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LOCKING EFFECTS IN THE FINITE ELEMENT APPROXIMATION
OF PLATE MODELS

MANIL SURI, IVO BABUSKA, AND CHRISTOPH SCHWAB

Abstract. We analyze the robustness of various standard finite element

schemes for a hierarchy of plate models and obtain asymptotic convergence

estimates that are uniform in terms of the thickness d . We identify h ver-

sion schemes that show locking, i.e., for which the asymptotic convergence rate

deteriorates as ¿->0, and also show that the p version is free of locking.

In order to isolate locking effects from boundary layer effects (which also arise

as d —► 0), our analysis is carried out for the periodic case, which is free of

boundary layers. We analyze in detail the lowest model of the hierarchy, the

well-known Reissner-Mindlin model, and show that the locking and robustness

of finite element schemes for higher models of the hierarchy are essentially

identical to the Riessner-Mindlin case.

1. Introduction

The bending of elastic plates is often analyzed by replacing the actual 3-d

plate problem by a 2-d model. It is possible to define a whole hierarchy of

plate models, of which the well-known Reissner-Mindlin (RM) model is the

lowest-order member, such that the modeling error can be controlled by using

a sufficiently high-order model from the hierarchy. The numerical approxima-

tion of any plate model by the finite element method introduces an additional

discretization error into the calculation. For certain finite element schemes, this

discretization error can become very large when the thickness d of the plate is

close to zero. This occurs because of two phenomena, the existence of boundary

layers and the presence of locking.

Boundary layers arise as components of the exact solution of the plate models
and (to some extent) reflect the boundary layers present in the exact solution

of the corresponding 3-d problem. In a series of papers (see [1] for references),
Arnold and Falk have characterized in detail various aspects of the boundary

layer for the exact RM solution, for different boundary conditions. (The bound-

ary layers are in general different for different models of the hierarchy). One
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effect of the presence of these boundary layers is to weaken the a priori regular-
ity of the solution. Since the singular behavior occurs only near the boundary,

an effective strategy to overcome any consequent deterioration of numerical

schemes is to locally refine the mesh (usually with a low-order scheme). See,

for instance [2], where this has been done in the context of the h-p version.

The second phenomenon mentioned above, numerical locking, also occurs

when the thickness is close to zero, but for a different reason. It is well known

that as the thickness d -> 0, the solutions of the plate models tend to the Kirch-

hoff plate solution. In the limiting case, the exact solution will therefore satisfy

Kirchhofs hypothesis. The problem of locking occurs because as d —> 0, the

finite element solution is also forced to satisfy this hypothesis. Consequently,

the number of conforming trial functions (which satisfy KirchhofFs hypothe-

sis) can get severely restricted, resulting in a degradation of the approximation

properties of the trial space.
Since the problem of locking is quite different in terms of origin and numer-

ical treatment from that of boundary layers, it is more instructive to analyze

these problems separately. In this paper, we will be interested only in the prob-

lem of locking. To isolate this phenomenon and separate it from the effect of

boundary layers, we will be considering the case of periodic boundary condi-

tions, which we will choose so that the solution is smooth. (This also models

the situation in the interior, in the case boundary layers are present.)
One method to avoid locking is to construct a finite element space which

possesses optimal approximation properties even when restricted by KirchhofFs

constraint. This leads to a robust standard FEM, i.e., one whose performance is

not sensitive to the thickness. An alternate strategy is to use a mixed method,

which has the effect of enforcing the constraint in a weaker sense, thereby re-

stricting the finite element space less. A number of mixed methods have been

proposed and analyzed for the RM model, see e.g. [1, 10], Chapter 7 of [9] and
the references therein.

Our approach in this paper will be to characterize the locking and robustness

properties of various standard (as opposed to mixed) finite element schemes,
for plate problems with periodic boundary conditions, using the general theory

of locking developed by us in [4]. A key condition from that work, the so-called

"condition (a) ", will be shown to be satisfied in this case, thereby reducing

the question of locking to one of approximability alone. A similar technique

was used by us in [5] to analyze Poisson ratio locking, which occurs in elasticity

problems when the Poisson ratio is close to 1/2. This technique is tailored to

the first strategy mentioned above, i.e., the standard FEM, which involves the

direct variational principle without reformulation. In contrast, mixed FEMs re-
formulate the variational principle and typically need compatible FE subspaces
and an inf-sup approach for their analysis. The goal of this paper—and, of
course, also a limitation—is to address only the standard variational method,

which is directly usable for the entire hierarchy of plate models (such hierar-

chies also exist for laminated plates). As a consequence, our results apply to
various elements from commercial codes based on the standard FEM. (We note

that though we do not address mixed methods, some of the triangular finite el-

ements analyzed by us in §4 in the context of the RM model can be formulated

as equivalent mixed methods and, in fact, have been analyzed in this form as

"Family III" of reference [10].)



FINITE ELEMENT APPROXIMATION OF PLATE MODELS 463

In §§2 through 5, we develop various results for the RM model, the lowest-

order (and most commonly used) model in the hierarchy. For models higher

up in the hierarchy, the asymptotic convergence in d is faster, provided that
the solution is smooth. The next highest model in the hierarchy after the RM
(or (1, 1,0)) model is the so-called (1, 1,2) plate model, which models the
corner singularities and boundary layers of the 3-d problem more accurately

than the RM model (see [2]). (Let us mention that for the clamped plate, the

difference in data computed at the boundary from these two models can be as

high as 30%.)
In §6, we consider the question of locking for the (1,1,2) model and, by

extension, also for higher-order models in the hierarchy (once again for the peri-

odic case). The techniques we use to analyze the RM case in §§2-5 can be easily

extended to such higher-order models as well (which is why we consider the RM

case in such detail). We prove that the question of locking once again reduces to

the Kirchhoff constraint being satisfied by the approximating subspaces. Hence,

the results for the RM case carry over directly, with no additional locking effects

being observed for higher-order models in our hierarchy.

Let us note that for the RM case, an alternative method of analysis based on

the Helmholtz decomposition of the shear strain (see [1, 9, 10]) may be used.

Most of the locking results we establish for the special RM case are, in fact,

predictable from what is known for nearly incompressible elasticity ( [5, 13, 14,

16]) by this alternative method. See Remark 5.1.

2. The Reissner-Mindlin plate model and its regularity

We consider as our domain the 2-d midsection Í2 = (-n, n)2 of a square

isotropic plate with the plate occupying the region Ä = fix[-|,|]. On fi

we consider the RM plate model for ud = (<j)d, wd),

(2.1) Cdud = ~d2j{(l - u)A$d + (1+ i/)VV • $d} - Kp(Vcod -$d) = 0,

(2.2) -Kpd~2V • (Vcod -fa) = g,

which gives the bending of the plate in equilibrium. (Since the membrane effects

do not exhibit shear locking, we consider in the present paper only the problem

of pure bending.) We assume periodic boundary conditions,

(2.3a)
cod(x, n) = (od(x,-n),    œd(n, y) = œd(-n, y),        |x|,|y|<7r,

(2.3b)<j)d(x, n) = (j>d(x,-n),    $d(n, y) = $d(-n, y),        \x\,\y\<n.

Here, <j)d gives the rotation of fibers normal to the midplane, œd measures

the transverse displacement of the midplane, and D = E/12(l - u2) is the

flexural rigidity scaled by d3. Also, p = E/2(l + u) is a Lamé coefficient,
with k > 0, E and 0 < u < 0.5 being the shear-correction factor, Young's

modulus and Poisson ratio, respectively. (The second Lamé coefficient, X =

uE/(l + u)(l - 2u) will be used in §6.) Moreover, g is the scaled loading

function, i.e., the transverse load density per unit area divided by d3. (We

assume, essentially, that the loading function for a plate of thickness d is gd3,

where g is independent of d.)
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If we allow d to tend to zero in (2.1), we formally obtain KirchhofFs hy-

pothesis,

(2.4) CqUq := 0o - grad œ0 = 0.

The limiting solution «0 = (<j>o, ojo) satisfies (2.4) together with

(2.5) DA2co0 = g

and the periodic boundary conditions (2.3) (see, e.g., [3]). This, of course, is the
classical biharmonic equation of plate bending, which (unlike the RM model)

is independent of d (and is sometimes used to model the actual 3-d plate).
For any domain R c R" we will denote by HS(R) the usual Sobolev space

with s (=0,1,2,...) square integrable derivatives. If / denotes the 2n-

periodic (in x and y) extension of / e Hs(Sl) to R" (recall SI = (-n, n)2),

then H^x(Sl) will denote the set of those / for which / e H^ÇSL"). Using
the method of real interpolation [7], we may define the above spaces for all real

j. We will use | • \s, || • ||s to denote the seminorm and norm, respectively, in

both the periodic and nonperiodic case. We will also use C^r(Q), which will

denote the space of functions with s periodic continuous derivatives.
Any u(x) = u(xx, x2) in H^T(Sl) can be expanded as a Fourier series,

(2.6) u(x) = ]T ukeik-x,       k = (kx,k2), x = (xx, x2),

kfzZ1

where

M* = JL (U>e-ik-x^       kel?,
4n¿

with (•, •) denoting the usual L2(Q) inner product. Then we have the following

equivalences:

(2.7) K2 ~ £ \k\2*\uk\2 ,       \\u\\2 -¿2(1 + \k\2y\uk\2,
/tez2 kez2

which hold for all real s > 0. We may also use (2.7) to define the norms ||u||5,
s < 0, and the corresponding spaces H*eT(Q.), which are the completions under

these norms of H^.T(Çî).
We now cast (2.1)—(2.3) into the following weak form. For d G (0, 1], find

Ud = ($d ,o)d)£V = [H^r(il)]3 such that for all v = (6, QeV,

K. It
(2.8) ad(ud, v) = b(ud, v) + -j¿(C0ud, C0v) = F(v).

Here, Co is as defined in (2.4),

b(ud, v) = y jj {(1 - v)V$d - V0 + (1+ i/)(V • $d)(V • d)}dxx dx2x

and

F(v) = (g,S) = JJ gidxxdx2,

with the last integral being understood as the pairing of //¿.r(Q) and H^.¡ (SI)

if g € H~l(Sl). (For existence and uniqueness for this problem, see Theorem

'Our definition for b(u, v) is equivalent to the usual one used for the RM plate model, since

we have periodic boundary conditions.
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2.1 ahead.) We will denote the problem (2.8) by Pd and assume, without loss

of generality, that it is equivalent to (2.1)—(2.3).

We define the energy norm corresponding to Pd by

(2.9) \\u\\2E^d = ad(u,u),        ueV.

Also, for u e H^Sl) x Hk„(Sl) x H^Sl) =: H^r'(Q), we let

(2.10) \\u\\2kJ = \\(l to)\\lj = ux\\l + WfoWl + IMI?,

where the norm in œ is understood to be modulo constants. Then it may be

shown that

(2.11) Ax\\u\\x,x<\\u\\Etd<A2d-ß\\u\\x,x,

where Ax and A2 are constants independent of d and ß = 1. It is readily
observed that for d bounded away from 0, the two norms are equivalent.

Let us now define, for k > 1, 0 < d < 1, the spaces Hkd c H%¿l'k(Sl)

given by

(2.12) Hkid = {ue Hfex<k(Q), Cdu = 0}.

For any normed linear space H, we will denote the ball of radius B > 0 by

HB = {ueH, \\u\\H<B}.

We will use the notation

(2.13) H? = Hfel>k'B(Sl) = {u g H^x'k(Si), \\u\\k+Xtk < B}

and

(2.14) Hk5,d = Hk3nHk,d.

We note that (2.10) may equivalently be characterized as

(2.15) Hktd = {u = ($, œ) JeH^x(Sl), Cdu = 0}

since, by (2.1), it is easily seen that tp € H^;x(Si) implies to g H^Sl). Simi-

larly, in the definition of Hff d , we may replace ||w|U+i ,¿t by ||</>||a:+i ■ We note

also that for u e Hk d we have, using (2.1),

(2.16) \\C0u\\k_x<Kd2B

for K a constant independent of u, d.

Let us look more closely at the limiting sets Hk 0 and Hk 0 . Since for these

C0u = 0, we see that $ G Hk¿x(Sl) implies that Vw = $ G Hk+l(Sl), so that

to G Hk¿2(Sl). Hence, we see that in this limiting case, the regularity of œ is

increased by two derivatives, and we have the equivalent characterization

(2.17a) Hkt0 = {ue H^l'k+2(Sl), C0u = 0},

(2.17b) Hfft0 = {ue Hk>0, \\u\\k+l,k+2 < B}.

The choice of the above is motivated by the following theorem, which gives

an a priori estimate in these weighted norms.
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Theorem 2.1. Let g G H^2(Sï), s > 1, satisfy the compatibility condition

(2.18) (g,l) = 0.

Then there exists a unique sequence of solutions {ud} = {4>d, wd} (cod unique

up to a constant) to (2.1)-(2.3) for d G (0, 1] and (2.3)-(2.5) for d = 0, such
that ud G Hf d, where B = C\\g\\s-2, with C a constant independent of g and

d.

Proof. Suppose g, <f>dx, <pd2 and cod are represented in terms of their respec-
tive Fourier series, as in (2.6). Then (2.1)—(2.2) may be written as (d > 0)

§{2kj + (l-v)k¡} + Kpd-2 %{\+v)kxk2 -iKp.d-2ki    \

§(H-i/)Jfc,fc2 %{2lcj + (l-u)kj}+Kfid2       -iKpd~2k2

iKfid-2kx iKßd~2k2 Kpd~2{kf + k2))

0

kez2

From this it may be easily verified that the solution ud of (2.1)—(2.3) is

Jk,
<t>d^ /

(2.19) K</=U/2     =£
,ik'x

OJd I      kez2

D\k\*
Jki I „k
D\k\*

V    '     i    dl

where Zq = ^\{0} • Here, we have used the fact that g° = 0, because of (2.18).

Similarly, the solution of (2.3)-(2.5) is given by

(2.20) "o=£^^>
kez\ '  '

where $o — Vft)o • Note that in (2.19)-(2.20), cod is unique up to a constant.

From (2.19), it is easily seen that for d > 0,

l|«rflli+l.,<C||*||,_2,

proving that ud e Hf d . The case d = 0 follows similarly from (2.20).   D

We now prove the following theorem, which gives us the so-called "condition

(a)" which is central to the locking theory developed in the next section. Es-

sentially, this condition establishes the rate at which the solution of (2.1)—(2.3)

tends to the solution of (2.3)-(2.5) in the H^tl 's(Sl) norm when d is small.

Theorem.2.2. For any ud = (<j>d, œd) g Hfd, there exists uq = (<f>o, cy0) G HÇB0

such that

<f>d = (t>0,

\\(Od - co0\\s < Kd2B,

where c, K are constants independent of ud , d and B.

Proof. Given ud = (4>d, œd) G Hf d , define g (possibly depending on d) by

(2.2). Then, by (2.2),

(2.21) ||g||,_2 < Kd-21|C0ud||,_! < KB,

where we have used (2.16).
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Now d)d, cod may be expressed in terms of g by (2.19). Also, let ojq be

given by (2.20) and define fo = Vwo • Then it is easily seen that 4>d — <j>o > and

that ($o, (Wo) G HCSB0, where c is independent of ud , d and B. Substituting

<f>d = 4>o = Vwo in (2.1), we have

V(tod - oj0) = -X-Xd2^{(l - u)A$d + (1 + i/)VV • $d},

from which it follows that

\\ad - cuoll, < Kd2\\$d\\s+i < Kd2B.   D

The above theorem shows that for d small, functions in Hf d are close to

functions in Hf0 . In this connection, we will also need the following result.

Theorem 2.3. Given «o G Hf0, s > 1, there exists a constant C independent

of «o> d such that for any d G (0, 1], there is a ud G Hs d satisfying

(2.22) \Wd\\E,d + \Wd\\s+\ ,s < C||"olUi,s+2

and

(2.23) llMrf-Molli.i-0    asrf-0.

Proof. First, using (2.16), one easily sees that for s > 1,

(2.24) \\udWE,d<C\\ud\\s+x,s.

Next, let «o = (gradwo, (o0) g Hf0. Then, since <y0 G H£2(Sl), we obtain

the decomposition (&>0 is defined modulo constants)

co0 = J2 eik'x(ok,     £ (|â:|2)î+2|û>*|2 < oo.

kezl kez¡

Hence, defining gk = Dœk\k\4, we see that

(2.25) geH£2(Sl),  (g,l) = 0,  IJS-IU-2 < HûJolU+2 < C||m0|U+i,s+2 -

Using Theorem 2.1 together with (2.24)-(2.25) allows us to construct ud satis-
fying (2.21). Also, the argument of Theorem 2.2 shows that (2.22) holds.   D

3. Locking and robustness

Suppose now that we are interested in approximating (2.8). We assume

that we are given a sequence {VN} of finite-dimensional subspaces of V =

[//¿.„.(Q)]3 (N denoting the dimension, N G JV). Then we can define the

sequence of finite element solutions ud G VN by

(3.1) ad(uNd,v) = ad(ud,v)   Vv€V».

The sequence {VN} thus defines an extension procedure !F, i.e., a rule by

which we can increase the dimension ./V with the idea of increasing accuracy.

Equation (3.1) immediately gives

(3-2) \\ud-uNd\\E,d< inf \\ud-v\\Etd.
V£VN
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As shown in Theorem 2.1, depending upon the regularity of the data g,

the exact solutions of our problem will belong to the sets Hk d c H%¿1 'k(Sl),

k > 1, introduced in §2. We will assume that the sequence {VN} is F0-

admissible, i.e., it leads to a certain fixed rate Fq(N) of convergence when

functions in HJ£l'k(Sl) are approximated, in the following sense:

(3.3) AXF0(N)< sup    inf \\u-v\\XA<A2F0(N).
udHBk   »^"

Here, Fq(N) -» 0 as N —> oo and Ax, A2 depend upon B but are independent

of N. Moreover, we assume that there exists do G (0, 1) such that for do <

d<l,

(3.4) Ax(d0)F0(N)<   sup    inf \\u - v\\x,x < A2(d0)F0(N).

(Note that the lower bound in (3.3) follows from the one in (3.4), while the

upper bound in (3.4) follows from the one in (3.3).)

Using (2.11), (3.2) and (3.4), we then obtain the following estimate, which

holds uniformly for all do < d < 1 :

(3.5) Àx(do)F0(N)<   sup   Ed(ud - uNd) < A2(do)Fo(N),
ud€H*d

where

(3.6) Ed(v) = \\v\\XA or \\v\\Etd.

Whether or not Ax, A2 are bounded as do ^> 0 will depend on the extension

procedure being used.

A procedure &~ for which (3.5) holds uniformly for all 0 < d < 1 will be
called free from locking for the sets Hk d with respect to the Ed measure. A

more precise definition, adapted from the general treatment of locking in [4], is

given below.
Let L(d, N), the locking ratio corresponding to d G (0, 1], N G JV, with

respect to the spaces Hk d c HJ£l'k(Sl) and error measures {Ed} (as in (3.6))

for the problems (3.1), be defined by

L(d,N)=   sup   Ed(ud - uNd)(Fo(N))-x.
ud€H*d

Then we make the following definitions.

Definition 3.1. The extension procedure &~ is free from locking for the family of

problems (3.1), d G (0, 1], with respect to the solution sets Hk d c Hlk¿l'k(Sl)

and error measures Ed if and only if

lim sup
N—»oo

sup  L(d, N)
¿€(0,1]

= M < oo.

The extension procedure y shows locking of order f(N) if and only if

1
0 < lim sup

N—*oo
s7L(d,N)f{N) = K < oo,
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where F(N) —► oo as N —► oo. It shows locking of at least (respectively at

most) order f(N) if K > 0 (respectively K < oo).

Definition 3.2. The extension procedure !F is robust for the family of problems

(3.1), d G (0, 1 ], with respect to the solution sets Hkdc HJ£l •k(Si) and error

measures Ed if and only if

Lim sup   sup   Ed(ud - ud) = 0.
N^°°   d   ud€H*d

It is robust with uniform order g(N) if and only if

sup   sup   Ed(ud - 1$) < g(N),
d   ud€H°d

where g(N) -»0 as N -» oo.

Remark 3.1. In §§4, 5 we will frequently use the form g(N) = N~r to character-

ize the robustness order r. If r = 0, then convergence will not be guaranteed.

Definitions 3.1, 3.2 are related by the following theorem, from [4].

Theorem 3.1. The extension procedure £F is free from locking if and only if it

is robust with uniform order Fo(N). Moreover, suppose f(N) is such that

f(N)F0(N) = g(N) ^ 0    asN^co.

Then cf shows locking of order f(N) if and only if it is robust with maximum

uniform order g(N).

It is easily seen that & is nonrobust if and only if it shows locking of order
(Fo(N))-x.

Let us briefly explain the above ideas. We are assuming that our exact solution

has a certain regularity (i.e., it is in H%¿l'k(Sl)). Our extension procedure &

has associated with it a rate of best approximation Fq(N), which gives the best

approximation that we could expect to achieve (equation (3.3)), for the most

unfavorable exact solution in HJ£l'k(Sl). Using the finite element method
gives this rate for d > do (equation (3.4)), but does not necessarily give this

rate (uniformly) as d approaches 0. The locking ratio compares the accuracy

actually achieved by the finite element method (for the least favorable exact

solution in Hkd) to the best accuracy possible (i.e., to F0(N)). If the achieved

accuracy is asymptotically the same as the rate Fq(N) in (3.3), (3.4), uniformly

for all d G (0, 1], then we say that the extension procedure & = {VN} is

free of locking for all ud e Hk d, d e (0, 1]. If the achieved accuracy is

asymptotically not the same, then the robustness g(N) gives the best rate of

convergence that can be achieved independent of the parameter d. In this case,

f(N) = g(N)(Fo(N))~x characterizes the asymptotic strength of the locking.
In [4], we have formulated a useful condition, called condition (a), under

which the question of locking reduces to one of approximability alone. For this

condition to hold, we must first be given a sequence of solution spaces Hk d and

a limit space Hk 0 such that Theorem 2.3 holds. Then condition (a) may be

stated as: Given ud G Hk d , there exists a «o G H^B0 (for some c independent

of ud, d, B; «o depending on ud) such that

(3.7) \\ud-Uo\\k+i,k<Kd'B
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with K a constant independent of B, d and ud. Here, ß is the exponent
appearing in (2.11), ß = 1 in this case. This condition therefore characterizes

the distance of solutions ud to functions «o satisfying (2.4), as d —> 0. We
have shown in [4] that if the "remainder" ud - uo is small in the sense of (3.7),

then we need only consider the approximation of functions uq in the limit

space Hk 0 to answer questions about locking and robustness.

Our choice of periodic boundary conditions for the plate problem is moti-

vated primarily by the fact that condition (a) is satisfied. To prove (3.7) for
our problem, we simply choose wo (for given ud) as in Theorem 2.2. Then

we get (3.7); in fact, we get a power of d2 (instead of just d, as needed). As
a result, Theorem 2.4 from [4] will hold for our problem. This theorem states

that locking and robustness rates are the same, no matter which error measure

in (3.6) is used. It is stated below.

Theorem 3.2. Consider the family of"problems (3.1), de.(0, 1], with the solution

sets Hk d c H%£l'k(Sl), k > 1. Then the extension procedure & is free from

locking with respect to the V = H^ (Si) norm if and only if it is free with respect

to the energy norm. It shows locking of order f(N) in the V norm if and only

if it shows locking of order f(N) in the energy norm.

Remark 3.2. We will now only refer to the locking of SF, without specifying

the error measure in (3.6) we are using. Note, however, that instead of (3.6), we

could have, in principle, defined some other error measure (for example, one
that included the error in the shear strain). In that case, we would get different

results, since the question of locking is extremely dependent upon the error

functional under consideration (see [4, 5]). The results in this paper only relate

to the two error functionals in (3.6), i.e., we are assuming that the quantity we

are interested in calculating is the energy, as opposed to some other quantity of

interest.
The following theorem reduces the question of locking to one of approxima-

bility alone.

Theorem 3.3. Consider the problem (3.1) with solution sets Hk d, k > 1. Let

VN = YNxZN, where YN c [H^T(Si)]2, ZN c H^Si), and define WN c ZN

by WN = {oj G ZN, gradeo G YN} . Then the extension procedure $~ = {VN}

is robust with uniform order ma\{F0(N), g(N)}, where g(N) is given by

(3.8) g(N) =     sup       inf ||ûj-z||2.

Also, with Fq(N) as in (3.3), !F is free from locking if and only if

(3.9) g(N)<CF0(N).

It shows locking of order f(N) if and only if

(3.10) CxF0(N)f(N) < g(N) < C2F0(N)f(N).

Proof. Define

(3.11) g(N)=   sup    inf   ||u-»||i,i.
"fc/,*.o C0v=0

Since condition (a) is satisfied, by Theorem 2.2(B) of [4], & is robust with

uniform order max{F0(N), g(N)}.   The argument is as follows.   For ud G
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Hk d , we may find (by condition (a)) a «o G Hk 0 such that (3.7) holds. Then

we nave

(3.12)

|M¿-«rflli.i < ll«rf-"rflU,rf< inf \\ud-v\\Etd
v€V"

<     inf   {\\uo-vx\\Etd + \\(ud-uo)-v2\\E,d}
v¡+v2evN

C0vi=0

<g(N) + d-*> infJ|(Krf-Ko)-t/2||i,i
«26 V

<g(N) + d-^[d^F0(N)],

using (3.3) and (3.7) (the latter giving (ud - uo) G HkB) ■ This proves the
robustness order. Next, using the fact that Theorem 2.3 and condition (a)
hold, we see by Theorem 2.2(B) of [4] that (3.9) and (3.10) will hold with g(N)
replaced by g(N).

To show g(N) and g(N) are equivalent, consider a v = (\j/, z) &\ VN such

that C0v = 0. Then

Cot; = 0 «• z G WN,        ip = grad z.

Hence, for u = (<f>, of) G Hg 0 , we have

g(N)=   sup     infv{||</.-íí7||1 + ||w-z||1}

C0v=0
ueH°¡0 vev

sup
C06/Í

k+2,B
(O)

inf {||gradw-gradzHi + ||w-z||i},
ze\wN

from which it is easily seen that g(N) and g(N) are equivalent. The theorem

follows.   D

Let us now define the subspaces VN = YN x ZN. We will consider both

triangular and rectangular meshes. Our results will be for the uniform triangular
and rectangular meshes Mh , M^ shown for the case of our square domain Si

in Figure 3.1.
Let S be a triangle or parallelogram. Then we define

&x (S) = polynomials on S of total degree < p,

â°p(S) = polynomials on S of degree < p in each variable,

^p(S) = ¿Pi (S) 0 {x\x2, xxxp2 }, the serendipity elements.

Figure 3.1.   Uniform meshes M\ , M\
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Remark 3.3. The spaces ¿Pp2(S), ¿?P3(S) are the usual Sp and S'p spaces (and

are defined only for S a parallelogram).

For any mesh Mh , we now define for ¿=1,2,3

<•*, =&l'h_x(Mh) = {ve 12(0), v|nj e^(0})},

where Q* are the elements of Mh . For k > 0, we define

<'£ = ̂ ;;"(^A) = K,-\ n CP-(Q) '

where ^2 '* and ^l3'^ are defined for rectangular meshes only. In the suc-

ceeding sections, we will consider the locking effects of the spaces VN = Vpl'J¡

defined by taking YN = Ypl>h = [F^]2 and ZN = Z^h = &>lQ'hG . Note that

for the space ^h , one has yV = 0(h~2p2).

4. The h version

In this section, we consider the robustness of the finite element spaces VN =

Vj'g when p , q are held fixed and h is decreased to attain accuracy. We first

estimate F0(N) in (3.3), (3.4).

Lemma 4.1. Consideran h version sequence of spaces {VN} = {V¿'J¡} defined

by Vj;^ = Yp'h x Zlq'h = [^'q]2 x ^'¿o on an appropriate triangular or paral-

lelogram quasi-uniform mesh, where p, q > 1 are fixed and h varies. Then for

any do > 0, (3.4) is satisfied with

(4.1) Fo(N) = CN-min^'"'k-x^2,

where C is independent of N but depends on p, q, k. Moreover, (3.3) is also

satisfied with the above Fo.

Proof. We first note that for / > 1, r > 1 , with ß = min(r, I - l)/2,

(4.2) CxN~ß <     sup        inf   \\z - v\\x < C2N~^.

This has been shown in Theorem 4.1 of [5] (for example) for the nonperiodic

case, from which the periodic case is easily deduced. Using (4.2), we easily see

that the upper estimate in (3.3) (and hence (3.4)) holds with Fq given by (4.1).
To establish the lower estimate in (3.4) (and hence (3.3)), we note that given a

periodic ojd (or conversely a periodic <pd), we can find a corresponding periodic

function (f>d (or a periodic cbd) satisfying (2.1) such that ud = (<f>d, œd) (or

üd = (<t>d, cbd)) lies in H^ d (for appropriate k). Hence, (4.2) can be used to

establish the required lower bound.   D

We may now analyze the locking and robustness properties of various types
of elements by calculating g(N) defined by (3.8) and comparing it with F0(N)
given by (4.1). We first consider triangular elements.

Suppose that VN = Vpx^ (as in Lemma 4.1) is defined on the mesh A/,* .

Then we see that

WN=&¡:xh, q<p,

(4.3) jl,A
= *£?.,,        Q>P+1p+i,i'
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Let us define

r(q) = max(2, q)   for 1 < q < 4,

= q+1 for q > 5.

Then the following lemma follows from Theorem 5.1 and Lemma 5.2 of [5],

where it has been established for the nonperiodic case.

Lemma 4.2. Let M\ be the uniform triangular mesh of Figure 3.1. Then for
(OGHk+2(Si), k>0, q>l,

inf   \\<o - z\\2 < Chmia{k'r{q)-2)\\œ\\k+2.

Moreover, there exists a function Q G C^(O) satisfying

inf   \\Q-z\\2>Chr{<l)-2.

We can now prove the following theorem.

Theorem 4.1. Let the extension procedure &" consist of the h version on the

uniform triangular mesh Mh, with spaces {VN} = {Vp\<qh} = {[tftf]2 x^J/o*> ■

Let the solution sets be Hkd. Then for the p and q shown below, SF is robust

with uniform order N~r when k>2r+l and shows locking of order N1 when

k>p+ 1.

Degree

P
1

2<p<4

p>5
2<p < 3

P > 4

Degree

0

0>1
q=p

q>p+l

q>p+l

Robustness

order = 0(N~r)

0

lp-2)/2
(p-l)/2
(P-l)/2

P/2

Locking order
= 0(Nl)

I

1/2
1

1/2

1/2
0

(For p > q, the same results as for the case (p, q) = (q, q) hold.)

Remark 4.1. The above theorem shows that with the customary choice p = q ,

convergence is not guaranteed for p = 1 or 2 (i.e., the robustness order r is 0)

and is only guaranteed (with reduced order) if p > 3. In fact, locking cannot

be avoided whenever we take p = q. It is O(N) for p = 2, 3, 4 and 0(NX¡2)
for p > 5 (for p = 1, it is technically 0(Nxl2) as well, since the maximum

possible rate in this case is 0(N~xl2)). To avoid locking, p has to be taken to

be 4 or larger, with q being chosen to be p + 1. (Note that taking q > p + 1

will not increase the robustness rate.)

Proof of Theorem 4.1. We illustrate the proof for p = 2, for the two cases

q = 2, q>2>. By Lemma 4.1, we see that for both cases, for k > 1,

-min(2,fc-l)/2
(4.4) Fo(N) = CN-
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and for k > 3 (i.e., k > p + 1), we have the best rate that we can expect,

i.e., 0(N~X). We now calculate the robustness rate actually achieved, given by

ma\(F0(N), g(N)), where g(N) is defined by (3.8).
For q = 2, we see that, using (4.3), we have

(4.5) g(N)=      sup inf   \\œ -z\\2.
o,e/#2-B(0) »6^f;i

By Lemma 4.2, for any k > 0, we see that

C, < g(N) < C

and hence, for k > 1, the robustness rate is max(Fo(N), g(N)) ~ C. Hence,

this method is not robust. By (4.4), for k > 3, F0(N) = CN~X, so that by

Theorem 3.3, the locking is 0(NX).

For q > 3, we get (4.5) again, except z is now in ^'k . By Lemma 4.2,

for k > 1,
Cxh<g(N)<C2h,

i.e., g(N) ~ CN~XI2. Using (4.4), we see that for k > 2, F0(N) < CN~XI2,

so that the robustness rate is max(Fo(/V), g(N)) = CN~XI2 for k>2. Also,
for k > 3, F0(N) = CN~X, and by Theorem 3.3, for k > 3, the locking is
0(Nxl2).    D

Remark 4.2. The robustness for the case p > 4, q = p + 1, was established in

[10] by a different method. It was, in fact, shown that this case is locking-free

even when the quasi-uniform version of Mh is used. As discussed ahead in

Remark 5.1, the results of Theorem 4.1 can be deduced from the results in [5,

13, 14] for nearly incompressible elasticity.

Let us now consider the uniform rectangular mesh A/|. Suppose first that the

extension & is based on S°2(S) elements, with VN = V2;qh = [^¡o^x^^o •

Then it may be observed that

(4.6) WN=&>2q:hx, q<p,

=^1;iA,,u^2;1\      q>P + l.

The following is an analog of Lemma 4.2 for this case. The nonperiodic

version of this result is established in [8, 5].

Lemma 4.3. Let M\ be the uniform rectangular mesh of Figure 3.1. Then for

co£Hk+2(Si), k>0, q> 1,

(4.7) inf   ||to-z||2<CAmin(A:'<7-1)MU+2.

Moreover, there exists a function Q e Cffi(Sl) satisfying

(4.8) inf        Hß-zll^C^-1.

Obviously, the two bounds (4.7) and (4.8) hold for both the spaces ^ql+XtX U

^'{h and â°2'xh . Now using Theorem 3.3, Lemma 4.1, (4.6) and Lemma 4.3,

we obtain the following theorem, whose proof is similar to that of Theorem 4.1.
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Theorem 4.2. Let the extension procedure EF consist of the h version on the uni-

form rectangular mesh M\ , with spaces {VN} = {Vp2;qh} = {[^/;0A]2 x ^2;0A} .

Let the solution sets be Hk d . Then for the p and q shown below, y is robust

with uniform order N~r when k>2r+l and shows locking of order Nl when

k>p+ 1.

Degree

P

Degree

Q

Robustness

order =0(N~'

Locking order

= O(N')

I
1 q>\ 0 1/2

P>2 Q >P (P-l)/2 1/2

We now consider an extension procedure on Mh based on 3s3(S)-type ele-

ments. Accordingly, suppose VN = Vp3'q . Then it can be shown that

(4.9)     WN =&. 3,A
9,1 ' q<P,

p¿2,q>p+l, or (/>,<?) = (2, 3);

p = 2,q>4.

In this case, we have the following lemma.

_ 03I.A
P+l, 1 '

_ <38l.A I I C2>2,h

Lemma 4.4. Let M% be the uniform rectangular mesh of Figure 3.1. Then for

(0£HJ£2(Si), k>0, q>l

(4.10) inf   ||œ - z\\2 < Chm^k'm^\\œ\\k+2,
z&9»'

where m(q) = max(0, q - 3). Moreover, there exists a function Q G cffi(Si)
satisfying

(4.11) inf   ||ô-z||2>C/2m(«».

«.i

Proof. The assertion (4.10) follows from Theorems 1, 2 of [8], as shown in

[5]. Next, we note that in Lemma 5.2 of [5], (4.11) was established for ¿Pxq'\

instead of ¿Fq'x , for the nonperiodic case. Essentially the same proof can be

used to prove (4.11) here as well.   D

,,i —»rt.i >resPec-Note that the bounds in (4.10), (4.11) will hold for &j;k and @\'\

tively, as well. Using (4.9) and Lemma 4.4, we may once again establish the
following theorem, analogously to Theorem 4.1.

Theorem 4.3. Let the extension procedure SF consist of the h version on the uni-

form rectangular mesh M\, with spaces {VN} = {V3;qh} = {[^¡'q]1 x ^3;0a}.

Let the solution sets be Hkd. Then for the p and q shown below, & is robust

with uniform order N~r when k>2r+l and shows locking of order Nl when
k>p+ 1.
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Degree

P

Degree

Q

Robustness

order =0(N-r)

Locking order

= O(N')

I

1 Q>1 0 1/2
<7 = 2,3

q>4

0

1/2

1

1/2
p>3 q=P

q>p + l
U>-3)/2
(p-2)/2

3/2
1

Remark 4.3. Theorems 4.2 and 4.3 show that locking cannot be avoided when
rectangular elements are used, no matter what choices of p and q are made.

Both ¿P2 and 9°3 elements are robust only when p > 2 (for «^ , we only get

robustness if, moreover, q > 4). For p > 3, â°p3 elements show twice to three

times the locking rate as ¿P2 elements, depending on the choice of q. Similar

results have been established for rectangular elements in the context of nearly

incompressible elasticity [5] (see Remark 5.1).

5. The p and h-p versions

We now consider a p version extension procedure F~, with {VN} = {Vp''q} ,

where h is kept fixed and p , q —> oo . Also, we consider an h-p version over a

quasi-uniform family of meshes {Mh} , where both h and p , q are changed

for accuracy. Then we have the following estimate for F0 (Theorem 4.2 of [5]).

Lemma 5.1. Let {VN} = {V¿;q} be a sequence of p version spaces on a fixed

mesh Mh, with p, q —> oo. Then (3.3) and (3.4) (for any fixed do > 0) are
satisfied with

-(k-\)/2
(5.1) F0(N) = CN-

00.where C is independent of N but depends on h, k. Moreover, as p, q

(5.1) also holds if the h-p version over a quasi-uniform family of meshes {Mh}

is used. In this case, we have the following more refined estimate:

(5.2) F0(N) = Chm^r'k-xh-(-k-x\

where r = min(p, q).

Note that in the above, {Mh} does not have to be a family of uniform

meshes, but can be a quasi-uniform family of meshes.

We now show that there is no locking when the p version is used for our

model problem. This result is closely related to a similar result for nearly in-

compressible materials in [5, 16].

Theorem 5.1. Let the extension procedure SF consist of the p version using a

mesh consisting of triangles or parallelograms (which can be arbitrary). Then

with solution sets Hk¡d, k> 1, 5* is free of locking and is robust with uniform

order /V~(A:~1)/2 as p, q -> oo.
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Proof. Using the results of [11, 15], we can show that for the p version with

Cp2 continuous triangular or parallelogram straight-sided elements, for co G

Hk+2(Si), k > 1, (h fixed), there holds

inf  ||»-z||2<-Cr-*»a>|U+2.

Now for any i = 1, 2, 3, with VN = Vj;^ = [Pffi * ̂ ¡;5 , we have <S?1/1A c
WN for r = min(p, q). Since r = 0(Nxl2), we have, with g(N) defined by

(3.8),
g(N) = CN~kl2,

so that the method is robust with order ma\(g(N), F0(N)) = C/V_(/c-i)/2 by
Lemma 5.1. The theorem follows, by using Theorem 3.3.   D

Let us remark that in the above proof, it is observed that g(N) is of a smaller

order than Fq(N) . This implies that for the limiting case (where we have the

biharmonic problem), the p version actually shows an increase in the rate of

convergence (by one order of p), rather than a decrease owing to locking. The

reason is that the solution to the biharmonic problem is of higher regularity
than that of the plate problem, and the asymptotic rate of convergence of the

p version only depends upon the regularity of the solution.

For the h-p version, we may show the following theorem for triangular

meshes.

Theorem 5.2. Let the extension procedure !F consist of the h-p version, using

quasi-uniform meshes consisting of triangles. Let VN = Vp\'q with p > 4,
q > p + 1. Then with solution sets Hkd, k > 1, &* is free of locking and is

robust with uniform order /V-^-1^2 (or, more precisely, hk~xp~(-k~x)).

Proof. The essential idea is to use the following estimate for the h-p version

with C¿¿r continuous triangular elements for œ G Hk¿2(Si), k > 1 :

(5.3) inf   \\œ-z\\2<Chkr-k\\œ\\k+2,
z6^r' 'i

provided r>5, r > k + 1. An analog of (5.3) has been established in [6] for

the case of C(0) elements—a similar technique, combining (5.1) with a scaling

argument, works for the C(1) case as well. For VN = Vp\'q with q > p + 1,

p > 4, we have ^,+f x C WN . Hence, using (5.3) and Theorem 3.3, we have

g(N) = Chkp~k = CN-k'2

in (3.8). The theorem follows easily.   D

We see from the above that when the h-p version is used, the separate ro-

bustness rates of the h and p versions are combined. Theorem 5.2 therefore
combines the results of Theorems 4.1 and 5.1, and says that if the p version

is combined with a locking-free h version, then the resulting h-p extension

procedure is also free from locking.

Remark 5.1. As mentioned in the introduction, an alternating analysis of shear
locking is based on the Helmholtz decomposition of the shear strain,

d-2(Vcod - $d) = Vrd + V x pd
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(see [1, 9, 10]). This reduces (2.1)—(2.2) to a Stokes-like system for (<j>d, pd)
and uncoupled Poisson equations for rd and cod . The locking effects are related

to the Stokes-like system. It is possible to derive an analog of condition (a)
for this system and then develop the locking theory in the previous sections via

this approach.
As is well known, the Stokes problem is the limit (as the Poisson ratio

u -* 0.5) of the equations of linear elasticity for an almost incompressible

material. The question of locking for nearly incompressible materials has been
well studied in the literature (see, e.g., [5, 13, 14, 16]). This theory could essen-

tially be applied to the Stokes-like system for (<pd, pd), which behaves similarly,

since it tends to the same limit. Hence, spaces YN that are locking-free for the
displacements in nearly incompressible elasticity (as analyzed in [5, 13, 14, 16])

will behave similarly for the rotations <j>d in the RM plate. (Of course, they

must now be combined with appropriate subspaces ZN for the transverse dis-

placements cod .) In this way, many of our results for the RM plate established

here may be predicted from the results for nearly incompressible materials in

the above references.

6. The (1, 1,2) plate model and hierarchical modeling

So far, we have only considered the RM model and its zero thickness limit,

the Kirchhoff model, for modeling the actual 3-d plate.
In this section, our goal is to analyze the locking characteristics of higher-

order models, particularly the (1, 1,2) model. The derivation of the (1, 1,2)

model and the related hierarchy is based on the "expansion" of the exact 3-d

solution in terms of polynomials in the transverse direction. More precisely,

let u = (ux, u2, Ui) denote the displacement of the plate occupying the region

Ä = flx[-j,j] described in §2, along the coordinate axes. For any n =
(nx, n2, «3), «, > 0 integer, we define

"Hxei =\u€ [Hxer(R)]3\Ui = ¿«M*,, X2)Lj (jj^ , i = 1, 2,

"3 = ^o)j(xx,x2)L}^j^j \ ,

(6.1)

where Lj(x) are Legendre polynomials. Suppose, for any displacement v G

[H^R)]3, S?(v) represents the corresponding plate energy, so that the exact

3-d solution uid is the minimizer of &(v) over all such v G [H^R)]3. Then

u" G "H^, the solution of the («1, «2, «3) plate model, is defined as the

unique minimizer of S?(v) over all v e "H^ c [Hper(R)]3. Allowing n to

vary then gives a hierarchy of plate models. For fixed d > 0, ü" -» uid (the

actual 3-d plate model displacement) as n -+ 00 . Also, as ¡/->0, u" -> uid at
a higher rate in d when n is increased and ü$d is regular (see [12] for more

details).
Since we are considering the case of pure bending (which exhibits shear lock-

ing), we may take 4>Xj = (f>2j = 0 for j even, ojj = 0 for j odd. The simplest

model in this hierarchy is then obtained by taking n = ( 1, 1,0), which yields
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the three unknowns, <f>xo , <¡>2o, coo over the region Si. This model is equivalent

to the RM plate model (2.1)-(2.2), with tf>di = -\<\>io, i = 1, 2 and cod = coo
(provided the elastic constants are suitably modified (see [2])).

The model we discuss here is the next higher model in the hierarchy, obtained
by choosing n = (1, 1,2). This gives four unknown fields over Si, namely

</>io , 020, o)0 and œ2 . Denoting ud = (<£d, cod, yd), where <pdx, 4>d2 , cod
are as defined above and yd = co2, we may write the Euler equation for the
(1, 1,2) model (analogous to (2.1)—(2.2)) as follows:

(6 2) CdUi - -4 {(1 - ,)A& + l!^.vv. &}

-p(Vcod-$d)+XVyd = 0,

(6.3) -pd-2V-(Vœd-M = g,

ud~2
(6.4) -^^d - kd~2^ • <t>d + 12d-\2p + X)yd = g.

Here, the elastic constants are the same as defined in §2, and periodic boundary

conditions are assumed for ud .
We may combine (6.3)-(6.4) to obtain the following equation instead of (6.4):

d2 -      u
(6.5) Bdud = yd+ 12(2^ + A)(/¿V • (Vcod - <t>d) - ^Ayd -W-<pd) = 0.

For d > 0, it has been shown in [2] that the ( 1, 1,2) model exhibits higher
accuracy than the RM model for several quantities of engineering interest. As

d —» 0, the two models both tend to the Kirchhoff plate. Using (6.5), we see

that in the limit,

(6.6) 50"o = yo = 0,

so that using (6.6) in the limit C0u0 = 0 of (6.2) shows once again that (2.4)

holds. Moreover, it may be verified that coo will again satisfy (2.5), with peri-
odic boundary conditions.

The weak form of (6.2)-(6.4) is as follows. For d G (0, 1], find ud =

($d ,o)d,yd)€V = [H^Si)]4 such that for all v = (6, {, z) € V,

ad(ud, v) = b(ud, v) + £(CoudC0v) + -¡¿((8, Vyd) + ($d, Vz»

(6.7) 12
+ ^2 (Vv</, Vz) + T¿2p + X)(yd, z) = F(v).

Here, Co is as defined in (2.4),

(6.8) b(ud,v) = ^(i-u)jj^fa.ve + j^^)(v4d)^'e)^cuxdx2

and

(6.9) F(v) = (g,Z) + (g,z) = JJ g(Ç + z)dxx dx2.

Suppose now that we are given a sequence {VN} of finite-dimensional sub-

spaces of V = [H^Si)]4. Then the finite element solutions u% G VN may
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be defined again by (3.1). As d -> 0, assuming that ad(uNd , uNd) is bounded

independently of d will constrain various terms in (6.7) involving ud . Our

goal is to show that these constraints cause exactly the same type of locking as
in the RM case, and that the locking-free subspaces constructed for (2.8) yield

corresponding locking-free subspaces for (6.7) when augmented by a suitable

subspace for the additional variable yd .
We first show that condition (a) holds for the (1,1,2) model. To do

this, we modify the definitions of various spaces introduced in §2, in order to

incorporate the extra unknown yd . We let H^r''m(Si) = H^J(Si) x H^Si).

Let II ' Wej be defined by (2.9) and || • \\k,i,m by the analog of (2.10). Then,
(2.11) will once again hold, except that ß = 2 now, i.e., an extra power of d~x

appears.

The spaces Hk t d are now given by

Hktd = {ueHfcrx<k'k(Si),  Cdu = 0, Bdu = 0},

which once again can be characterized in terms of <j> alone, as in (2.15). The

space Hk d is now defined as follows:

(6.10) H£,d = {uzHktd,\\u\\ktd<B},

where

(6.11) \\u\\2ktd = 11(0, co, y)\\ld = U\\2k+X + M|2 +d-2\\y\\2k .

Then we see that for u = (<fi, co,y) e Hgd, by (6.10)—(6.11), we have

(6.12) \\B0u\\k = \\y\\k<d2B.

Using (6.12) and Cdu = 0 then gives (2.16) as before.
The limiting set of Hkd is now given by

Hk,0 = {u = ($,œ, 0), ((/>, co) G Hfex>k+2(Si), Cou = 0}

with Hk 0 being the analog of (2.17b). Then the following theorem holds.

Theorem 6.1. Let g be as in Theorem 2.1. Then there exists a unique sequence of

periodic solutions {ud} = {(¡>d, cod, yd}  (cod unique up to a constant) to (6.2)-

(6.4) for d G (0, 1] and (2.3)-(2.5), (6.6) for d = 0, such that ud e HBd,
where B = C||^||i_2, with C a constant independent of g and d.

Proof. Analogously to (2.19), we may now show that the solution of (6.2)-(6.4)

is given by (see [12])

ud

(6.13)

= J] Akeik->

k€Z\

4

4

'fc'3(;-1)(30 + 3¿2|fcl2)

i^ípü(30 + 3¿2|fc|2)

((90 +f|*|«)(„-i) + «(36^ -63))
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where Ak = gk/p\k\4((u - l)^\k\2 - 30). (Equation (6.13) was derived from
(6.2)-(6.4) using a computer algebra system.) The proof then follows similarly

to the proof of Theorem 2.1.   G

The rate at which the solution of the (1,1,2) model tends to the limiting

solution of the Kirchhoff plate in the H^/'s's(Si) norm (condition (a)), is

given in the following analog of Theorem 2.2.

Theorem 6.2. For any ud = (<f>d, cod, yd) G HBd, there exists «o = (q>o, Wo > 0)

G HÇBQ such that

(6.14) II^-moIUi,,,^^2^,
where c and K are constants independent of ud, d, B.

Proof. Given ud e HBd, define g satisfying (2.21) as in Theorem 2.2; also, let

a>o be given by (2.20) and 4>o = coo . Then (6.14) may be verified using (2.19),

(2.20) and (6.12).   D

Finally, let us note that the analog of Theorem 2.3 for the (1, 1,2) model

is easily established as well.
We may now formally define locking and robustness for the || • ||i,i,i or

|| '\\Etd norm, as before. Our space VN = YN x ZN x MN will be assumed
to be inadmissible in the sense analogous to (3.3). (This means that for any

spaces YN , ZN for the RM plate, we can construct VN by adding a space MN

that approximates the unknown yd in the H^Si) norm at the rate Fo(N).)

Then the following analog of Theorem 3.3 will hold.

Theorem 6.3. Let the spaces VN = YN x ZN x MN be Fo-admissible for the
(1, 1,2) model. Let WN be as in Theorem 3.3. Then the extension procedure

!F = {VN} is robust with uniform order max{Fo(N), g(N)}, where g(N) is

given by (3.8). Moreover, S* is free from locking if and only if (3.9) holds. It

shows locking of order f(N) if and only if (3.10) holds.

The proof of Theorem 6.3 is analogous to that of Theorem 3.3. The only

difference is that in (3.12), vx must now satisfy Bqvx = 0 as well. Also here,
ß = 2, so that both powers of d in condition (a) (i.e., (6.14)) are used.

We therefore see that taking (for example) MN = YN leads to the same
locking and robustness results for the (1, 1,2) model as described in §§4 and

5 for the RM model.
A similar analysis (using more notation) may be done for higher-order models

as well. Essentially, the higher-order terms in the expansion of the 3-d solution

all are constrained to zero in the limiting case (similar to vo) and the only
constraint that causes locking is the Kirchhoff constraint. Hence, the locking

and robustness properties of various subspaces can be once again characterized

by the results in §§4 and 5.

Remark 6.1. From (6.2), it is observed that the (1, 1,2) model will also exhibit
"Poisson ratio locking" when u is close to 0.5 . This locking does not occur for

the RM plate, owing to the elastic constants being modified, but will occur for

all higher-order models. By Remark 5.1, we see, however, that an element that

is free of shear-locking (in the energy) as d —► 0 will also be free of Poisson
locking as u -* 0.5, so that no additional precautions need to be taken to

prevent Poisson locking.
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