we need at most K(e, f) function evaluations, where

K(e,f)
px + 2w max {p2(±)"V , 3" [j log2 f|) ifr\ < y,

px+2wp3 [jlog2£ ifq>7

with

P\ =Pi(f, ") = max 2
2L

min(b, c(s2)y)^ +0 ■g+o* ■

p2 = p2(f,n) = T^{^ ,

Pi = PÁf, n) = max I 2 (— J ' 3" J .

Furthermore, {x¡, ... , x^} = fj^li h> and for every x e Ik there is an

i e{l,... ,w} with \\x - x*\\ < (y) ' provided that

k > max (- log2 min Í b, c (-x \ log2

Proof. Let ko be such that ^ < § and M^ -¿h> max(y, y* -c(\)y). Since

A/iko > y* - 2^ , this is satisfied for

ko := max Zl°è2
2L

n min(è,c(f)y)

Thus, for the determination of Icy, ... , 1^ at most

(I

» |log2

max
2L

V
min (b, c ($)')

+11 .lj+1

/

function evaluations are needed.

Let now k > Icq. Then all vertices of subcubes of Ik are in a ¿-neighborhood

of one of the x*. This follows from (C), since for all x with \\x* - x\\ > \

(i = 1, ... , w) we have

/(x) < max (y,y*-ci-j j.

ADAPTIVE SEARCH IN QUASI-MONTE-CARLO OPTIMIZATION 811

Note that the subcubes of Ik have sidelength ^ < f and each of these subcubes

has at least one vertex x, with

m) > Mk - ± > Mk, - ¿ > max (y, y * - c (Q J .

Therefore, for k > k0 we have for at least one vertex x, of every subcube

of h

y*-ñx.)<^¡.

Thus, we obtain

which yields

2L
2^ > y* - f(Xj) > c\\x* - xj\\y,

C'--^^(l^)'
for some i = 1, ... , w, and the second assertion of the theorem follows.

Furthermore, Ik contains at most

1 \ n i i t v 1 \ \ "

(|^Y+3 <2« max 2^' '(0-))

<

vertices of subcubes.

Therefore, for the determination of Ix,... , Ik(k > ko) we need at most

px(f,n) + 2w fi (max^+1(|^)\3^

px(f, n) + 2w max (2" (^)"/r 2n^k+x^x-"M (3»fc) if w < y,

px (f,n) + 2w max ((^)"/? 2k, 3"k) if n > y

function evaluations. Setting k :- \^ log2 j] completes the proof. D

Remark. The following relations between the number N of function evalua-

tions and the error term y* - f(x) =: A are satisfied:

(3.3) A<pe~N ifn>y

and

(3.4) A<q-— if r\<y
N "(í-i)

with constants p = p(f, n) and q — q(f', n). This means that our algorithm is

exponentially fast in function evaluations (even in the "worst case" considered
in [8]).

4. Concluding remarks and numerical examples

In this final section we add some general remarks concerning the strength

and usefulness of our method. First of all, note that in [8] the functions were

812 CHRISTIAN BIESTER ET AL.

assumed to be concave, which is much more restrictive than a Lipschitz condi-

tion. Clearly, our Lipschitz conditions are global ones. However, it is sufficient

to know a Lipschitz constant in a suitable box containing the maximum point

(in the case that it is unique).

In the description of Algorithm 2 we restricted ourselves to the simplest case,
where the functions are defined on hypercubes. In the following we discuss

briefly how to proceed in the case of a function on a compact region S ç E" .

The main idea is to replace the sequence of vertices of axis-parallel subcubes

by a fixed "well-distributed" point set P = {px, ... , pm} ç S. An appropriate

measure for the distribution of points in 5 is the so-called dispersion

(4.1) Dm(P) = max min d(x,p¡),
xeS j=\,...,m

where d denotes a suitable metric on S (e.g., the Euclidean one). For the

description of the algorithm in the general case we confine ourselves to the case

that there is a unique maximum point x* (from the presentation of the theorem

it is clear how to proceed in the case of finitely many maximum points).

In the first step we have to determine those points in P, which are possible

candidates for containing x* in a Dm(P)-neighborhood (a precise description

of these points involves the Lipschitz condition and runs along the same lines as

the description of Algorithm 2). In a further step we take a homothetic image

of P in each of these neighborhoods and repeat the first step. This procedure is

iterated until a prescribed stopping condition is satisfied.

The order of convergence of this algorithm substantially depends on the dis-

persion. For this purpose point sets with low dispersion are needed. Such point
sets, in connection with Quasi-Monte-Carlo-optimization, were considered in a

series of papers (cf. [3, 4, 6]). In these papers constructions of such sequences

and estimates for their dispersion are established. In general,

(4.2) Dm(P) x -L
mn

holds. In C. Biester's Ph.D. thesis [1] the above algorithm is studied in the

case of various compact regions like balls, cylinders, and special polyhedra.
Furthermore, constructions of sequences with low dispersion in those regions

are presented. For a detailed survey of the literature on Quasi-Monte-Carlo-

Optimization we refer to Chapter 6 of the recent monograph [5] by H. Nieder-

reiter.
In the case of optimization problems with constraints there are two possibil-

ities for applying our algorithm: The first method is to consider the constraints

as a compact manifold embedded in some Euclidean space. This manifold can
be taken as the compact region S in the above description; as a metric on S

one can use the geodesic metric. The case where the manifold is a sphere is ex-

tensively studied in [11] and [12]. The second method is to use transformations

of this manifold to the unit cube. Such transformation methods were studied

in detail by Niederreiter and Peart [7].

ADAPTIVE SEARCH IN QUASI-MONTE-CARLO OPTIMIZATION 813

In the following we present some numerical examples demonstrating possible

applications of Algorithm 2. We note that a MODULA-code of the algorithm
is listed in [1] and a PASCAL-code is available by the second author. The first
example is a simple "school problem" and shows that, of course, in such cases

the algorithm works very well. The subsequent examples seem to be much more

interesting. Example 2 is a constrained problem in 3 dimensions which some-

times is used as a test example in global optimization (cf. [2]). Note that our

method can be used for constrained problems just by assigning some fixed value

to the objective function outside the constraint. Example 3 (Colville No. 4) and

Example 4 (Banana-function in 5 dimensions) are also well-known test problems
in global optimization (cf. [2, 9]). A reasonable acceleration of the algorithm

can be obtained in these cases by a pre-search localizing some tight neighbor-

hood of the extreme value. The other examples are nondifferentiable functions

up to dimension 6. The computations show that also for such functions the

algorithm works well (which can be considered as one main advantage of Algo-
rithm 2). In the following tables, M denotes the exact value of the maximum,

M the approximation by Algorithm 2 after k steps with the help of I gener-

ated cubes. The number of function evaluations clearly is 2nl. We stopped the

computations if we reached a good approximation of the maximum or if too

many cubes were needed. Finally, we remark that in [1] also a slightly different

Algorithm 2* is studied. This algorithm is based on a point sequence of small
dispersion and the approximate evaluation of grad /.

Example 1.

f(xx, x2, x3) = (xi - 0.567)2 - (x2 - 0.89)2 - (x3

M = 0.00000£ + 00

0.123)2

M

1
5
10
15
20
25
26
27
28

-2.14718E-01
-2.49249E-04
-7.45346E-07
-6.92149E-10
-1.30257E-12
-4.99600E-16
-5.55112E-17
-5.55112E-17

0.00000E+00

1
889

5377
10201
15105
19921
20825
21369
22009

Example 2 (cf. [2, p. 60]).

under the constraints

72 - xi - 2x2

f(xX , X2 , X3) = X]X2X3

2x3 >0, 0<x,<42,

M = 3.45600£ + 03

1 = 1,2,3,

814 CHRISTIAN BIESTER ET AL.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20

M

0.00000E+00
0.00000E+00
2.31525E+03
2.89406E+03
3.25582E+03
3.29652E+03
3.38809E+03
3.43514E+03
3.43579E+03
3.44756E+03
3.45346E+03
3.45347E+03
3.45495E+03
3.45568E+03
3.45568E+03
3.45587E+03
3.45596E+03
3.45596E+03
3.45598E+03
3.45600E+03

1
9

73
529
593
721
873

1113
1529
1681
2097
2721
3137
4257
7265

10753
16705
28065
51817
54217

Example 3 (cf. [2, p. 61]).

f(xx, x2, x3, x4) = 100(x2 - xf)2 + (1 - xi)2 + 90(x4 - xf)2 + (1 - x3)

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

+ 10.1((x2 - l)2 + (x4 - l)2) + 19.8(x2

M = 0.00000£ + 00

1)(X4-1),

M

1.60580E-01
1.19175E-01
8.34913E-04
8.34913E-04
8.34913E-04
3.48864E-04
2.64081E-05
2.64081E-05
6.55810E-07
6.55810E-07
4.59164E-07
4.27281E-09
4.27281E-09
4.27281E-09
7.41807E-10

1
17

177
1073
1329
1585
1841
2705
2961
3217
3601
4993
6561
8225

14257

ADAPTIVE SEARCH IN QUASI-MONTE-CARLO OPTIMIZATION

Example 4 (5-dimensional Banana-function, cf. [9]).

815

f(xx, x2, x3, x4, x5) =]T (lOO(xi+1 - xj2)2 + (1 - Xfc)2)

k=\

M = 0.00000£ + 00

M

1
2
3
4
5
6
7
8
9
10
11
12

13
14
15
16

8.47812E-01
1.46382E-03
1.46382E-03
1.46382E-03
1.46382E-03
6.04788E-04
4.60453E-05
4.60453E-05
1.13945E-06
1.13945E-06
8.03054E-07
7.44058E-09
7.44058E-09
7.44058E-09
1.29177E-09
6.32966E-10

1
33

1057
2081
3105
4129
6209
9793

10817
13729
14753
15777
18881
19905
21697
27329

Example 5.

4

f(xx, x2, x3, x4) = 0.2620-^ (|x, - 0.24721 + |x, - 0.7679| - |x, - 0.3127|) ,
;=1

M = 0.00000£ + 00

M

1
5
10
15
20
22
23
24
25
26

-9.28400E-01
-7.16000E-02
-1.28752E-03
-6.68168E-05
-1.96695E-06
-5.96046E-08
-5.96046E-08
-5.96046E-08
-5.96046E-08
-5.96046E-08

1
1297
3873
7233

10081
11633
13025
13281
13537
13793

816 CHRISTIAN BIESTER ET AL.

Example 6.

f(xx, X2 , X3 , x4) 10.8974 - |xi - 0.317211 - |xi + x2 - 0.5431|

- |xi +x2+x3-0.71851 - |xi + x2 + x3 + x4 - 0.84341,

M = 0.89740E + 00

1
2
3
4

5
6
7

8
9
10
11
12
13
14

Example 7.

f(xx, X2 , X3 , x4)

M

-3.14800E-01

2.96400E-01
6.62200E-01
7.33400E-01
8.11400E-01
8.80250E-01
8.88325E-01
8.89913E-01
8.95875E-01
8.95875E-01
8.96486E-01
8.96709E-01
8.97114E-01
8.97308E-01

1
17

241
1249
2513
3617
4401
4721
5073
5457
5713
6033
6385
6721

|1 - |xi - 0.317211 -\l-\xx+x2- 0.543111
- |xi +x2 +x3 -0.71851 - |xi + x2 + x3 + x4 - 0.8434|.

M = 2.00000£ + 00

M

1
2
3
4

5
6
7
8
9
10
11
12
13
14

7.87800E-01
1.39900E+00
1.76480E+00
1.83600E+00
1.91400E+00
1.98285E+00
1.99093E+00
1.99251E+00
1.99848E+00
1.99848E+00
1.99909E+00
1.99931E+00
1.99971E+00
1.99991E+00

1
17

241
1249
2513
3617
4401
4721
5073
5457
5713
6033
6385
6721

ADAPTIVE SEARCH IN QUASI-MONTE-CARLO OPTIMIZATION 817

Example 8.

f(xx, X2, X3, X4, X5)

5

= 0.3275 - Y, (*i - 0.24721 + \x¡ - 0.7679) - |x, - 0.3127|)
(=1

M = 0.00000£ + 00

M

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

-1.16050E+00
■1.16050E+00
-8.95000E-02
-8.95000E-02
-8.95000E-02
-6.67501E-02
-1.13750E-02
-1.13750E-02
-8.15639E-03
-1.60941E-03
-1.60941E-03
-8.32170E-04
-3.88712E-04
-2.21819E-04
-8.35359E-05

1
33

1057
4641
5665
6689

10273
15425
16449
17473
22625
23649
24673
29825
33409

Example 9.

f(xx, X2 , X3 , X4 , X5 , Xö)

6

= 0.3852 - J2 (l*< - 0.24721 + |x, - 0.7679) - |x, - 0.3127|) ,
1=1

M = 0.00000£ + 00

M

1
2
3
4
5
6
7

■1.47540E+00
■1.47540E+00
-2.46001E-02
-2.46001E-02
-2.46001E-02
-2.46001E-02
-2.46001E-02

1
65

4161
20545
24641
28737
32833

818 CHRISTIAN BIESTER ET AL.

Bibliography

1. C. Biester, Zahlentheoretische Simulation von Zufallspunkten mit Anwendungen in der nu-

merischen Analysis, Ph.D. Thesis, Technical University of Vienna, 1991.

2. W. Hock and K. Schittkowski, Test examples for nonlinear programming codes, Springer

Lecture Notes in Economics and Mathematical Systems, vol. 187, 1981.

3. H. Niederreiter, A Quasi-Monte-Carlo-Method for the approximate computation of the ex-

treme values of a function, Studies in Pure Mathematics (P. Erdös, ed.), Birkhäuser, Basel,

1983, pp. 523-529.

4. _, Quasi-Monte-Carlo-Methods for global optimization, Proc. 4th Pannonian Sympos.

Math. Stat., Bad Tatzmannsdorf (Austria), 1983, pp. 251-267.

5. _, Random number generation and Quasi-Monte-Carlo methods, SIAM Lecture Notes,

vol. 63, Philadelphia, PA, 1992.

6. H. Niederreiter and P. Peart, Localization of search in Quasi-Monte-Carlo-Methods for

global optimization, SIAM J. Sei. Statist. Comput. 7 (1986), 660-664.

7. _, Quasi-Monte-Carlo-Optimization in general domains, Caribbean J. Math. 4 (1985),

67-85.

8. N. Patel, R. Smith, and Z. Zabinsky, Pure adaptive search in Monte-Carlo-Optimization,

Math. Programming 43 (1988), 317-328.

9. K. Schittkowski, More test examples for nonlinear programming codes, Springer Lecture

Notes in Economics and Mathematical Systems, vol. 282, 1987.

10. R. Smith and Z. Zabinsky, Pure adaptive search in global optimization, Math. Programming

53(1992), 323-338.

11. R. F. Tichy, Random points on the sphere with applications to numerical analysis, Z. Angew.

Math. Mech. 70 (1990), T642-T646.

12. _, Random points in the cube and on the sphere with applications to numerical analysis,

J. Comput. Appl. Math. 31 (1990), 191-197.

(C. Biester) Alberto. 49/8, 1080 Wien, Austria

(P.J. Grabner and R.F. Tichy) Institut für Mathematik, TU Graz, Steyrergasse 30, 8010

Graz, Austria
E-mail address, P. J. Grabner: grabnerfflftug. dnet. tu-graz. ac. at

(G. Larcher) Institut für Mathematik, Universität Salzburg, Hellbrunnerstr. 34,

5020 Salzburg, Austria

