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PRECISE SOLUTION OF LAPLACE'S EQUATION

ZHIXIN SHI AND BRIAN HASSARD

Abstract. An approximate method is described for solving Laplace's equation

Ah = 0    infi = (0, 1) x(0, 1),

"Ian = g    on dSi

precisely in the sense of Aberth's 1988 monograph. The algorithm uses singu-

larity extraction, Fourier series methods, Taylor series methods, and interval

analysis to construct an approximation U(x, y) to the solution u(x, y) at

points in the square, and a uniform bound on the error \U(x, y) - u(x,y)\.

The algorithm applies to problems in which the boundary data g is specified in

terms of four elementary functions. The boundary data may be discontinuous

at the corners.

1. Introduction

Consider Laplace's equation

,. .. Í   Aii = 0    infl,
' \u\9a = g    onôQ,

where £2 is the unit square (0, 1) x (0, 1) and dQ is the boundary of Q.

We suppose that g is defined on the sides dQj■, j = 1, 2, 3, 4, of the square

by continuous elementary functions gi(x), g2(y), gi(x), and g*{y). Here,

dClj;, j = 1, 2, 3, 4, are labeled counterclockwise starting with dQx = {0 <
x < 1, y = 0}.

For given positive integers n, N, the algorithm we describe determines an
approximate solution U = U„,N and an e = c„tN such that \u(x, y) -

U(x, y)\ < e uniformly for (x,y) £ Q. Also, t„t'N = e™$d + e1™^, where

eT°u§d may be made arbitrarily small by increasing the precision of the interval

arithmetic, and for each fixed n , ej;1""^ = 0(N~2n~x), N -» oo.

There is an enormous body of literature on numerical methods for linear el-

liptic partial differential equations, and a variety of packages available, such as

[5]. There are methods capable of high-accuracy solution [3], methods for which

Hx error bounds [8] and methods for which pointwise error bounds [2] have

been derived. The present work combines a high-accuracy scheme with a point-
wise bounding argument and methods of interval analysis to completely control
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both truncation and roundoff error. The precision of the results is guaranteed.

We believe that our scheme is the only one presently implemented which can

make this claim. Our application of interval analysis uses precise methods de-

scribed by Aberth [1] for linear algebra, differentiation, and quadrature. Our

scheme is potentially useful for testing the accuracy of other schemes for solving

general linear elliptic partial differential equations.
The main idea in our scheme for (1.1) can be considered as a method for

accelerating the convergence of Fourier series solutions. The convergence rate
of such a series is limited by nonzero values of even-order derivatives of the
boundary data gj, j = 1,2,3,4, at the corners. As the functions g¡, j =

1,... , 4, are elementary, their derivatives up to any fixed order at the corners

are computable (i.e., can be computed precisely, cf. Aberth [1, Chapter 3]). We

first use the known derivatives of the boundary data at the corners to convert
( 1.1 ) to a problem of the same form, but for which the even derivatives of the

boundary data at the corners vanish up to a certain order.

The resulting Laplace's equation is solved using a truncated Fourier series
method. The truncation error is bounded using uniform bounds for 2/cth-

order derivatives of the boundary data, which are again computable. Taylor

series methods are combined with interval analysis to obtain these bounds; the

approach is similar to that used by Aberth [1, Chapter 3] in precise methods

for quadrature.
We call part of the scheme for ( 1.1 ) "singularity extraction", since singulari-

ties of partial derivatives of the solution at the corners are removed.

It is well known that the solution u of (1.1) is the sum of the solutions

Uj, j = 1, ..., 4, of the problems

{Auj = 0 in Q,

Uj\dQj = gj,

Uj\dak = 0,        k^j,

with nonzero data only on dilj, j = 1, ..., 4. The solution of (1.2) with j = 1

can be easily written as

,, „ ,       x     v-^     sinhn7t(l-y)   .
(1.3) ux(x,y)=y   a„-r-r1-s\nnnx,
y    ' v       '    ¿-*1 sinh«7r

n=l

where a„ = 2 /0' gx (jc) sin nitxdx, and there are similar expressions for the so-

lutions Uj, 7 = 2,3,4.
An approximate solution of (1.1) can be found by truncating the Fourier

series (1.3) and the other three Fourier series. However, these Fourier series do
not in general converge fast enough to be the basis of a high-accuracy scheme
unless the boundary data has additional properties. This motivates the following

definitions:

Definition 1.1 (Property Ak). For any integer k > 0, we say the boundary data

g has property Ak if
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lim g[2j\x) = (-iy lim g?j\y),
x-»0+ y->0*

lim g[2j)(x) = (-l)J lim gU\y),

1 ' ; ton g?J\y) = (-iyiim_gi2j\x),

yiimg[2jHy) = (-iyiimg{2J\x)
y-*l~ x-t0+

for ail j = 0, ..., k , and all the limits exist. We say a problem (1.1) has property

Ak if the associated boundary data has property Ak .

Definition 1.2 (Property bk). For k > 0, we say that the boundary data g has

property bk if

\img\"\x)= lim^,(y) = 0,
x-»0+ >>->u+

lim g[2k)(x)= limg?k)(y) = 0,
x->l- y^>0+

lim gfk)(y) = lim g¡2k](x) = 0,
y—»I- *—»1_

lim gfk\y) = limgfk\x) = 0.
y—>l~ x—»0+

We say the problem (1.1) has property bk if the associated boundary data has

property bk.

Definition 1.3 (Property Bk). We say that the boundary data g has property

Bk if it has property b¡ for j = 0, 1, ..., k, and we say the problem (1.1) has
property Bk if the associated boundary data has property Bk .

The basic idea of the scheme we describe, is to convert a general problem (1.1)

which may not even have continuous boundary data (property Ao) to a problem

of the same form (1.1) but with property Bn for some given n . This is done
by subtracting linear combinations of specific harmonic functions in two stages.

The first stage takes the general problem ( 1.1 ) to one with property A„ , and may

be called singularity elimination because the harmonic functions employed have

corner singularities. The second stage takes a problem with property A„ to one

with property B„ by subtracting a polynomial. The resulting problem is then

solved by classical Fourier series methods: if a problem (1.1) has property Bn
for some sufficiently large n , then the Fourier series solution converges rapidly
(see §4).

2. Conversion to a BVP with Property An

In this section we shall convert the boundary value problem ( 1.1 ) to a problem

of the same general form but with "better" boundary data, i.e., having property

An for some large n . It is not by itself sufficient for fast convergence of Fourier

series solutions that a problem has property A„ for some large n . However,
property An is necessary, and converting (1.1) is the first step. We have the
following
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Lemma 2.1.  (1) For any integer k>0, the function

(2.1) Vk(x,y) = r2k(cos(2kd)6 + sin(2k6)lnr),

where x = reos8 and y = rsinO, is harmonic. Also the restriction Vk\dçi has

property Ak at (1,0), (1,1) and (0, 1), but not at (0,0). Explicitly, for

j>0,

d2J
lim -^-Vk(x, 0) = 0,

(2.2)
x—o+ dx2J

d2J
\™¿yjjVk{0,y) = (-l)^(2k)\o]k.

(2) A general problem (1.1) can be converted to a problem of the same form

(1.1) which has property Aq by subtracting a linear combination of the functions

Vx{x,y) = Vo{x,y), V2(x, y) = V0(y, 1 -x), V¿(x, y) s V0(l -x, 1 -y),

and V*(x,y) = V0(l - y, x).
(3) Aproblem (1.1) which has property Ak_x for some k > 1 can be converted

to a problem of the same form (1.1) which has property Ak by subtracting a linear

combination of the functions Vkx(x,y) = Vk(x,y), Vk2(x,y) = Vk(y, 1 - x),

Vk\x,y) = Vk{l-x,l-y),and Vk\x, y) s Vk(l -y,x).

Proof. Assertion ( 1 ) is easily verified.

To prove (2), we set Uq = u - £J=!, ao¡V¿ , where

aox = -    lim £400 - lim
TI  \y-+0+ x

(2.3)

«02

«03

imgx(x)\,

= - ( lim gx(x)- lim g2(y)\,

= - ( lim g2(y)- lim g3(x)) ,
71   V-*l- x->l~ )

Q04 X\mgï(x)- lim g4(y)
7Í  \x^>0+ y—»1-

Then «o satisfies

Auo = 0
4

U-o\dÇl = g~ Y,a°iVÔ
'=1

and the new boundary data has property Aq

in Q,

on <9¡Q,

da
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(2.4)

To prove (3), we now suppose that problem (1.1) has property Ak_x with

k > 1. Set uk = u - Yl)=i akjV¿ - where

*-îot((-,,'»«p*w-A«»*'w)"

°» - iêw ((_ "' *sft>ly) - ä ê™ w) •

Then «fc satisfies

( Au/t = 0 in £2,

(=1

on«9Q,

da

and the boundary data uk\da has property Ak .
By induction, for any k > 0, we can therefore convert the general problem

(1.1) to one of the same form having property Ak .   n

3. Conversion to a BVP with Property B„

In the last section, we gave a method of converting a general boundary value

problem to one which has property An . Here we convert the problem further to

one for which the even-order derivatives of the boundary data vanish at all four

corners, up to a certain order, i.e., yielding property Bn for some n . A BVP
with property Bn for some large n does have fast-converging Fourier series

solutions. We need two lemmas:

Lemma 3.1. For any k > 0, the polynomial

has the following properties:

(1) Wk(x,y) is harmonic. Also the restriction Wk\dci has property bk at

(0,0), (1,0), (0, 1), but not at (1,1).
(2) d2kWk/dx2k = xy and d2kWk/dy2k = (-l)kxy .

(3) d2Wk(x, y)/dx2 = -d2Wk(x,y)/dy2 = Wk_x(x, y) for k > 1.

Proof. These properties can be verified directly.   D

Lemma 3.2. A problem (1.1) which has property Ak for some k > 0 can be
converted to a problem of the same form which has property Bk by subtracting

from the solution of (1.1) a linear combination of the functions Wï(x,y) =
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Wj{x,y),   W2(x,y) = Wj(y, 1 - x),   Wf(x,y) = Wj(l -x, 1 - y), and

Wf(x,y) = Wj(l-y,x),j = 0, l,...,k.

Proof. Set v0 = u - £/=, ßkiWk*, where

ßkx= limg?k)(y) = (-l)k lim g(2k\x),
y-*\- x—»l-

ßk2= limg(2k\x) = (-l)k lim g<ik\y),
(3 1) x^° y~X~

ßki=limg?k\y) = (-l)klim+g\2k\x),
>>->0+ x—»0+

ßk4= lim g[2k)(x) = (-l)klimgí2k)(y).
x—»I- y—»0+

Then t>0 satisfies

I Aw0 = 0 in Q,

(3'2) Uo\da = g-j^ßkiWl
/=i

onöQ,

da

which has property bk . Since Wkl(x, y) is a polynomial, all derivatives are well

defined and continuous at the corners of Q, and since Wkl(x, y) is harmonic,

the restriction of Wkl(x,y) to 9Q has property Aj for arbitrary j . Therefore,
problem (3.2) also has property Ak .

We apply this same procedure to convert (3.2) to a problem with prop-

erty èyt-i for v\=vq- Y?i=i ßk-i,ifYk>-X • which also has property bk , since

the derivatives of Wkl_x of order 2k vanish identically.  Continuing in this

way, we find a problem for vk = vk_x - Y?l=x ßo,i^o wnicn nas properties

bo, bx, ■■■ ,bk, and so has property Bk as desired.   D
The following theorem describes a systematic way to convert a general system

(1.1) to one with property Bn .

Theorem 3.1. For any fixed n > 0, a general Laplace's equation (1.1) can be

converted to one in the same form which has property Bn ; the conversion can be

performed in the following steps:

(1) Set U(x,y) = u-J2nk=oTllx(CkiVki + dkiW¿), where cki and dki are
8(n + 1) undetermined coefficients.

(2) Set up 8(n + 1) linear equations, i.e., for j = 0, ... , n let

lim (U\díi]fJ\x) = lim (U\da^(y) = 0,
x—>0+ y—>0+

lim (U\dÇllY2J\x) = lim (U\dSl2)^(y) = 0,
je—► 1 — y—>0+

lim (U\dÇï^\x) = lim (£/|an2P'>00 = 0,
x—>i- y->i~

lim (U\dSi^\x) = lim (U\9SU)™(y) = 0.
jr-»0+ y->l~
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(3) Solve the linear system for the 8(« + 1) coefficients cki, dki (there is a
unique solution).

Then the new BVP:

{AU = 0,

(3.3)
U\9aj = gj ¿E(<*i»&+*i*&)

lk=0 1=1

7 = 1,2,3,4,

has property Bn . Here, V¿ = V¿(x, y) and W¿ = W¿(x, y), i = 1,2,3,4,

are defined in Lemmas 2.1 and 3.2, and VL denotes the restriction of Vk(x, y)

to the jth boundary (j = 1,2,3, 4).

Proof. Consider applying Lemmas 2.1 and 3.2 to a general problem (1.1).

Boundary data g can be constructed with arbitrary values for each of the

8(« + 1) limits limx^g[2j)(x), lim^,- g[2j)(x), lim^o+^ijO,

linv*,- g?j)(y), lim^0+ g?j)(x), limx_,- g(2j\x), lim^0+ iff >0>),

limy_>i- £4 j'(y), for j = 0, ..., n. The application of Lemmas 2.1 and 3.2
constructs a new BVP with property B„ such that the difference between the

solution of the original problem (1.1) and the new problem is a linear combi-
nation

n      4

É,Y,{cktV¿{x,y) + dkiW¿(x,y)).
k=0 1=1

The combination coefficients cki, dki, k = 0, ..., n , / = 1, ..., 4, provide a

solution of the 8(« + 1) linear equations described in step 2 above. Since there

exists such a solution vector in i?8(n+1) for arbitrary forcing vector in _R8("+1),

the coefficient matrix of the linear system is necessarily nonsingular and the

solution for any particular boundary data is unique.   D

4. Coefficients of Fourier series solutions and truncation error

We rewrite (3.3) as the BVP,

(4.1) iAC/ = 0'

\U\daj = Gj, j= 1,2,3,4,

which has property Bn .

In this section we solve (4.1) by solving four problems, each a Laplace equa-

tion with boundary function nonzero only on one side of the rectangle. Classical

Fourier series methods are used to solve each of the four problems.

4.1. The four boundary value problems. Consider

[A«7 = 0,
(4-2) lu\diïj = Gj,

[U\da=0, k*j,
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for j = 1, 2, 3, 4. The Fourier series solutions are

^       sinhm7r(l-y)  .
U\{x,y) = >   aXm-r-r-;--sinm7t.x,

¿—' «inn mirSinh W7T
m=l

oo
sinh mnx  .

U2(x, y)= >   a2m -T-r-sin mny,
¿—' cinn n?wsinhm7t
m=l

rT .       .     v-^       sinhwrey  .
tf»(*, y) = £ a3m sin mTtx,

m=l
sinh mn

TT,       .     v^>       sinhw^(l-x)   .
<74(x, y) = £ «4m —-r-r-b-— sin may,

sinh mn
m=l

where

djm = 2 1   GjSinmnsds= 2 [ Gj si
Jo

gj sin mnsds

- ^2 £ (Cfc' / **!/ s^n mns(^s + ^i / ^sm W7r5 ds

for j = 1,2,3,4. The computation of /J F^' sinw7C5i5?5 and /0 W¿¡sinmnsds

for í, j — 1, 2, 3, 4, is described in Appendix A and B.

4.2. Error from truncating the Fourier series solutions. Approximate solutions

of (4.2), j = 1, ..., 4, are given by

ttNi       y     V^       sinhw7r(l-y)   .
UxN(x,y) = J2^m       ■ ■ sin mnx,

m=l

N
sinh mnx  .

U2N(x, y) = £ a2m g.nhwir sin m^y,
m=l

sinhm7i

h mnx

sinh mn

N
sinhm7ty

c/jV-^-E^^-r--sin m**
m=l

N

sinhm7t

\mn(

sinhm7i

,     -c->       sinh/rz7r(l - x)   .
U»(x,y) = Y: a4m mn      sin mny.

m=l

Since (4.1) has property Bn , it follows from integration by parts that

• i

¡sin mnsds
'o

ajm = 2      Gj,
Jo

[ G(2n+2)(s) sin mnsds
Jo

2(-l)"+l

(mn)2n+2
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for each ; = 1, 2, 3, 4. Let Mjn be such that maxo^i \G(2n+2)(s)\ < Mjn .

Since the original boundary data is elementary, the bound Mjn can be computed
using interval arithmetic and Taylor series methods. Then

2Mjn
\ajm\ <  ,

and

(mn)7

2Mu
\Uj(x,y)-Uf(x,y)\<^2JN

dx
x2n+2

2Mjn_
(2n + l)7T2'!+2V2''+1'

Therefore UN(x, y) = 5Z/=i U?(x, y) is an approximate solution of (4.1) such

that

\U(x,y)-UN(x,y)\<en™%,

where

ctrunc _ 2(Afi„ + M2n + Min + M4n)
-n,N  — (2n+l)n2n+2N2n+x

Consider

(5.1)

5. An example of the elimination method

'Aw = 0   inQ = (0, l)x(0, 1);

u(x, 0) = gx(x) = x2,       0 < at < 1,

- u{i,y) = g2(y) = 0,      0<y< l,

u(x, l) = g3(x)=   0,        0<x< 1,

u(0,y) = g4(y)=   0,        0<y< 1.

From the boundary data g it follows that (5.1) does not have property Ao.

We set u0 = u- £?=, a0lV¿ , where aox = 0, aQ2 = \ , Qo3 = 0 > and a04 = 0
are determined by (2.3). Then w0 satisfies

Aw0 = 0 inß=(0, l)x(0, 1);

u0(x ,0) = gox(x) = x2 -I, 0 < x < 1,

(5.2)       Uo(l,y) = go2(y) = 0, 0<y<l,
u0(x, 1) = g03(x) = -^arctan(l - x), 0<x < 1,

u0(0, y) = g04(y) = -larctan^), 0<y< 1,

so (5.2) has property A0 .The new boundary data is continuous, and the second
derivatives of the boundary data «olan are given by

g(!i(x) = 2,

tfu2lv) = 0.
o" (x\ -     4{X~XK.
SOi^)  -   ,l[l+(l-x)2]2 '

go¿y) = -n{XA+y^-
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It follows that problem (5.2) does not have property Ax (condition (1.4) is

violated). We set ux = u0 - J2*=i auVx , where axx = -\ , ax2 = -\ , q13 = 0,

and au = 0 are determined by (2.4) for k = 1 . Then ux satisfies

(5.3)
Aux =0    in Q;

ux(x, 0) = gxx(x) = x2-l-(l-x)2,

ui(l,y) = gn{y) = f[(l -y2)arctan(y)+yln(l +y2)],

i ux(x, 1) = gXi(x) = -|arctan(l - x) + %[(x2 - l)arctan(^)+ xln(x2 + 1)]

+ 2:[(l-(l-jc)2)arctan(l-jc)

+ (l-x)ln(l + (l-x)2)],

wi(0, y) = guiy) = -^arctan(i) -y2 + \\(y2 - l)arctan(±) +yln(y2 + 1)].

The new boundary data Milan is continuous, and the second derivatives

satisfy (1.4) for j = 1, so (5.3) has property Ax. Continuing in this way, we

set u2 = «i - J2u*\ a2iV2 , where a2x = a22 = 023 = 024 = 0 are determined by

(2.4) for k = 2, so u2 satisfies the system

{A«2 = 0    in ¡Q,

U2\ea = (u-lV2+2-Vx + 2-V2)\drl

(identical with (5.3)), which has property A2 . Now we convert (5.4) into a

system with property B2 . We start by setting Vo = u2 - Y?i=i $2iW{ , where

A21 = ßn — \, ßn = A24 = 0 are determined by (3.1) for k = 2. Then v0
satisfies

(5.5) j
Afn = 0     in Q,

vo\oa= iu2-lWx(x,y)-lW2(x,y))\da

which has property b2 . That is, the fourth-order derivatives of the boundary

data vanish at the corners. Next, we set vx = vo - 5Z/=i ßu^i > where ßxx = 1,

ßx2 = —l±s i ßl3 = ßl4 = 0 are from (3.1) for k = 1. Then vx satisfies

(5.6)

Avx =0    in ¡Q,

vi\da = («2 - lWx(x,y) - \W2(x,y) - Wx(x, y) + (1 + ±)W2(x, y))\oa ,

which has both properties b2 and bx . Finally, we set v2 = vx - Y?i=i ßoi^o >

where ß0i = 9J^ , £02 = - 135*~^ln2~2 , A>3 = -2, and ß04 = 0 are from
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(5.7)  i

(3.1) for k = 0. Then v2 satisfies

'Av2 = 0    inQ,

v2\aa = («2 - ÍWx(x,y) - 2-W2(x,y) - Wx(x,y)

+ (l + L)W2(Xíy)_9jnn2¿tlwi

+ 135,-180In2-2^o2 + 2^3)U.

Now problem (5.7) has property B2, that is, properties b2, bx, and bo com-

bined. As in §§3 and 4, let U = v2. Then the solution u of (5.1) is given in
terms of U by

k=0 J=l

where

2
Coi = 0, Co2 = - , Co3 = C04 = 0,

n

Cll = Ci2 =-, Cl3 = C24 = 0,
n

Ci\ =c22 = c2i = c24 = 0;

,       901n2+l    ,        1357t-1801n2-2    ,        .    .      .

01 = —4577J—'   02=-90n-' "03 = ~2' "04 = 0,

dll = 1, ¿12 = -(1 +-)» ¿13 = ¿14 = 0,
7T

2
¿21 = ¿22 = - , ¿23 = ¿24 = 0.

n

We let £/ = U\ + U2 + Í/3 + U4 , where each Uj is harmonic and Uj\dak = 0,
k ¥" j ■ We solve for each Uj by truncated Fourier series as in §4, taking N = 3.
Then U is approximated by

3 3
...-.,       .     v^       smhmn(l-y)  . *-^      sinhw7rjc  .
U3(x,y)=y   aXm-:—¡-^-— sin mnx + >   a2m^-r-sinw7ry

^ sinhm7T ^        sinhm7t
m=l m=l

3 3
Esinhw7ry  .               »r-^       smhmn(l-x)  .

Oim —r—,-sin mnx + >   a4m--—¡-^- sin mny,
smhmn                  ¿-^>            sinhm7t

m=l m=l

where the coefficients a¡m are given by

• 1

[i

2      4/1 ,1 >

E E   Cki /   Vkj sm m7rs ̂5 + dki /   Wfc'j sin mns ds
v-cs ,_i    \ JO JO I

üjm = 2 j j   gj sin mns ds

2    4

fc=0 ¿=i

We computed the coefficients a¡m , 1 < j < 4, 1 < m < 3, "precisely", us-

ing Aberth's interval arithmetic package. The integrals /0 V¿. sin mnsds and

Jo ^kjsm W7ri ds were evaluated in terms of tabulated, precisely calculated val-

ues of the quantities Gim(l), Gim(0), S(m, j), and C(m, j) as in Appendix
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A. We found

axx =0.0000000
ax2 = 0.0000000
an = 0.0000000
a2x =0.0051243
a22 = 0.0000321
a23 = 0.0000003
a3i =-0.0150388
a32 = 0.0006332
a33 = -0.0000139
fl4i =0.0304116
a42 = 0.0006653
a43 = 0.0000148

Here, each of the values of the coefficients given is "precise" in the sense that

every digit listed is correct. The roundoff error in each coefficient is less than
0.5 x 10~7; the statement u a2x = 0.0051243" means that the actual value of

a2x lies in the interval [0.00512425, 0.00512435].
The error e^0 m tne approximation

2      4

U\x,y) + YJY.(ci«Vki(x>y) + dkiWki{x,y))
k=0 i=l

due to truncating the Fourier series can be obtained from bounds on the 6th-

order derivatives of the boundary data G¡ = U\da as in §4. Since the functions

Wk(x, y), when restricted to the boundaries, are polynomials of degree 2k + 1 ,

and k < 2, these functions are not involved in the bounds on |G^|. The

restrictions of V¿(x, y) to the boundaries, as given by the formulas in Appendix

A, are elementary functions of the boundary coordinate, except in some cases

at the endpoints. In the exceptional cases, tangent identities can be used to give
an alternative formula which is elementary at the particular endpoint.

We divided each boundary into a grid of 100 points and evaluated the bound-

ary functions Gj "as Taylor series" of degree 6, with the independent variable
representing an interval of length 0.01. The coefficients of the Taylor series were

then each interval-valued. A bound for G*6) over the particular subinterval was

obtained from the Taylor coefficient of the 6th power. We found that

max \G{,6)(x)\ < Mx2 = 0.0000000,
o<*<i

max |Gl6)(x)| < M22 = 58.0000000,
0<x<l      l

max |C7'6)(jc)| < M32 = 130.0000000,

max |C7J.6)(;c)| < M42 = 111.0000000.
0<x<l       *

Therefore, the truncation error is bounded by

eîjF = e2™nc = 0.0005119479.
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Table 1. The value of the approximate solution on a 9x9 grid
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0.1 0.2
0.02525

0.3 0.4 0.5 0.6 0.7 0.8 0.9
0.1 0.02241

0.05331
0.02377
0.04923

0.02042 0.01648 0.01257 0.00898 0.00574 0.00279

"ÖT 0.05444 0.04134 0.03285 0.02480 0.01758 0.01119
0.09598

0.00543

04"
0.08961 0.07711 0.06267 0.04867 0.03615 0.02533 0.01599

0.15074
0.21606

0.00772
0.13055 0.10661 0.08336 0.06289 0.04572 0.03155 0.01972 0.00947
0.17477 0.13501 0.10102 0.07367 0.05223 0.03541 0.02188 0.01043

0.6 0.28801 0.21659 0.15710 0.11177 0.07848 0.05413 0.03600 0.02196 0.01040
07 0.35750 0.24484 0.16436 0.11041 0.07443 0.04991 0.03257 0.01964 0.00924
0.8 0.40086 0.23810 0.14494 0.09151 0.05930 0.03877 0.02489 0.01485

0.00801
0.00695
0.003730.9 0.34335 0.16149 0.08831 0.05281 0.03320 0.02131 0.01352

Table 1 gives the result of evaluating

2      4

U\x, y) + E E (fltiV¿(x, y) + dkiWl(x, y))
k=0 i=l

on a 9x9 grid. Interval arithmetic was used in this evaluation. The intervals

include truncation error from the quadrature in evaluating the various coeffi-
cients as well as all roundoff error. All digits shown in Table 1 are correct;
each value has an error at most 0.5 x 10~5. For example, from the entry for

x =y = 1/2, we have

|«(|, $) - 0.073671 < 0.5 x 10"5 + e2mfc

<0.6x 10"3,

and so u(\, ¿) £ [0.07307, 0.07427]. Similar computations lead to true bounds

for the exact solution u(x, y) at the other grid points.

Figure 1. Solution of (5.1)
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Figure 1 is a graph of the solution, based on values of the approximate so-

lution on a 40 x 40 grid. One unit of the solution corresponds to 2" on the
graph, so €2,3 corresponds to roughly .001" on the plot, which was done on a

300dpi laser printer. The total error at grid points in this figure is therefore at
most one pixel. Between grid points, the graph is constructed by linear interpo-

lation. The graph shown therefore is uniformly within one pixel width of the

graph of the true solution, constructed by linear interpolation on the same grid.

The main source of error present in Figure 1 is the use of linear interpolation
between grid points. This could be reduced to less than one pixel by evaluating

the approximate solution on a finer mesh.

6. Discussion

Work related to ours is due to J. Barkley Rosser [9, 10], who developed

schemes for solving Laplace's equation in regions with re-entrant corners, for

example L-shaped and T-shaped regions. Such corners "cause" difficulties with

the convergence rate of traditional finite difference and finite element meth-

ods. Rosser developed hybrid schemes which cure such difficulties. Near each

re-entrant corner, these schemes employ approximations based on harmonic

functions in sectors, constructed to match boundary data specified on radii. Al-
though the problem we consider has no re-entrant corners, our scheme resembles
Rosser's in that we regard each of the four corners as a source of convergence

difficulties, much as Rosser regards the re-entrant corners. To obtain a func-

tion harmonic in a sector and which satisfies prescribed boundary data on radii,
Rosser employed conformai mapping. This harmonic function is somewhat

analogous to our linear combination Z^=oz3,=i(c/b^' + d^W^). Instead of
matching the boundary data, however, our linear combination matches just the

even-order radial derivatives of the boundary data at the corners.
We note that for a = |, the functions rS sin |^, m = 1,2,..., which

appear in a series in Rosser's work, reduce to our polynomials Wk(x,y),k =

1,2,....
In Rosser's work, the convergence rate of the hybrid scheme is that char-

acteristic of the finite difference or finite element method used in conjunction
with the re-entrant corner approximation scheme. Since we wished to perform

"precise" computations, in our work we restricted attention to schemes which

could provide extremely fast convergence rates and therefore did not consider

finite difference or finite element methods.

The approximate scheme for (1.1) with general elementary boundary data

has been implemented using the Aberth-Schaefer's "C++ Module for Range

Arithmetic" routine library. The program was written for AT&T's C++ version
2.1 on a Sun Sparc station running SunOS4.1. The program also runs under

MS-DOS 5.0 using Gnu's C++ version 1.05.
Input to the program are analytical expressions for the boundary functions,

the integer n which determines the order 2n to which the derivatives of the

boundary data for u vanish at the corners, and the integer N which determines

the number of terms in the Fourier series part in the solution. Output are

coefficients for the approximate solutions in terms of range numbers which are

guaranteed to be correct to the last printed digit and also the bound el™ffC on

the error from truncating the Fourier series.
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The method we described above for solving Laplace's equation precisely can

be used in solving the general Poisson's equation on the square precisely. Con-
sider Poisson's equation:

{Au = -F   in Q,

u\m = f   on an,

where Q is the unit square (0, 1) x (0, 1) and öQ is the boundary of Q. We

suppose that F(x, y) is a continuous elementary function and / is defined

on the sides dSlj■, j = 1,2,3,4, of the square by continuous elementary

functions fx(x), f2(y), f$(x), and f4(y). The idea is to convert (6.1) to a

Laplace equation precisely; then we can use the method we have developed.
The conversion can be done as follows.

We can first prove a Chebyshev-Lagrange interpolation theorem which gives

a polynomial approximation to an arbitrary elementary function F of two

variables. As the error bounds for the interpolation are given in terms of bounds

on the partial derivatives of F, and F is elementary, we can compute error
bounds using Taylor series methods and interval analysis.

We then apply Chebyshev-Lagrange interpolation to the forcing term F in

Poisson's equation, approximate the boundary value problem for Poisson's
equation with forcing term F by a similar problem but with polynomial forc-

ing term. Computable bounds for the error introduced in the conversion are

derived, using the maximum (minimum) principle.

Thirdly, we derive formulas for a particular solution of Poisson's equation
with the polynomial forcing term. Using this particular solution, the boundary

value problem for Poisson's equation is converted to one for a Laplace equation.

The conversion is exact, and the boundary conditions of the converted problem

are still elementary functions.

The particular solution to Poisson's equation

(6.2) Aco = x'yj

is

lil+l ^2*-2

(6.3) o)ij(x,y) =  £ (-1)*+1 -±j-xi+2k yj~2k+2,

k=l A>+2k

where Ak = n(n - 1) • • • (n - k + 1).

We expect that the same basic ideas can also be extended to solve Helmholz's

equation precisely. This is more difficult, but we have found functions with

which to extract corner singularities for Helmholz's equation.

Appendix A. Fourier coefficients of Vk\

A.l.  Computing /0 Vk\ sinmnxdx.   Recall  Vf = V¿(x, y)\dÇlj  from §4,

where V¿ is defined in Lemma 2.1. We have four functions:
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'1
^i = 0

n

2
Vk\ = ^(-l)k(l-x)2k,

Vk\ = (1 + ( 1 - x)2 J   cos I 2k arctan-J arctan-

+i(l + (l -x)2\   sin \2k arctan t^—) In (l + (l -x)2) ,

Vk\ = (1 + x2)fccos(2/: arctan x) arctan x + x(l + x2)fcsin(2fc arctan x)ln(l + x

For the second function,

■ i

/   Vk\{x)sinmnxdx = -^(-l)k / ( 1 -x)2ksinmrcx¿x
Jo 2 ,/0

= — (-1)*  /    X2/c SÍn(W7T - W7CX) ¿x

2 Jo

=--x(-l)k ¡  x2k cos mn sin mnxdx
2 Jo

= ^(-l)k+m+x f x2ksinmnxdx
2 Jo

(2k)\
2%2km2k+l

1=0 v '

To compute J0l Vk\(x)sinmnxdx, i = 3, 4, we need the following.

Lemma A.l. Let

Ck(x) = (1 + x2)* cos(2fc arctan x)

and

Sk(x) = (1 +x2)fcsin(2Ä:arctanx).

Then Ck(x) and Sk(x) are polynomials of degree 2k and 2k-1, respectively.

Proof. With T2k(x) denoting the Chebyshev polynomial of degree 2/c,wehave

r2/t(cos 6) = cos 2k6, hence

Ck(x) = (1 +x2)*cos(2fc arctan x) = (1 +x2)fcr2fc(cos(arctanx))

■(1 + "VT* (cos (arccos Trb) ) = ° + x2fT* fon?») '

from which the first assertion follows.

Similarly, with U2k_x(x) denoting the Chebyshev polynomial of the second

kind, we have U2k-¡ (cos 6) = sin 2k6/ sin 6 , hence
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Sk(x) = (1 +x2)/csin(2£arctanx) = (1 +x2)fcsin(arctanx)c/2^-i(cos(arctanx))

= (1 + x2)*sin (arcsin 2 j U2k_x icos farceos-==== J J

-«'^'^-'fonsO'
which yields the second assertion,   d

Now we have

/   Vkx(x)sinmnxdx = /   Q(x)arctanxsinra7rx¿x
Jo Jo

1 fx
+ ~ /   5¿(x)ln(l+x2)sinm^x¿x.

2 Jo

For computing the two integrals on the right-hand side, set

/ x'sinmnxdx = G,m(x) for i = 0, ... , k,

where ([6, formula 2.633.1])

■ x'~l ( 1    \
Gim(x) = - E/!C/(^yTT cos [mnx + 2llt) '

Taking one term from Ck(x) or Sk(x) (by Lemma A.l, these functions are

polynomials), we have

/  x'arctanxsinw7rx¿x = G,w(x)arctanxL - /-jG¡m(x)dx
Jo Jo   ! + x

n      fx      1
= Gim(l)--J   j-^Gim(x)dx

and

If i     Í      x
¡r /   x'ln(l+x2)sinm7cx¿x = xG,m(x)ln(l+x2)L- / 2Gim(x)dx
¿JO ¿ Jo    * "T" x

= Gim(l)lf-l^2Gim(x)dx.

Since G,m(x) is a linear combination of xJ sin m 7tx and xjcosmnx (j<i),

we can evaluate the desired integrals in terms of the integrals

fx    xJ
/   -j-j sm mnx dx =: S(j, m)

Jo   1 + x

and

>o

for j = 0, ... ,i+ 1 , i = 0, ... ,k

f     x1
j-¿cosmnxdx =: C(j, m)

Jo   1 + x¿
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Now consider the computation of /0 Vkl (x) sin mnx dx .

Let Ck(x) = (1 + x2)k cos(2/c arctan -). Then as before,

Ck(x) = (l+x2)kT2k icos (arctan ^) = (1 +x2)kT2k

i.e., Ck(x) is a polynomial of degree 2k. Similarly, we can prove that the

function Sk(x) = (1 + x2)k sin(2/c arctan -) is a polynomial of degree 2k - I.

Therefore,

/   Yv\ (x) sin mnx dx = /   Ck( 1 - x) arctan-sin mnx ¿x
Jo Jo 1-*

i y1 ~
+ ~      Sk(l - x)ln(l + (l - x)2) sin mnx dx

2 Jo

/"'  - 1
= /   Cfc(x) arctan — sin(w7t - mnx)dx

Jo x

1 Z"1 -
+ x/   Sk(x)ln(l+x2)sin(mn - mnx)dx

2 Jo
rx • i

=(-l)m+1 /   Ck(x)arctan- sinmnxdx
Jo x

/_|\m+l     /•!

/   Sk(x)ln(l + x2)sinmnxdx.
Jo2      jo

Taking one term from Sk(x) or Ck(x), we have

r    ■ 1 1/1
/   x' arctan — sin mnxdx =G¡m(x) arctan—   +/-¿G¡m(x)dx

Jo x x|0    Jo   l +x

=G,m(l)|-G;m(0)| + | T-L-íG;w(x)¿x

and

1   /*' In 2      /"'     x
-/   xiln(l+x2)sinmnxdx = Gim(l)^-- I .Gim(x)dx
¿Jo ¿       Jo   l ' x

as before.   So the integral can be also evaluated in terms of S(j, m) and

C(j ,m).    D

A.2. Computing J0 Ffc'2sinm7rx¿x. From §2 we have

Vkx2{y)=Vk(x,y)\x={ = Vk(l,y)

=(1 +y2)k ( cos(2A: arctan y) arctan y + -sin(2/c arctan y) ln(l +y2)) ,

Vkliy) =Vk2(x,y)\x=] = Vk(y, l-x)\x=l = Vk(y,0)

=0,
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Vk\iy) =Vk\x,y)\x={ = Vk(l-x, 1 -y)\x=1 = Vk(0, 1 -y)

Vk\{y) =Vk\x,y)\x=l = Vk(l -y, x)\x=l = Vk(l -y, 1)

=( 1 + ( 1 - y)2)k eos ( 2k arctan-j arctan-

+ Ul + (1 - y)2)k sin Í2k arctan j^~ J In (l + (1 - y)2) .

Then

/   F¿(y)sinm7ry¿y = /   Vkx(x)sinmnxdx,
Jo Jo

which is evaluated when we compute /0 Vk\ (x) sin mnxdx, and similarly

/   FA32(y)sinw7zy¿y = /   Vk\(x)sinmnxdx,
Jo Jo

l   Vk\(y)sm mny dy =      Vk\ (x) sin mnx dx,
Jo Jo

which are discussed in Appendix A. 1.

A.3. Computing /0 Vk3 sin mnxdx. We have

Vk\(x)=Vk(x,y)\y=x = Vk(x,l)

=(1 + x2)k ( cos ( 2k arctan — j arctan —

+ - sin I 2k arctan - J ln( 1 + x2) j ,

Vk\(x)=V2(x,y)\      = Vk(y, 1 - x)\      = Vk(l, I - x)\y=X

y2yk,=(1 + (1 -x)2)*cos(2fcarctan(l -x))arctan(l -x)

+ hi + (l -x)Ysin(2/carctan(l -x))ln(l + (1 -x)2) ,

vk\(y) =vk\x>y)\y=x = vk(i-x, \-y)\y=x = vk(i-x,o)

VkSiy) =K(x,y)\y=x = vk(i-y,x)\y=x = vk(o, x)

=x2k(-l)k\.

Then
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• 1

isinm7tx¿x
Jo

= / ( 1 + x2)fc cos ( 2k arctan — ) arctan — sin mnx dx
Jo \ X) X

+ T / ( 1 + x2)k sin Í 2/c arctan — J ln( 1 + x2) sin mnx dx
2

1
J arctan — sin mnx dx

/o x
= / Q(x)i

Jo

1 fl •
+ -r I  5^(x)ln(l +x2)sinw7tx¿x

2 Jo

= (-l)m+1 / Ffc3, sinm7rx¿x,
Jo

fvk\(y)û
Jo

0

sin mny dy

= / (1 + (1-x)2)/ccos(2fcarctan(l-x))arctan(l-x)sinmnx¿x
Jo

+ x(l +(1 -x)2)fcsin(2/carctan(l -x))lnfl + (1 -x)2) sinm7rx¿x

= (-l)m+1 / Ffc41(x)sinm7rx¿x,
Jo

•i /»i
-\\k

ykn

l   Vk3(y) sin mny dy = /  (-l)^x2fcsinm7rx¿x
Jo Jo

= {-^r^{G2k,mW-G2k,m(0)).

A.4. Computing J0 Vk\ sin W7ix ¿x . We have

Vk\(y) = Vk(x,y)\x^ = Vk(0,y)

y2k{-Dk\,

n\(y) = Vk2(x,y)\x=0 = Vk(y, 1 - x)\x=0 = Vk(y, 1)

= ( 1 + y2)k eos ( 2k arctan - ) arctan -

+ Ul +y2)fcsin (lkarctan-^ ln (l + y)2) ,

Ffc34(y) = Vk3(x,y)\x=0=Vk(l-x, 1 -y)U= F*(l, 1 -y)

= ( 1 + ( 1 - y)2)k eos (2fc arctan( 1 - y)) arctan( 1 - y)

+ ^(l + (l-y)2)/csin(2Ä:arctan(l-y))ln(l + (l-y)2) ,

rk\(y) = >*4(*> >>)Lo = ^í1 -y>x)\x=o= ^ -^ °)
= 0.

Then
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J  Vkx4(y)sinmnydy = (-l)k7^(G2k,m(l)-G2k,m(0)),

I   vk\(y) sin mnydy = /   Vk\(x) sin mnxdx,
Jo Jo

/   Vk\(y) sin mnydy = /   Ffc23(x)sinw7rx¿x,
Jo Jo

which are discussed in A. 3.
The precise computation of the quantities S(j, m) and C(j, m) can be

done by using Aberth's precise quadrature [1, Chapter 8]. A table of these
quantities was computed.

Appendix B. Fourier coefficients of WL

Recall from Lemma 3.1 that

k

Wax    V) = V_(-1);_x2(k-j)+l   2j+l
^k(x,y)    2^{2{k_j) + m2j+l)lx y      .

Then

Wk\ = Wx(x,0) = 0,

Wk\ = W2(x, y)\y=Q = Wk(y, 1 - x)\y=0 = Wk(0, 1 -x) = 0,

Wk\ = Wk\x,y)\y=0 = Wk(l-x, 1 -y)\y=0 = Wk(l -x, 1)

= V_(~*)y_(i _ x)2(k-J]+x
2^(2(k-j) + l)l(2j+l)\[l    X)

K = wk(x>y)\y=o = wk(i-y,x)\y=0 = wk{i, x)

2-¿(2(k-j) + iy.(2j + iyx    ■

Hence,

/   ^t i (•* ) sin m 7rx ¿x
Jo

* (_l)m+;+l

= Z. (2(ik -;) + l)!(2j + i)!((?^-»+1.'"(1) - G2(fc-»+i.«(0))

and
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l *fl(*)*""«*¿* = g {2(k-j){+m2j+l)\ I x2j+l™m™dx

= E(2(it-j) + l)!(2j + l)!(^+1''"(1)"(?2^1''"(0))'

Similarly, the integrals J0 W^2(x)sinw7rx¿x, /0 W¿3(x) sin mnx dx and

¡o W¿4(x) sin mnx dx can be expressed in terms of the functions G¡>m evalu-

ated at 0 and 1.
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