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ABSTRACT. We discuss an iterative method for calculating the reduced bifurca-
tion equation of the Liapunov-Schmidt method and its numerical approxima-
tion. Using appropriate genericity assumptions (with symmetry), we derive a
Taylor series for the reduced equation, where the bifurcation behavior is deter-
mined by its numerical approximation at a finite order of truncation.

This method is used to calculate reduced equations at Hopf bifurcation of the
two-dimensional Brusselator equations on a square with Neumann and Dirichlet
boundary conditions. We examine several Hopf bifurcations within the three-
parameter space. There are regions where we observe direct bifurcation to
branches of periodic solutions with submaximal symmetry.

1. INTRODUCTION

Let E — E be Banach spaces embedded into a Hilbert space with scalar
product (-,-) and G : E x R — E be a smooth mapping, equivariant un-
der some action of a symmetry group I". We consider steady state and Hopf
bifurcation of the problem

ou .
(1) W=G(u,l)w1th(u,l)eExR
at a given bifurcation point (g, 4¢). It is well known, in the case of steady
state bifurcation with Ker(DG(ug, 4¢)) finite-dimensional, that the Liapunov-
Schmidt method can be used to reduce equation (1) to a finite-dimensional
bifurcation equation

B(a,4) =0

under certain assumptions on DG(ug, 4¢9) and its kernel. Usually, these equa-
tions are highly nonlinear and an analysis of their solution can be rather dif-
ficult. However, in the neighborhood of the bifurcation point we can truncate
the Taylor series of the equation at a sufficiently high order to give the bifur-
cation scenario. In §2 we consider a symmetry-respecting discretization of the
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Liapunov-Schmidt method to calculate the approximate bifurcation equation
B"a,2) =0,

with A the discretization parameter, up to any desired order of truncation
of the Taylor series. In particular, we use assumptions of stability and finite
determinacy of the exact bifurcation equations (incorporating any symmetries
of the problem) to give equivalence of the true and approximate bifurcation
scenarios (see also Ashwin, Bohmer, and Mei [9]).

For the rest of this section, we state the necessary definitions and introduce
the concepts of germs and singularities of bifurcation equations, their stability
and determinacy. We also introduce an iterative Liapunov-Schmidt reduction
for Hopf bifurcation (thinking of it as a steady state bifurcation in loop space)
and prove a theorem stated in [9] giving convergence of the iterative method.
In §2 we discuss and also prove convergence of a suitable discretization of the
iterative Liapunov-Schmidt method. This gives an extension of the possible
equations to which we can practically apply the Liapunov-Schmidt reduction
method. Finally, in §3, we examine applications of the method to computing
Hopf bifurcations of the two-dimensional Brusselator equations on a square,
with both Neumann and Dirichlet boundary conditions. We show that the bifur-
cation structure can be determined by a hybrid numerical/analytical/computer-
algebraic method in cases where a purely analytical method fails to give results.
We verify the calculations for Neumann boundary conditions by comparison
with exact results obtained in Ashwin and Mei [10]. The details of the calcula-
tions are to be found in the Appendix (in the Supplement section at the end of
this issue).

1.1. Preliminaries. The natural language for local steady state bifurcation prob-
lems is that of germs of functions and their singularities, see, e.g., Martinet [27],
Golubitsky et al. [21, 23]. We consider 1-parameter problems in m state vari-
ables with a bifurcation at (0, 0). If E,, | is the module of germs at (0, 0) of
C> vector- and matrix-valued functions from R”" xR —-R” (v=m,mxm,
respectively) over the ring E,‘n’l of scalar functions, we define the set of bifur-
cation problems as

(2) F:={feEy,: f(0,0)=0, 8,/(0,0) =0, 0,/(0,0)=0}.
The set of germs of I'-equivariant bifurcation equations is defined as
Fr={feF : yf(u,A)=f(yu,A)VyeT}

We have implicitly assumed that the symmetry group I' is represented orthog-
onally on R™. To decide when two bifurcation equations are merely defor-
mations of each other, we need to define an equivalence relation on the space

.

Definition 1. Two germs f, g in S are equivalent (we write f ~ g) if and
only if there exist germs of functions X, A, S such that

Su, 2)=S8(u, )g(X(u, 1), AA)),
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where

X(0,0)=0, A(0)=0, A'(0)>0,
X(yu,/l)=yX(u,A), S(yu,l)y:yS(u,l)Vyel",
0,X(0, 0)
$(0, 0)

Obviously, if (X(u, A), A(A)) and its inverse are smooth in some neighbor-
hood of (0, 0), this is the definition of Golubitsky et al. [23]. The definition
means that if f and g are equivalent, there is a locally invertible change of
parameters A(4) suchthat f(u, A) and g(X(u, 4), A(A)) have the same “num-
ber of zeros”. The germ g € St is said to be finitely determined if j,g ~ g
for some k € N. (The symbol j, g, called the k-jet, means the truncation of
the Taylor expansion of g with respect to all its arguments up to and including
homogeneous terms of order k.) We say g is k-determined if g ~ j,g and
g+ Jjg forall I <k.

For any g € 5 we define the pseudonorm || - ||2 (a norm on the subspace
of k-jets) by

(3) lelf =

li|+j<k

} are invertible linear maps with positive determinant.

3|’|+Jg
Ouior ©,

b

using a multi-index .

Assumption. For the rest of this paper, we will assume that the germ of the
reduced bifurcation equation g € S is k-determined for some k, and is
stable with respect to the pseudonorm (3). That is, there exists ¢ > 0 such that
all perturbations f € F of g with ||f — g||9 < e satisfy f~g.

In [9], we demonstrate that for a k-determined bifurcation problem, stabil-
ity with respect to || - ||? is equivalent to stability with respect to the Sobolev
norm || - ||z . One consequence of this assumption is that I' must be absolutely
irreducibly represented on R™ (see [23]). This assumption is reasonable from
the point of view of structural stability, and could also be expressed by saying
that g is its own universal unfolding. If a bifurcation comes from a model
of a physical problem where we cannot expect to know the equations and pa-
rameters exactly, we can only get sensible results if our model is insensitive to
small changes in these parameter values. In practice, we cannot tell if a prob-
lem is finitely determined and stable unless we can perform Liapunov-Schmidt
reduction analytically, in which case we do not need a numerical method! How-
ever, we can verify if numerical approximations to coefficients in the Taylor
expansion tend to values where the assumption would be broken, e.g., certain
coefficients being zero might imply degenerate behavior.

We could also have chosen a weaker equivalence relation. For example, we
could permit coordinate changes of the form A(x, A). This would be quite
adequate if we only wish to distinguish branches and not their direction of
branching in parameter space (this might be sufficient for branch switching of a
path-following algorithm). Note that by choosing this more general equivalence,
we get lower levels of determinacy; for example the pitchfork x3 + x4 =0 is
three-determined for bifurcation equivalence but the truncation at second order
xA =0 is two-determined for the weaker equivalence.
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1.1.1. Symmetry. As demonstrated by Golubitsky et al. [21, 23], we need to in-
clude the symmetry of the problem in the reduction in order to obtain an equiv-
ariant reduced problem. For finite groups, a symmetry-respecting discretization
can be defined as described below. For the case of continuous groups, this is
much harder to achieve except in special cases. In general, we need to choose a
basis for the discretization that contains its own group orbit, e.g., Fourier series
for periodic problems.

If we miss some symmetry in the discretization of a symmetric problem, then
naturally we cannot expect to get the actual bifurcation scenario reflected in the
approximate one. Instead we should expect to see a deformation of it.

1.1.2. Consistent differentiability of the discretization. The above assumptions
of stability and finite determinacy require that a few of the low-order terms of
the Taylor expansion determine the bifurcation structure. To guarantee that the
discretization reflects this behavior, we have to require that the derivatives of
the discretized equation up to kth order are O(h?) close to those of the true
equations. This property is called consistent differentiability up to order k and
is discussed in [9], Bohmer et al. [11-13] and in §2.

As we are concerned with Hopf bifurcation, we first state a standard method
(e.g., Vanderbauwhede [36]) for reducing the problem to a steady state problem.

1.1.3. Hopf bifurcation. We assume that the linearization §,G(0, 0) of equa-
tion (1) has a pair of semisimple imaginary eigenvalues +iwg, each of multi-
plicity /, and no other eigenvalues at miwy for m € Z, m # +1, where [
is a dimension of an absolutely irreducible representation of I"'. We define the
following problem from the original 1-parameter problem: ’

4) D(u, t,A):=G(u,A) —we(l +1)0u
as a mapping from Czln xR xR to C,, with a trivial solution, where

Con:={u(-) e C(R, E) : u(s +2m) = u(s)} and
Cipi={u(-), () e C(R, E): u(s +2m) = u(s)}.
We treat the parameter 7 as a state variable (i.e., we allow changes of coordi-

nates mixing 7 and u(t)), but we keep A as the parameter. We use the usual
inner product

1 (" Joiu ol
o) o6y = 5 [ |32 (55 s

Using the hypotheses for Hopf bifurcation, we find that D®(0, 0) satisfies the
conditions for Liapunov-Schmidt reduction: fixed points in Cz',, correspond to
periodic solutions of equation (1).

1.2. The Liapunov-Schmidt reduction. Consider the operator equation

5) (DZEXR—>EA,
( 0=®(u, 1) =:DP0, 0)(u, A) + R(u, 1),

where @ is a smooth l-parameter mapping between the Banach spaces E — E
with ®(0, 0) = 0 (in fact we only need one degree of smoothness greater than
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the determinacy). Note that by definition, R(z) = O(||z||?), where z = (u, 4).
We require that

)= DD(0, 0) := (8,P(0, 0), (0, 0))

is a Fredholm operator of index 1 with a kernel of dimension m+1, m > 1.
Furthermore, we exclude turning point bifurcations (they are regular points of
the mapping ®) and so can assume, reparameterizing if necessary, that

8,®(0, 0) = 0.

This corresponds to the assumption of a trivial solution from which the branches
bifurcate.
Using the Fredholm condition, we split the spaces in the standard way:

Ig x R = Ker(®)) ® Im(Pp*),
E = Ker(®)*) © Im(dy),

with ®;* the adjoint operator and with @ indicating orthogonality with respect
to (-, ), usually the inner product in L?(+) of the original Hilbert space into
which E and F are embedded. We define the projections

6 Q:E xR —Im(®;*), Ker(Q) = Ker(®;) = Ker(,P9) x R and
©® 5. E - Im(@), Ker(Q) = Ker(®}").

Using these projectors, we write z = n+w with 1 € Ker(®;;) and w € Im(®;*)
and split equation (5) into two:

(7 Qd(n+w)=0,
(8) (I-Q0)®(n+w)=0.

Equation (7) is solvable in terms of n for small  and gives w(n) = O(n?)
uniquely, and this is substituted into equation (8) to give the reduced bifurcation
equation:

9 B(n) == (I = Q)®(n +w(n)) = (I - Q)R(n + w(n)) = 0.

In order for symmetries of ® to be inherited by B, we must choose projectors
Q, Q commuting with the symmetries, see e.g., [21] or [36]. We now give an
iterative method to solve equation (7) that develops the Taylor expansion of B
and is presented in [6-9]. This was used in [1] to calculate higher-order terms
in a periodic boundary value problem. The functions w(n) and B(n) can be
obtained iteratively using the following Algorithm.

Algorithm 2. Truncated Liapunov-Schmidt Method.
Initialization. Pick an initial function

(10) wy(n) =0,

a mapping from Ker(®) to Im(®d;*) . We identify n € Ker(®;) with (a, 4) €
R™+! and Ker(®,*) with R™.
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Iteration. For k =2, 3, ... until determinacy, do: at each stage define the
truncated bifurcation equations to be

(11) Bi(n) = (I - Q)jkR(n + wi—1(m) =0,
where By is a polynomial of kth order from Ker(®;) to Ker(®;*), and

(12) we(n) 1= —Q(Py) ™' Qi R(n + wie_1 (1))

This iteration creates a sequence of kth-order polynomial functions
(13) wy : Ker(®p) — Im(Py*).

Theorem 3. For the iteration defined in (11), (12), we have

wi(n) = jxw(n) and Bi(n) = jxB(n).
Proof. Consider

(14) Wiyy — Wi = —Q(®)) 'O [eas R + wi(n)) — jie RO + w1 ()] -
Now j;(R(n)) =0 implies that

Je(R(y (M) = jk(RUk-1¥(n)))
for all functions y(n) with jo(¥(n)) = 1. By induction we get that for all £ > 2

Je(R(n + wi(n) = R(n +wie—1(n)) = 0
= Jk(Wipr —wi) =0
= JkWiy1 = Wk

By the fact that ji, Q®(n + wi(n)) = jrQ®(n + w(n)) = 0, this means that the
solution w(n) of QR(n+ w(n)) =0 has Taylor series jyw(n) = wi(n). This
implies that j B(n) = Bx(n). O

2. DISCRETIZING THE TRUNCATED LIAPUNOV-SCHMIDT METHOD

2.1. Finite and continuous symmetries. As described in Golubitsky and Stewart
[22], at Hopf bifurcation we gain an extra S! symmetry from the fact that our
system is autonomous, and this may cause problems with the discretization.
However, the simplicity of the dependence on the time derivative allows us to
work in spaces of finite Fourier sums:

k
P = {Zamcosmt+bmsinmt: Am s bm GE}.

m=0

In fact, the calculation of wy,, and By, can be performed in Py .

For other continuous symmetries, we can think of the whole group as split
into the semidirect product of a continuous and a finite group I' = I'c x, I'y.
For many important problems, the continuous group can be represented as act-
ing on a I'-symmetry-respecting basis (e.g., Fourier series for TX, spherical
harmonics for SO(3), see e.g. Dellnitz [16] and Gekeler [19]). In the case that
finite products of elements in this basis can be expressed or approximated as
finite sums of other elements in the basis, we can use finite bases to describe a
discretization preserving the full symmetry. We therefore assume for the rest of
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this section that our problem is equivariant under some finite symmetry group
I.

In order to preserve equivariance in the discretized iteration process, we use
the technique developed in Bohmer [11, 12]. We now give a short outline of
necessary results adapted from [12].

2.2. Consistently differentiable discretization methods. We consider discretiza-
tions of (5) indexed by 2 € H. We use linear bounded restriction operators
n" and #" mapping E x R and E into the respective finite-dimensional dis-
crete spaces E" x R and E*. We assume n* actson z = (u,1) € E xR by
transforming u € E into a discrete u” = n"u € E"  leaving A unchanged. Let
nh, @t satisfy:

n":ExR— E"xR, #":E— Eh,
(15) nhz =nh(u, A) = (nhu, 2) and |7t z|| = ||z|| + O(K?| z|g,),
%91l = 191l + O(A? |1l ,)

for fixed z,y in appropriate subspaces E;, E;. The O(h?) term in n*z is
due to n*u. The operator ® in (5) is transformed into a discrete operator
®" : domain(®") c E* — E". If E is defined for a Sobolev norm with
derivatives of order |i|+ j < n, then E; requires a norm with derivatives of
orders |i|+ j < n+p. In such a case we choose n such that ® is continuous
on E. For simplicity, we do not distinguish between E, E and their smooth
subspaces E;, E;. Strictly speaking, the latter are needed for consistency and
convergence in (15) and (16), but these conditions may be relaxed by using
weak discrete Sobolev norms as indicated in Hackbusch [26]. By expanding ®
in a Taylor series, we can ensure that, for many discretization methods, ®” is
r times consistently differentiable:

Ot (nhz) = Ah®z + O(h?|z||g,) for z € Egand for j=1,...,r,
(16) (Dh(")(nhz)ﬂhzl . '-nhzj — fth[d)j(z) +e(h?, 2)]z, oz
forz,z,...,zj€E,

where e(h?, z) represents a j-linear operator and
le(h?, 2)I| < O(h®||z]|E,).

Since the operators ®"U)(nhz)n" ... 7% and #*®U)(z) in (16) act multilinearly
on zy, ..., zj,thesame is true for ¢(h, z) by definition. Example calculations
showing this are described in [9]. A combination of (16) with the usual stability

2" = 2" < Cll@" (") — @)

for z", Z" near the solution, yields the intended convergence.

2.3. Equivariant discretization methods. We choose discretization methods
which preserve the I'-equivariance of the original problem. In §1 we discussed
the matter of reducing the problem to a finite-dimensional system with discrete
symmetries and finite group I'. Indicating the action of y € I' on elements in
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E, E, E" and E*, respectively, with the same y, we have
17 O(yu, A) = y®(u,A) forall yeT.

For the discretization " we have to choose E* and E* such that, e.g., u" €
E" implies that yu® € E* for all y € I'. Furthermore, ®" and the restriction
operators 7", 7" must be defined such that they commute with the action of
I' on the appropriate spaces, i.c.,

Qh(yut, 2) = y@h(ut, 2),
(18) mhyul = yrhuh | whyah = yrhih
forall y e I and u* € E*, it" € E*.

This is achieved by approximating the I'-equivariant terms of, e.g., function
values, derivatives or integrals in an appropriate I'-equivariant way. As exam-
ples, let us study the evaluation of u, the Laplacian Au and a function g(Vu)
for functions defined on a domain Q C R? admitting a symmetry group I.
The set of gridpoints Gy, constituting E# (and E"), and the approximations
A, Wh and u* for A, V and u respectively, satisfy

YGh = Gy, AMyul = yAtuh,
Vhyuh = yVhut | ub(y(x, y)) = yu(x,y)VyeT.

Hence, we can use the five-point star approximation for finite difference ap-
proximation of the Laplacian A on Q = [0, 1]> (T = Dy), or the seven-point
star for a regular hexagonal grid (T = D). For g(V"u) or u" we must do ap-
proximations using these I'-invariant stars. In this case we have convergence of
order p = 2. The discrete inner products, e.g. (22), have to be approximated
with the same order, so for Q = [0, 1]* a trapezoidal rule with appropriate
weights on the boundary points will work.

In the case of finite elements, the finite-dimensional subspaces should be
chosen equivariantly. If variational approaches to (17) are studied, the I-
equivariance is directly inherited by the discretizations. If finitely many func-
tionals are equal to zero, the corresponding discretizations must again be I'-
equivariant.

By these considerations we indicate how (17) can be equivariantly discretized.
Detailed examples are studied in Allgower et al. [4, 5].

Since solutions of arbitrarily discretized ®”*(u*) = 0 will not respect any
symmetries of the problem, we have to formulate ®* with respect to a basis
maintaining the symmetry, a so-called symmetry-respecting basis; see Stiefel-
Fissler [31], Allgower, Bohmer, and Mei [4, 5], Allgower, Bohmer, Georg, and
Miranda [3], Georg and Miranda [20] and Douglas and Mandel [17]. Then we
are able to numerically define fixed point subspaces within E# and Eh:

(19) EME =Fix®(E" :={z" e E" | " =6z Vo € 3}.

As a consequence of (18) we are able to consider the discrete problem ®*(z*)
on a fixed point subspace (19) of subgroups X < T, i.e., we have that ®* and
all its derivatives (and remainder terms) evaluated at z” are Z,s equivariant,
with X, being the isotropy subgroup of the point zh . If ®" is stable or r
times consistently differentiable, the same is true for ®#-%.
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Throughout, we have assumed that we study the original problem in its sin-
gularity at (0,0). The discretization ®" will usually not be singular at (0, 0),
but at a slightly perturbed point, in particular, the bifurcation will occur at some
At ~ 0. Again, we use coordinate transformations to shift the singularity of @®”
to (0,0). Let z, ¢ or ¥ be solutions of

®(z) =0, ¥'(0, 0)p = g or P'*(0, 0)y
then there exist discrete solutions z*, ¢", " of
d"(zh) =0, ®(0, 0)p* = n"g or P**(0, O)y* = 7%,
see Allgower and Bohmer [2], such that
nhz -zt = Oh?), o — " = O(h"), 7"y — " = O(h®).

The O(hP?) terms are also elements in E”-Z. For more details, see [9].

2.4. Equivariant discretization near singularities. We shall restrict our discus-
sion to discretizations of bifurcation problems at (0, 0) with the following
properties:

(a) 6;9(0,0)=0;

(b) The discretized problem has the identical symmetry
(20) and a bifurcation at (0, 0), usually after a shift;

(c) 0;9"(0,0)=0;

(d) The kernels of @}, and d>g' have the same dimension.

(Since the higher dimensions of these kernels are generically caused by symme-
try, this and our assumption in §1 imply 20(d).) We need the results in §§2.1
and 2.2 to be able to formulate an appropriate discretization reflecting the bi-
furcation scenario close to singularities. This singularity may be analytically or
numerically determined in the sense that we know either

Kef(d)i)):[l//],,,, 5 Wm]XR, Ker( 6*)=[V71a'“ s '/7m]

or approximations
(1) Ker(@})=[yf, ..., vh] xR, Ker(@f"") = [, ..., i)

with
wh=ntyi+ Oh"), gl = 7" + O(P).

Working with an equivariant discretization method, we may assume that y/,."
and y?i" have been determined in the same fixed point subspaces as the y; and
W; respectively. Furthermore, our assumption that the problem is a generic
I'-equivariant problem means that the kernel of the linearized operator is of a
generic size, i.e., the dimension of an absolutely irreducible representation of I"
for the case of one parameter.

In §1 we described a truncated Liapunov-Schmidt method, defining the B
and wy . By means of the properties of the operator @, the projections Q and
Q have to be transformed into a discrete setting. We now discuss these discrete
projectors Q" and Q.
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A discrete realization of Algorithm 2 is prevented by the fact that the usual
stability of ®”, and hence convergence, breaks down near singularities. This
difficulty is studied in Bohmer [11, 12] and Bohmer and Mei [13]. However,
the situation here is much simpler, owing to the assumption of genericity in the
(symmetric) discrete setting. In [11] and [13], we had to use extension operators
for the case of Ker(®;) being of a different dimension than Ker(d>g' ). We use
the discrete pairing or inner product (-, -)* related to (-, -) by

(22) (mhu, aho)" = (u, v) + ORP |ullsvlly),

where | - ||s indicates the smooth norm. Corresponding results hold in £ and
E* as well. We assume that the original and discrete pairings (-, -) and (-, -)*
are I'-invariant,

(23) (u, v) = (yu, yv), (ut, v")t=(yut, yo")" vy €T,
by defining, if necessary, a symmetrized version
[, v]:= Z(?u yv)
yerl
for the finite group I', where |I'| is the order of I'. We define

= Ker(®}') & Im(®4'*) =: Nt & M*,
E Ker(dD”’*)eaIm(d)’”) =: N" @ M".

Since all the kernels and images in (24) are I'-invariant subspaces, the orthog-
onality is also valid for the I-invariant pairing (-, -)* . The next proposition
relates the continuous and discrete projectors, and is stated without proof in
[9]. Consider

(24)

Qu:= z, |(‘/Ila )'//is

Q(u A) = Qu for (u, )eExR,
Qu:= a-Y! 1(wz,u>wxf0rueE
QMh = uh - (yl, utyhyl,

Qhuh, 2) = Q"u" for (u*,A) € E* xR,
Qrat .= ok — T (gh, athgh for all 2t € Eh.

Proposition 4. Under the assumption that (21)-(23) are satisfied, the projectors
Q. Q, Q", Q" are T-equivariant projections satisfying

ntQz — Qhntz = O(h?||z])),

#hQz - Q"2 = O(h?|2])),
with the error terms also equivariant under T". The same is true for the projection
I-Q.

Proof. Since, for each y € I', the {yw;}", represent a basis for Ker(8,®o),
we have

m m

Qyu=yu— > (i, vhwi = yu— Y (ywi, yuyyyi = yQu

i=1 i=1
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and so on. Furthermore,
m
n"Qu— Q'n'u = Z(( Wi, u) — (w}, 7'u) )n"v/i

+(yt, Tttt (nty; - w,.h)) = O(h?). O

Summarizing, we have discrete operators that are close to ®, Q and Q up
to I'-equivariant perturbations of (relative) size O(h”).

To obtain stability of the numerical solutions near the singularity in (11),
(12), it is necessary to modify the conventional stability by assuming that

(25) O |pgn - M" — MP = DI (M)

is boundedly invertible, uniformly for small 4, in the appropriate norms. Re-
sults of this type have been obtained for discretized problems by Brezzi, Rappaz,
and Raviart [14], Esser [18], Grigorieff [25], Reinhard [30], Stummel [32, 33],
and Vainikko [35]. To get the k-jets, ji , for the discrete problem, we merely
truncate the Taylor series for the discrete operators. The numerical version of
the iterative Liapunov-Schmidt algorithm follows.

Algorithm 5. Discrete Truncated Liapunov-Schmidt Method.
Initialization. Define the function w’ : Ker(®4') — Im(®4™*) b

wl(”h) = 0 )
for all n" € Ker(®%).
Iteration. For £k =2, 3, ... until determinacy, do:
(26) B(n") == (I - QM R" (" + wi_, (")),

where B} is a polynomial of kth order in n* from Ker(®}') to Ker(®k'*).
We generate the next function w,’(’ with the formula

(27) wp(nh) := - QD) Qi R* (n* + wi_, (")),
where w is a kth-order polynomial from Ker(®2') to Im(dk'™*).

The following result shows the required convergence of the discrete approxi-
mations to the true bifurcation equation. Thus, we are assured by the stability
and k-determinacy of B that (for small enough 4) B =0 and B/'f +1 =0 give
the same bifurcation scenario.

Theorem 6. Let ® and its discretization ®" satisfy the following conditions:

(i) r times consistent differentiability, see (16),

(ii) ®" is a T -equivariant discretization for ®, see (18);
(iii) the singularity satisfies (20) and (21);

(iv) the pairings are chosen to satisfy (22) and (23);

(v CDS’ satisfies the modified stability, see (25).
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Then the wy, By from Algorithm 2 and their discrete approximations from
Algorithm 5 satisfy

(28) llwg(x"n) — atwi(m)ll = OWP|Inl)), 1BE(x"n) - Be(n)l| = OA?||nl)

with the differences being T-equivariant. The norm for the w,’(' approximation
is given by (23); for B! we use (3). Furthermore, By and B} are elements of
Fr.

Proof. We proceed by induction. Obviously, we have that, with the multi-index
V ’

k+1
: . 1 hw v
(29)  Jenr R (1 + wh(nh) = jean (Z @ (0t + wln") ) .
lv|=2
In (29) and below in (30), (31), we may also omit all the discretization param-
eters h to obtain the corresponding formulas for the original problem. To ob-
tain (28), we have to compute the derivatives in (3) for By, (n) and B,’c' +l(7th11)
as polynomials in # of order k + 1 with respect to n. Therefore, only deriva-
tives up to order k + 1 are of interest. Since the defining terms for B;,,; and
B!, except n, wy(n) and n*, w}(n*), are independent of n and 7", re-

spectively, see (6), (9), (11), (26), (27), (29), we exchange the derivatives a%;f ,

W‘:‘W of the relevant operators and need only study, for the multi-indices i and

Js

9 ; N
(30) (aﬂh)i(ﬂ”wi’(ﬂh))’, o<, jl<k+1,

where we identify n € Ker(®,') and 5" € Ker(d>g') with elements in R™*!,
For any i = (iI; e im+l)’ .] = (jla (R ajm+1) and ll|’ |.]| < k+ 1 » WC
obtain

9i 0 @f iy > j; for at least one /,
(31) g/ =y =,
n Ghmn =t if i < jj for all 1.

In particular, we find with #*w; = w? = 0 and #* = 5, using (16) and
Proposition 4, that

o'

g7 (B2 (") = Ba(m)
", vl )
= (1 - 0")5®% a,,,(rnz (I - Q)5%; W(n)z
h @)k _ 9
(32) = (1 - 0" (@} Ont - ol g’

+(T - 0N~ (1 - Q1300 2
= ok |nl).

0 6’71
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Similarly, by (12), (27), (16), and Proposition 4,

Gy (W ehn) = wa ()
(33) = QM@K O joy (@ Pt - ﬁ"cb&fh%(n)z
+0H@}) 104" - Q@) 0ol 5@ 7 n)

= O(h”|Inll) »

where in both cases the O(h?||n||) terms are I'-equivariant.

An inductive combination of (26), (27), (29)-(33) finally gives that B,’(‘ .
is a small I'-equivariant perturbation of B, in the pseudonorm (3). The
corresponding estimates for derivatives of w}  (n"#) — wy,1(n) with respect
to n are valid as well, but are not really important.

By, and B,’(‘ 41 are both I'-equivariant since they are defined by I'-equi-
variant operations based on the appropriate identification of 5 = (a, 1) €
R™+!. Hence, we only have to show that for By,; and B,’(' +1 We have, for

example,
Bk+1(0’ 0) = 0’ 8z:tBk+1(0a 0) = Oa a).Bk+l(os 0) =0.

For B,,; and B,’(' +1» this is an immediate consequence of the fact that their
linear terms are annihilated by the projection (I — Q)ji,; . O

3. HOPF BIFURCATION FOR THE 2-D BRUSSELATOR EQUATIONS

In this section we consider an example application of the numerical Liapunov-
Schmidt technique to a Hopf bifurcation problem of a partial differential equa-
tion on a square domain. We consider an example from the dynamics of chem-
ical systems. After discussing the linear problem and the symmetries of the
nonlinear problem, we use null space coordinates in C2 giving two coupled cu-
bic equations which generically determine the branching behavior. This normal
form is investigated using results of Swift [34], and we obtain the bifurcation
behavior at a variety of different spatial mode numbers, with both Neumann
and Dirichlet boundary conditions.

3.1. The Brusselator equations. The following reaction-diffusion system pro-
posed by Prigogine and Glansdorff [29] is a model for the Belousov-Zhabotinskii
reaction; although it is not a very good model, it is simple enough to be amenable
to analysis while showing a wide range of dynamical and bifurcation behavior:

ou; = Auy+A—(B+i+Duy +uuy in Q:=[0, n] x [0, n],
1

(34) Oy = dAuz + (B + A)uy — ulu,,

where 4,d € (0, +o0), B € [0, o) are parameters. For convenience, we
consider an extra parameter A € R as a bifurcation parameter. We take the
boundary conditions to be Neumann (8,u; = 8,u, = 0) or Dirichlet (u, =
A,uy; = (B+A1)/A) on 9Q, where 8, represents the normal derivative along
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the boundary of Q. It is easy to verify that this problem has a trivial solution
(35) (w1, uz) = (4, (B +4)/4).

For simplicity, we fix the parameters 4, B and d and consider bifurcation of
equation (34) along the trivial solution curve with respect to A. To this end,
we substitute

(w1, u2) « (4, (B+A)/A)+ (u1, uz), t — (wo+71)t

(the frequency g is to be specified later) and derive the following equation
from equation (34):

(36) D(u, A, 1) :=[L(B)u — wodu] + R(u, 4, 1),
where u:= (u, uy)7,

_ 2
(37) wm= (A5 W ).

and

(38) R(u,A,1):= (_ll) (BTTA-u% + 2Au uy + Wy +lu1> — 1du.

The operator L maps from E := (C2**(Q))? to £ := (C(Q))?, where C3*(Q)
consists of twice differentiable functions on Q satisfying a Holder condition
and homogeneous Dirichlet or Neumann boundary conditions. In particular, we
consider bases for Cj,, Cy , see §1.1.3, with coefficients in E, E , respectively,
to be

{1, coslt, sinlt: I=1,2,...}.
Obviously, the operator ® maps Cj}, into C,r and
®0,4,7)=0 forall 4, 7€[0, c0).

Considering eigenfunctions of the Laplacian —A on the unit square with Neu-
mann or Dirichlet boundary conditions, one sees easily that if for a given con-
stant do > 0 the system

(39) B—1-A4*-(1+dyc=0,
(40) (1 + ¢)(A% + doc) — doBc > 0

has solutions (4o, Bo) € R2 for exactly one eigenvalue ¢ := (k*+/%)n2, k, | €
N of —A, then the operator

(41) 8,® := 8,0(0, 0, 0) = L(By) — wody

with @ := \/ (1+ ¢)(A3 + doc) — doBoc is singular. We assume that the eigen-
value ¢ has multiplicity 2, and so the null space Ker(9,®o) is 4-dimensional.
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Moreover, we can write

(42) Ker(auq)O) = [‘//1 » Y2, V3, W4]
with

_ 1 (Bo—-1-c A4
P = (Plj)lj lZ"'a)—o( _BO _doc_A(z) s
V1 1= (ercost + Peysint)pur, Y2 :=(~Pejcost +eysint)gy,

w3 = (e;cost + Peysint)d;, ws:= (—Pejcost+ e sint)dy,

=) = ()

and for Dirichlet boundary conditions

where

dri(x, y) :=sinkxsinly, @ (x,y):=sinlxsinky,
or for Neumann boundary conditions
ori(x,y) :=coskxcosly, ¢u(x,y):=coslxcosky,
see [10]. The null space of the adjoint operator 8,d*(0, 0, 0) is given by
(43) Ker(9,®p) = [¥i» ¥35, v3, ¥l
with P;; = -By/wo and

i = p-(PTescost +eysint)py;, 3 = p-(—eycost+ PTeysint)y,
Y3 = P_Z,(PTeZ cost+eysint)y, ;= Pi( —eycost + PTe;ysint)gy.

This gives
(44) (W:’ W])zdlj’ l’.]=1a'a4
with the L2-product

L[ ( 4

(45) (u, v)=ﬁ , \z2

/(u v)dx dy) dt
Q

in C,,, where (-, ) represents the Euclidean product in R%. Since 8,®, is
a Fredholm operator with index 0 and its zero eigenvalues are of semisimple
type, we have the decompositions

(46) Car = Ker(8,®0) © Im(8,D0), C3, = Ker(8,Do) @ (Im(9,®0) N C3 ).

Define the D, x S!-equivariant projection Q : Cy, — Im(8,®¢) by

(47) Z V/z ) y’l 5 w e C21t~

Equation (46) shows that Q is a projection from C), into Im(8,®0) N C}, .
Moreover, Q = Q| e
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3.2. Equivariance of the equations. The symmetries of the domain together with
time-translation give the problem a D4 x S! equivariance. This will be utilized
to reduce the computational work. The D4 action on Q = [0, n] x [0, n] is
generated by action of the reflections R and S,

(48) R(x,y)=(y,x),S(x,y)=(7z—x,y)V(x,y)eQ.

The action of D4 x S! on C,, is given by
u(X,.V,t) _ u(‘s_l(x’y)at_e)) 1
6. 0(s 7 ) = (oo 1x 7y 1)) ¥ (6 O eDexS"

This action induces an action on R*, coordinates in the null space  o;y;.
Since

Strr = (—1)*éps, Rows = ik
Séi = (=1)du, R = i

hold for Neumann boundary conditions (and similarly for Dirichlet), the in-
duced action of D4 on (a;, ..., a4) is generated by

S(al s a2, 3, a4)T = (('—l)kal 5 (_l)kaz 5 (—1)103 5 (_1)1a4)T

and
R(al , 2, A3, a4)T = (a3 y 04, O, aZ)T-
The action of S! induced on (ay, ..., a4) is
a cosf sinf 0 0 a
.| = —sinf cos@ 0 0 a
Olas ]|~ 0 0 cosf® sinf | |a;3
ay 0 0 —sinf cosf a4
In particular,
(49) Tra=-a, Typa=(x, —ay,ay, —a3)T.

Hence, the symmetry group of the (reduced) bifurcation equation depends on
the parity of (k, /). We have the following possibilities (the genencﬁy of which
is discussed at length in Crawford [15]):

e Both k, !/ are even, implying
Sa = a.

Together with (49) we see that Dy x S acts reducibly on R*.
e Both k,/ are odd, implying

Sa = —-a.

Here we also have D4 x S! acting reducibly on R*.
e (k,I) = (even, odd) (or (k, /)= (odd,even)), implying

Sa = (al » @2, —Q3, _a4) (Or Sa = —(al y @2, —Q3, _a4))'

In this case D4 x S! acts irreducibly on R*.
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Note that the parity of the modes can also have an important effect on the
nonlinear terms in the normal form for steady state bifurcation, in particular
in mode interactions (cf. Gomes [24], Crawford [15]). We limit our discussion
to the third case, where we can use generic D4 x S! bifurcation theory. Work
is underway to apply this method to the other cases [8].

3.3. Results. The details of the calculations to produce Bj, the cubic truncation
of the reduced equations, are given in the Appendix. Recall from Swift [34] that
the normal form for D, Hopf bifurcation is determined to cubic order by three
complex coefficients U, V', W, and can be written

(50) 0=zy[u+i¢p+ U(zs P +|2- ) + V|z, 1+ Wz, 22

with the equation for z_ obtained by interchanging z, and z_. The variables
z,,z_ and u, ¢ represent state and control variables, all of which are zero at
the bifurcation point. In this case the null space is parameterized by (z,, z_) €
C?, and the actions of the group are given by

R(Z+, Z—) = (_iZ— ) iZ+) ’ S(Z+ ’ Z—) = :|:(Z_ > Z+),
TG(Z+’ Z—) = ei0(2+’ Z—)'

By defining
zy =ay+ag+i(lay —a3),
z_=a;—ag+i(ay + asz)

and changing to these coordinates in C2, we obtain the normal form (50) at
cubic order. We remark that although the work of Swift involves analyzing a
dynamical normal form (i.e., Z, replaces 0 on the left-hand side of (50)), all
results regarding branching of periodic solutions carry over to our steady state
case. In order to get dynamical information as well (for example, branching of
quasiperiodic solutions), it is necessary to perform a center manifold reduction
of the original equations.

For our case, it follows from equations (54) and (55) (in the Supplement
section) that the parameters in (50) are given by

u=24/2,
¢ :=1+doc/24,

implying that (u, ¢) is uniquely determined by (4, 7). The nondegeneracy
conditions for determinacy of directions of branching (i.e., not including their
stability) are:

Re(U + V/2+W/2) #£0,
Re(U + V/2 - W/2) #0,
Re(U+V)#0,

V2 # |W|* # [Re(VW)].

(51)

R, :
R, :
Ry

The real variables R,, R, and R, determine the branching of the three solu-
tions with the three isotropy subgroups with 2-dimensional fixed point spaces;
the Vertex, Edge and Rotating waves referred to by Swift [34]. These are peri-
odic solutions branching from the trivial solution with the maximal symmetry
types indicated in Table 1. The symmetry of vertex (resp. edge) waves is the
reflection R (resp. S). The symmetry of rotating waves relates to its name,
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TABLE 1. The quantities R,, R,, R, determine the
branching of solutions with the three maximal isotropy types
as the parameter u = A/2 varies. The D, correspond to
symmetries generated by reflection in two planes coupled with
a temporal phase shift of half a period for one of them.

Name (z4, z—) | Symmetry
Edge oscillation | —u/R, | z4 = z_ D,(1)
Vertex oscillation | —u/Ry | z, =iz_ | Dy(2)
Rotating wave —u/Ry | z_= yM

i.e., the rotation generated by R -S combined with a temporal phase shift of
one quarter of a period.

Of special interest in this system is the possible existence of branches of solu-
tions with submaximal isotropy, i.e., branches not predicted by the equivariant
Hopf branching lemma of Golubitsky and Stewart [22]. In this system, there
can be such solutions with no symmetry bifurcating from the trivial solution if
the following condition is fulfilled:

V2> |W|* > |Re(VV)).

We concentrate on computing the Hopf bifurcation of the (1,2) : (2, 1)
spatial modes for the Brusselator equations with 4y = 1, several values of dj
and using two different (homogeneous) boundary conditions.

3.3.1. Neumann boundary conditions. In order to validate the method, we chose
first to calculate the results for Neumann boundary conditions, and verify them
against the analytical results obtained in [10]. All the computations are done
with double precision in the finite difference methods and using a trapezoidal
integration rule with adapted weights for the points on edges and corners. The
valuesof U, V,and W inthe reduced bifurcation equation (50) were obtained
for various values of the discretization parameter at Hopf bifurcation with
A=1, dy=1/5,and as can be seen in Table 2. Table 3 shows what these values
of the coefficients imply for the various quantities determining the branching
behavior. In this case, we can verify that the assumptions of 3-determinacy and
stability are satisfied for small enough # ; the nondegeneracy conditions (51)
are satisfied. There is excellent h2-convergence of the numerical predictions to
the exact results. For example, if we denote the error of numerical approxi-
mations of R, as a function Err(k, R,), the first column of Table 3 shows
Err(1/10, R,) = 0.0202, Err(1/20, R,) = 0.004, Err(1/40, R,) = 0.00102,
which in turn indicates the A2-convergence. As can be seen from Table 3, for
Neumann boundary condition Hopf bifurcation of the (1, 2) : (2, 1) modes, all
branches of solutions exist only for x (and therefore 1) positive. We can also
see that the conditions for existence of solutions with submaximal symmetry
are satisfied.
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TaBLE 2. The results with Neumann boundary conditions for
the (1,2) : (2, 1) Hopf bifurcation at 4 = 1, dy = 1/5.
The h refers to the step size for discretization, and the reduced
equation is determined by the three complex coefficients U,
V and W . The predictions are calculated via fourth-order
polynomial extrapolation in /. The exact results are taken from
Ashwin and Mei [10].

h U vV 4

1/10 | —1.40293 — 0.646856i 0.811598 +0.252318/ —0.0618543 + 0.169199i
1/20 | —1.42061 — 0.625768i 0.802736 + 0.225045; —0.0495027 + 0.187299i
1/30 | —1.42335 - 0.621785i 0.800934 + 0.220424; —0.0470687 + 0.190293i
1/40 | —1.42428 — 0.620388i 0.800295 + 0.218836/ —0.0462092 + 0.191317i
pred. | —1.42545 - 0.618593; 0.799470 + 0.216815;/ —0.0451025 + 0.192616

[ exact | —1.42545 — 0.618590; 0.799467 + 0.216817;  —0.0450990 + 0.192614: |

TABLE 3. These are the real quantities for Neumann
boundary conditions and determine the direction and amplitude
of branching. They are shown for various values of
the discretization parameter. Note that the nondegeneracy
conditions (51) are satisfied for the exact solution and all the
listed approximations. Also note that the condition |V|2 >
|W|? > |Re(VW)| for the existence of submaximal solutions
is satisfied.

h R Ry Ru Vi W Re(VW)
1/T0 | —1.02806 —0.966210 —0.591337 0.722356 0.0324544 —0.0075087
1/20 | —1.04399 —0.994490 -0.617873 0.695031 0.0375316 0.0024132
1/30 | —1.04642 —0.999357 —0.622424 0.690083 0.0384272  0.0042464
1/40 | —1.04724 —1.00103 —0.623990 0.688362 0.0387376  0.0048861
pred. | —1.04827 —1.00316 —0.625983 0.686160 0.0391346 _ 0.0057052

[ exact | —1.04826 —1.00361 —0.625983 0.686158 0.0391344  0.0057069 |

3.3.2. Dirichlet boundary conditions. The only part of the reduction that needs
to be changed for the imposition of Dirichlet boundary conditions (u; = u; =0
on 9Q after shifting) is in the solution of the linear problems detailed in the
Appendix. Summarizing the results in Tables 4 and 5, we can say that the
branches of rotating waves bifurcate in the direction A < 0 while the other two
are still bifurcating in the direction 4 > 0. Note that in all the computations,

the condition for existence of solutions with submaximal symmetry are not
satisfied.
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TABLE 4. The results, this time for Dirichlet boundary
conditions; 4 refers to the step size for discretization, and
the reduced equations are determined by the three complex
coefficients U, V' ,and W . The predicted values are calculated
via extrapolation of the results for # = 1/10,...,1/40 to
h=0.

h U V w

1/10 | —1.09323 — 0.720547; 1.29119 —0.018280i —0.173970 — 0.068473
1/20 | —1.10613 — 0.716250; 1.28505 — 0.056069i —0.183272 — 0.057232
1/30 | —1.10866 — 0.715232; 1.28371 — 0.063449i —0.184924 — 0.054831i
1/40 | —1.10957 — 0.714853; 1.28323 — 0.066101i —0.185504 — 0.053953i
pred. | —1.11078 — 0.714341i 1.28257 — 0.069612; —0.186258 — 0.052777:

TaBLE 5. The real quantities determining the direction and
amplitude of branching for Dirichlet boundary conditions at
various values of the discretization parameter.

h Ry Ry Ry V|2 |2 Re(V W)
1/10 | —0.534623 —0.360652 0.197957 1.66750 0.034954 —0.223377
1/20 | —0.555247 -0.371974 0.178915 1.65450 0.036864 —0.232305
1/30 | —0.559269 —0.374344 0.175052 1.65196 0.037203 —0.233912
1/40 | —0.560712 —0.375208 0.173654 1.65104 0.037322 —0.234477
pred. | —0.562622 —0.376363 0.171793 1.64984 0.037478 —0.235217

3.3.3. Varying dy. Table 6 shows an example of predicted real branching co-
efficients for (1, 2): (2, 1) mode Hopf bifurcations with Dirichlet boundary
conditions, for a range of values of dy, with A =1.

TABLE 6. By changing dy with 4 = 1, we display the predicted
real quantities determining branching at Hopf bifurcation
with Dirichlet boundary conditions. These are calculated by
extrapolating the results for # = 1/10,... ,1/40 to h = 0.
Note that there are higher codimension bifurcations occurring
as we change dj ; for example, R,, changes sign near dp = 0.17
implying that the branch of rotating waves changes criticality
nearby. When R, = 0, the branching is determined by fifth-
order terms.

dy R, R, Ru V2 W2 Re(VW)
0.02 | —0.79909 —0.80675 —0.27259 1.3938 0.0014754  0.027640
0.04 | —0.77077 —0.76450 —0.25075 1.2848 0.0011589  0.0090780
0.06 | —0.75175 —0.73094 —0.23063 1.2167 0.0013566 —0.0086017
0.08 | —0.73854 —0.70214 —0.20973 1.1805 0.0021347 —0.026628
0.1 | —0.72865 —0.67513 —0.18580 1.1724 0.0036326 —0.046176
0.12 | —0.71953 —0.64686 —0.15605 1.1918 0.0060858 —0.068579
0.14 | 070772 —0.61322 —0.11631 1.2410 0.0098723 —0.095559
0.16 | —0.68738 —0.56750 —0.059525 1.3258 0.015597  —0.12954
0.18 | —0.64722 —0.49729 0.027399  1.4563 0.024249  —0.17417
02 | -0.56262 —-0.37636 0.17179  1.6498 0.037478  —0.23521
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A NUMERICAL LIAPUNOV-SCHMIDT METHOD WITH
APPLICATIONS TO HOPF BIFURCATION ON A SQUARE

PETER ASHWIN, KLAUS BOHMER, AND MEI ZHEN

4. COMPUTATION OF THE LIAPUNOV-SCHMIDT REDUCTION

We provide here the details of the computations performed to provide the reduced
bifurcation equations for Brusselator Hopf bifurcation. We use splittings and null
space projections as defined in § 3. For A, 7 in (37)-(39) and for any

4
(53) n:=(2,4,7) = (D aiti, ), 7) € Ker(8u®o) x R? = Ker(®p),

i=1

we find that the truncated bifurcation equations to second order are given by

BZ(z) Ar T)

4
(I = QiR aithi, A, 7)

1=1

(- Q){( _11 8 ) '\gai'/’-‘ + (_11) [ﬁ-g(gaﬂb})z

4 4 4
+2AO(Z ai!ﬁ})(z ait/),-z)] - 10 Z aﬂ/’i} ,
i=1 i=1 i=1

(54)

where we have used the notation ¢; = (¥}, 1/).-2)T and j; truncates to the polynomial
of degree 2 in the Taylor expansion of @ at (0,0,0) with respect to a;, A and 7. In
view of the orthogonality properties of {¢x:}, we can write

4 4
By(z2,\,7)=(I-Q) [( __11 g ) /\gai'pi - 1'3:;0&%]
4 4
<w;, (fl)AZaiws -r0() a‘ws)> ¥
=1 i=1

{[(a1 = a2(P11 = P12))A = 21a3]¥1 + [((P11 — Priz)ay + a2)A + 21an )Y
(a3 — a4(P11 — P12))A — 2ra4)ys + [((Pi1 — Pi2)as + aq) X + 27as]vs}

4

i=1

+M|0-‘

1
(=)
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