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DEFECT CORRECTION
FOR TWO-POINT BOUNDARY VALUE PROBLEMS

ON NONEQUIDISTANT MESHES

J. C. BUTCHER, J. R. CASH, G. MOORE, AND R. D. RUSSELL

Abstract. New finite difference formulae of arbitrary order are derived for

the special class of second-order two-point boundary value problems y" =

f(x, y(x)), a < x < b . Variable mesh spacing is possible, and the required

accuracy is achieved under a very mild mesh condition. A natural defect cor-

rection framework is set up to compute the higher-order approximations.

1. Introduction

In this paper we develop high-order finite difference formulae for solving the

second-order two-point boundary value problem (TPBVP)

(1.1) y"(x) = f(x,y(x)),    g(y(a),y(b)) = 0,    y:[a,b]-+RN.

For the corresponding initial value problem

(1.2) y"(x) = f(x,y(x)),    y(0)=y0,    y'(0) = y0,       0 < x < xF,

the most widely used numerical technique is to convert it to an 'equivalent'
first-order system

(1.3) y'(x) = f(x,y(x)),        y(0) = y0

and then to use a standard software package. The conversion of (1.2) to (1.3)

is appropriate for initial value problems first because storage is not normally a
crucial factor, and so an increase in the dimension of the system is not a serious

consideration, and second because the first derivative of y is needed from the

beginning in order to advance the solution from step to step. However, for

the TPBVP (1.1) the situation is quite different. If the solution is computed
numerically, the storage space can become a major consideration. Treatment

of the high-order equation directly, rather than conversion to the corresponding

first-order system, can be considerably more efficient, e.g., as evidenced by the

success of the collocation code COLSYS [2] for solving TPBVPs. Thus, it is

natural to derive numerical methods tailored to this special form.
A major motivation for developing methods for second-order TPBVPs is

that such problems arise when applying a method of lines procedure for solving

hyperbolic and parabolic partial differential equations in one space variable, or

Received by the editor September 22, 1992 and, in revised form, May 14, 1993 and April 26,
1994.

1991 Mathematics Subject Classification. Primary 65L10.

©1995 American Mathematical Society
0025-5718/95 $1.00+ $.25 per page

629



630 J. C. BUTCHER, J. R. CASH, G. MOORE, AND R. D. RUSSELL

elliptic equations in two space variables. In such contexts the development of

efficient numerical methods on variable meshes is very important. A number of
steps in this direction have been made, e.g., see Skeel and Berzins [27], where a

finite element method is given, which is adapted for TPBVPs with an additional

singularity arising by applying cylindrical or spherical symmetry to the PDE.
While an eventual goal would be to extend our approach to handle general

second-order TPBVPs for which y'(x) appears explicitly, the form (1.1) does

arise naturally, e.g., from discretizing first-order evolution equations du/dt +

Au = F(u) in time t, where Au = d2u/dx2 and F(u) is a nonlinearity in u
(and not ux), as for certain reaction-diffusion equations (see Jolly [18]) or for

the complex Ginsburg-Landau equation [15].
Many approaches to solving (1.1) have appeared, viz. [7, 12, 13, 14, 17, 23],

which are in some way connected to the approach here. However, many of

these schemes are based on a uniform mesh, while an important property of

the schemes we describe is that a variable mesh is allowed. Perhaps the sim-

plest scheme for the solution of ( 1.1 ) would be to replace the derivative term in
(1.1) by an appropriate finite difference approximation. Manteuffel and White

[23] have recently analyzed this approach and have shown that centered dif-

ference schemes give second-order convergence even on nonuniform meshes.

This important result has a bearing on the schemes we will derive in that we
develop efficient high-order methods which appear to retain the high order of
convergence for variable mesh spacing. Some high-order methods for the so-

lution of (1.1) have been developed by Daniel and Martin [14]. They used a

finite difference approach based on Numerov's method and increased the order

of the basic method using iterated deferred corrections. Their approach can be

regarded as an extension of Pereyra's method for first-order two-point boundary

value problems [21, 22, 25] to the special second-order system (1.1). One of the

present authors has recently proposed a different deferred correction approach
to the solution of first-order systems of TPBVP [5, 6], based on mono-implicit

Runge-Kutta formulae [9, 10]. Theoretical and numerical results indicate that
this new approach is competitive with existing methods.

In what follows, we extend this basic approach to the special TPBVP (1.1).

We again apply a deferred correction approach, using a natural generalization of

mono-implicit Runge-Kutta formulae to second-order equations [8]. A change

in methodology is introduced, however, since we adopt a Galerkin viewpoint as

suggested in [3, 24]. Hence, we give a novel derivation of high-order finite dif-
ference methods, for nonuniform meshes, which is extremely natural and easy

to understand. These high-order methods are developed using defect correction,

which provides a very efficient way to solve the equations. The orders of conver-

gence for the methods are shown using supraconvergence arguments. This term

was introduced in [20, 23] and means that, under a mild mesh condition (cf.

(2.8)), the truncation error is higher-order on average than pointwise. Hence,

there is a strong connection with the idea of superconvergence in Galerkin/finite

element methods.

In §2 we explain our underlying conditions on problem (1.1), and for nota-

tional simplicity we look at a single equation. Also, as discussed herein, ho-

mogeneous Dirichlet boundary conditions are assumed. Our basic framework

for developing methods of arbitrary order is then presented and second/fourth-
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order approximations derived, the latter requiring a fundamental mesh condi-
tion necessary to exploit the supraconvergence phenomenon. In §3 the fourth-

order accuracy is obtained by defect correction. Higher-order methods require
extra function approximations to be obtained, and §4 explains how these can

be generated, the supraconvergence again being crucial. In §5 the higher-order
accuracy is achieved by defect correction. Finally, possible variations and gen-
eralizations within our defect correction framework are mentioned in §6, and

§7 contains numerical results illustrating the orders of accuracy achieved.

2. The differential equation and its approximation

We consider the problem

(2.1) y"(x) = f(x,y(x)),       a<x<b,

with boundary conditions y (a) = y(b) = 0 and assume there exists a solution

y* G C2[a, b]. Later in this paper, y* will be assumed to have more smoothness

as required. As for the function f(x, y), we assume once and for all that there

exist constants a and ô > 0 such that Vx e [a, b]

(2.2) \g(x, u) - g(x, v)\ < a\u - v\

if \u-y*(x)\ < S and \v-y*(x)\ < ô, where g is any of /, df/dx, df/dy,
d2f/dx2, d2f/dxdy , and d2f/dy2. Finally, it is also assumed that the solu-
tion y* is isolated, i.e., the linear problem

(2.3) -y"(x) + q*(x)y(x) = w(x),       y(a)=y(b) = 0,

where q*(x) = df(x, y*(x))/dy, has a unique solution z e C2[a, b] for each

w G C[a, b], and there exists k > 0 independent of w such that

xax {\z'(x)\}<K max i   /   w(í)dí f
[a,6]U -     x€[a,b] i Ja |J

max
xG

We shall see later why it is appropriate to consider stability in this fashion.
The solution y* will be approximated by a mesh function in the following

way. Consider a mesh on I = [a, b], i.e.,

a = xo < Xi < ■■■ < xN-i <xn = b,

and introduce the notation

//_i = [xj-i, Xj],    Ij = Ij_il U J;+i ,    hj_^ = Xj - Xj-i,

hH+hJ+i^ *h-V|    and   h^max{n     }
2 A,_i+ nj+i j i

Define the basis functions {<pj} according to

' (X-Xj-i)/hj_±,     XGlj_^,

fj(x) s -  (Xj+i - x)/hj+i,    xe/J+j,       ; = 1,..., N - 1,

.0 xilj,

so that ¡cpj = hj.  Now inserting y*  into (2.1), multiplying both sides by

(Pj/hj, and integrating leads to

(2.4) (D2Y*)j + ±-Jf(x,y*(x))tpjdx = 0,        j=l,...,N-l,
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where Y* is the mesh function with values y*(xj) and

(D2Y]  _ (Yj-Yj-iVhj^-iYj+i-YjyhM

The whole of this paper is concerned with obtaining difference equations of

increasing accuracy for (2.1) by using weighted quadrature rules of increasing

order to approximate the integral in (2.4). Of course, these quadrature rules are

only allowed to use information based on the mesh values Y*_x, Y* and Y*+l.

The simplest quadrature rule is perhaps the "generalized weighted midpoint"

rule, i.e.,
■ i

z(t)cpedt*z(d),f
where 0 6 (-1, 1) and

»«■{<;■
(t+l)/(8+l),       f€[-l,0],

-0/(1-0),       re [0,1],

derived by integrating the constant polynomial which interpolates z at t = 0

exactly against cpe . The error in this integration method is given by

/
z(t)<pedt-z(d) + ^z'(d)

1 J

<C0  max {|z"(f)|}.
ie[-i,i]

Hence, applying this quadrature rule, by a change-of-variable, to the integrals

in (2.4) leads to the difference equation

(2.5) (D2Y)j + f(Xj,Yj) = 0,        j=l,...,N-

with Yo=Yf/ = 0, and the local truncation error

1,

r? s 1J f(x, y*(x))cpj dx - f(Xj , Yf)

satisfies

Tj + jhjdjy*'"(Xj) <C0A?||y*^||/7.,

where || • \\a denotes the maximum norm over an interval A . Hence, although

|t^| = O(hj) in general,

2^'9"   *.  <i{2max{/2j_|||y*'"||/j_i}Ytiw"^
i=i -i

+(6-a)max{A2_è||y*W||/yi}J

and thus ||t°||_i (where this norm is defined in (2.6)) is second order in terms

of the size of the local mesh and local derivatives. It can then be shown that,

providing the local mesh size mirrors sufficiently closely the behavior of y*(x),

there is a unique solution of (2.5) near Y*. We state the following results

without proof:
(i)if

K   max N{(b - a)hj_k[\\q\\Ij)í+\\ql\\I¡_h\} < ^,
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then the linear difference equation

(D2Y)j + q*(xj)Yj = ßj,        j=l,...,N-l,

with Y0 = YN = 0 has a unique solution Z for each ß and

||Z||.<2kP||_,,

where

(2.6)

(ii) if

Zfosjpuij\{Zj-Zj-i)/-hj_k\},

¿Mi);i =     max
j=l,...,N-l

i'=l

1
(b - a)22nado < - ,

where do = 4/c||to||-i , a locally unique solution Y° of (2.5) exists in B(Y*, do)
[the closed ball of radius do in || • || t centered on Y*], and the linear difference

equation

(L°hY)j = (D2Y)j + y^(Xj, Yf)Yj = ßj,        j = 1,..., N- 1,

with 70 = Yn = 0 has a unique solution Z for each ß with

l|Z||l<K0||/?U-l,

where k0 = 4/c.

A more accurate difference scheme is obtained by using the "generalized
weighted Simpson" rule to approximate the integral in (2.4), i.e.,

• i

z(t)cpedt « a(0)z(l) + ß(0)z(0) + a(-6)z(-l),
£

where
1 _ 4ß _ #2 5 - 02

W   a(g)=   ion     m i»)    /»(ö) =12(1-0) v ;   ^v ;_ 6(1-02) '

derived by integrating the quadratic polynomial which interpolates z at t =

±1,0 exactly against cpe . The error in this integration method is given by

/
z(t)cpgdt - {a(9)z(l) + ß(6)z(d) + a(-0)z(-l)} - {2W + ^z'"(d)

90

< Ci   max {|z<iv)(i)|}
«€[-1,1]

Hence, applying this quadrature rule, by a change-of-variable, to the integrals

in (2.4) leads to the difference equation

(2.7) (D2Y)j+a(dj)f(xj+i,Yj+i) + ß(0J)f(Xj, Yj)+a(-ej)f(xj-i,Yj-i) = Q

with lo = Yn = 0. We shall use this equation to obtain a fourth-order accurate

mesh function in the next section. Here we merely point out that the truncation

error t1 , defined by

t] = j- J f(x,y*(x))cpjdx

-{a(dj)f(xj+i,Y;+i) + ß(6j)f(Xj,Y;) + a(-dj)f(Xj-i,YjU)},
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satisfies

(210^
1      J       90

y'w(xj) <C,A>*W||/y

and thus, in general, we only have ¡t]| = 0(hh . Moreover, it is not true that

|| t * ||_i = 0(h4) for arbitrary meshes [20].   If, however, our meshes satisfy

a supraconvergence condition [20, 23], it is possible to show that ||t*||_i  is

fourth-order accurate. For our purposes we define this condition as follows.

Supraconvergent mesh condition.   There are real constants, U, C and an integer

constant N such that all meshes satisfy

(i)    \dj\<U<l

and at least one of

(QUANTITATIVE)    (ii)

(QUALITATIVE)    (iii)

Hence, if (ii) holds, we can deduce that

Af-l

Y\ej\^c
7 = 1

9j changes sign no more than N times.

5>ii=i
4(210/ + 0?). (v)

90 (Xi)
11~

<-Cmax{A;_è||y*W||/yi}

while, on the other hand, if (iii) holds, then

Yhi-
1=1

<

90

11(1V+1)
[2max{hj^\\y^\\r_{} + (b - a)max{h<_{\\y*^\\r_i}  .

In either case, ||t'||_i is fourth-order accurate in terms of the local mesh size

and local derivatives. The significance of the quantitative/qualitative assump-

tions is that either implies

(2.8)

N-l

Yhj\dj\ = 0(h),
j=x

and this ensures the supraconvergence.

Note that this mesh condition will be satisfied by all practical meshes. (Part
(i) will be required later for higher-order methods and to justify the defect

correction procedure.) It can be seen that this gain in accuracy, i.e., smaller

|| • ||_i than || • ||o, where the latter is just the simple maximum of the moduli

of the components, will occur whenever the leading error term is a polynomial
in 0 which is zero at 0 = 0. More generally, it will also occur when the leading

error term is a function g(6) which satisfies |g(0)| < C|0|. This result will be

used repeatedly later for our higher-order approximations.
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3. Fourth-order accuracy by defect correction

We will compute a fourth-order approximation Yx to Y* which satisfies

(D2Yx)j + a(dj)f(xj+i,Yx+i) + ß(dj)(Xj, Yj)

+ a(-dj)f(Xj^i ,Yx_i) = 0,        j=l,...,N-l,

with Y¿ = Yx = 0. Its existence, local uniqueness and construction is based

on the fixed point equation

(3.2) Z=5?,(Z),

where

[&i(Z)]j = Zj-Wj

with W satisfying

(L°kW)j = (D2Z)j + a(dj)f(xJ+i, Zj+i) + ß(dj)f(Xj , Zj)

+ a(-dj)f(Xj-i ,Zj-i),        j = 1, ... , TV - 1,

and Wo = W^ = 0. We will show next that &i , for sufficiently small h, is a

contraction mapping in B(Y°, di), the closed ball of radius

dï=2(\\&i(Y*)-Y*\\l + \\Y°-Y*\\i)

in || • ||i centered on Y° . [Note that (L°Aßi(Y*) - Y*])j = x) , and so dx just

depends on Ht1 ||_i and ||t°||_i .] Hence, the defect correction iteration

(3.3) Z(w+1> = £\(Z<W>),

starting from _Z(0) = 7° , will converge to a locally unique Yx.

If U, VeB(Y°,di),then

(3.4) (L°h[^i(U) - &i(V)])j = -Of - X°j,

where

(i)

Sj = a(ej)[f(xj+i, Uj+i) - f(xj+i, Vj+i)]

+ ß(9j)[f(Xj, Uj) - f(Xj , Vj)]

+ a(-dj)[f(Xj-i, Uj-i) - f(Xj-i, Vj-i)]

-lf(Xj,Uj)-f(Xj,Vj)],

and

(ii)

^ = f(xj ,Uj)- f(xj , Vj) - d-l(Xj, Yf)[Uj - Vj].

Here, S° is the key term in our analysis of defect correction. It compares the

difference in the higher-order formula at U and V with the difference in the

basic formula at these two mesh functions. This depends on the smoothness of

the difference U - V . In the present case we have

so = _ Jfjj n(i-0]){{l-5el)[{DE)^-{DE)J-l]

-(36j + dj)[(DE)j+i + (DE)j.i]}!
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where Ej = f(xj, Uj) - f(x¡, Vj) and (DY)^ = {Yj - Yj-i)/hj_^. Writing

this as

Sf = ^[(DE)j+i-(DE)j_i]
hj

-{4e2[(DE)j+>-(DE)j_i]
12(1-0?)1   J"~ ~'v+ï    *--'i-v

+ (Wj + e))[(DE)j+l2+(DE)j_h\},

we see that the Q¡ factors will ensure supraconvergence for the latter term.

Summing the former, however, gives

¿|(D£)i+r(M)H]

„2 J    hi     _„2 n2

■f2iDE)h+y ■J=\rLP*)H + û{de)m
1=2

<

' > 2        L JV—1 \

^- + ?EA'-i0'-i)ii£iii=i     /
i •

h .

Consequently, on a supraconvergent mesh we have

||(50||_i <const(Z7, C,^)A2||£||

and thus
P°||_i <const(i/, C, JV)A2||t/-K||i.

We emphasize that this constant only depends on the supraconvergence prop-

erties of the mesh. The other term in (3.4), A0, is just a simple linearization

error and satisfies
||A0||o<a(ft-a)rfi||ff-K||o.

Consequently, &\ is a contraction on 5(7°, <¿i) for sufficiently small h and

di, and we may assume that the contraction constant yi < 1/4.

In addition, 2?i maps B(Y°, di) onto itself since Z e B(Y°, di) implies

||^(Z) - Y% < \\&i(Z)-S?i(Y*)\\x + IlW) - ^*lli + \\Y* - Y% .
Hence, our conclusion is that the defect correction iteration (3.3) converges

to the locally unique Yx satisfying (3.1) and that, as usual,

Y* -Yx = Y* -&i(Y*)+&i(Y*)-Yx

implies

(3.5) \YX -Y* i <
KO

1-71
-i ■

We underline the important fact that the global mesh size h only appears in the

contraction constant yi, while the error F1 - Y* just depends on the product

of local mesh size and local solution derivative size.

4. Function values for higher-order quadrature

We wish to approximate the integral in (2.4) more accurately than is possible

with the generalized weighted Simpson rule, but still only using the mesh values
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YyL,, Y* and Y*+l. To do this, we must make use of the differential equation

(2.1), which y* satisfies, in order to generate accurate approximations to y*

at other points besides Xj-i, x¡ and x¡+\. This is exactly what Runge-Kutta
methods do for first-order systems. The values of y*" , at x,_j, Xj and Xj+\,

i.e., f(Xj-i, YJ_X), f(Xj, Y*) and f(xj+i, Y*+i), are immediately available
and naively one would suppose that it would be possible to fit a quintic poly-

nomial to these six pieces of data and thus obtain an O(h^) approximation to

y* on Ij. It is, however, easily checked that for B¡■ = 0, i.e., hj+i = hjt ,

the data is incompatible in general. Hence, we shall define p2(Y* ; x) to be the

quartic polynomial which satisfies

(i)    p2(Y* ; Xi) = Y*, i = j-l,j+l,

['} (ii)   p'{(Y*;xi) = f(xl, Y?),    i = j-l,j,j+l,

i.e., we are no longer trying to collocate with y* at Xj . In general, of course,

p2(Y* ; x) can only be an O(hj) approximation to y* on Ij , but we shall make

use of the supraconvergence property to obtain 0(h6) in a negative norm, which

has proved to be an important tool in the analysis of supraconvergence [26].

To obtain more accurate approximations to y*, we generate higher-degree
polynomials inductively. In particular, for k = 3,4,5,..., we define

Pk(Y*;x) to be the (2K)th-degree polynomial which satisfies

(i)    pk(Y* ; Xi) = Y*, i = j-\,j+\,

' '   (ii)   p'¿(Y¡ ; Xji) = f(Xjl, pk_i(Y* ; Xjl)),    I = 0, ± 1, ... , ±(k - 1),

where

Xj + T^-ihj+i,       />0,
(4.3) Xjl =

Xj+kJrThj_{,       /<0.

Although Pk(Y* ; x) will be only an 0(h2k+x) approximation to y*(x) on Ij in

general, the following lemma shows that the leading error term has an important
property.

Lemma 1. For x e Ij we have

y*(x) -pk(Y¡ ; x) = h2k+x ¿[/,(x, , Y¡)\k^y^+X\xj)

(4.4) p=2

■Pk,P(dj-^i + d^+0(h2k+2),

where

(i) Pk,k(6\t) is a polynomial of degree 2k + 1 in t with coefficients that are
polynomials in 0 and Pk,k(Q',t) is odd,

(ii) Pk,i(Q', t), i - 2, ... , k - I, are polynomials of degree 2k in t with
coefficients that are rational in 0 (the divisors being powers of m — 8 for nonzero

integers m) and Pkj(0; t), i = 2, ... , k - I, are odd.

Proof. First consider p2 so that

y*(x) -p2(Y* ; x) = h]P2>2 [dj ; ^^ + 0,-) y*{5)(Xj) + 0(h<>),
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where P2,2(0',t) is a quintic polynomial in t with zeros at ±1  and whose

second derivative is zero at 0 and ± 1. Hence,

P£2(0;f) = const(i2-l)(f-0)

and so is odd for 0 = 0, and this property is inherited by ^2,2(0; t).
For k > 3 we argue by induction.   Thus suppose the lemma is true for

y*(x) -Pk-x(Y¡', x). Then

y*(x)-pk(Y* ; x) = y*(x) - qk(Y* ; x) + qk(Y¡ ; x) - pk(Y¡ ; x),

where qk(Y* ; x) is the (2/c)th-degree polynomial which satisfies

(i)     qk(Y¡ ; Xi) = Y*, i = j-l,j+l,

(ii)   q'¿(Y;;xjl)=y*"(xjl),       I = 0, ±1, ..., ±(k - 1).

Consequently, for x e Ij ,

y*(x) - qk(Y* ; x) = hf+xPk,k (oj ; ^^ + ö>) y*{2M)^j) + °ih?+2) >

where Pk,ki6\t) isa (2k + l)th-degree polynomial in t with zeros at ±1 and

whose second derivative has zeros at t¡(6j), I = 0, ± 1, ... , ±(k - 1), where

(4.5) „(O)^+ „(!-_!_).

Hence,
k-i

P'k\k(6;t) = const    \\    (t - t,(d))
i=-(k-i)

and so is odd for 0 = 0, and this property is inherited by Pk ,/t(0 ; t).

Now consider the qk(Y* ; x) - pk(Y* ; x) term, which is the (2A:)th-degree

polynomial with zeros at x¡±i and whose second derivative satisfies

q'¿(Y¡ ; Xji) -p'i(YJ ; Xjl) = f(xjt, y*(x¡i)) - f(xjt, pk_x(YJ ; Xjl)),

l = 0,±l,...,±(k-l),

and thus is zero at x¡± i . By the induction hypothesis,

q'k\Y;;x)-p'k'(Y;;x)

(k-2)      (k-l )

= h?~x   E   \Y^x^Yi^k-py*{2p+X)ixj)Pk-i,Piej\tl(e]))\
l=-(k-2)  [p=2 J

•4,/(0/;^i + 0y)+O(Af),

where the /jt,/(0;i) are the Lagrange polynomials for the 2/c-l points t¡(6),

i.e.,

k-l

(4.6) lk,iid;t)=    n   C-'.(0))7('/(0)-'«(0)).
i=-(fc-i)
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Hence, the induction will be complete if we can show that

P¡/je;t) = Pk_Kp(e;to(9))lk,o(0'>t)

k-2

+ YPk-i,P(0; t,(d))lkJ(e; t) + Pk.Up(d; t_i(d))lk,-,(e; t)
1=1

is odd when 0 = 0. Since it is easily checked that

Pk-itP(0;t-,(0)) = -Pk-i,p(0;ti(0)),

through Pk-i<p(0; t) being odd and i_/(0) = -t¡(0), and

lkl(0-,t) = const(\l\)t^t-I^jTl U-

T*i
we are finished.   G

We shall also require these polynomials evaluated at other mesh functions

near Y*, and so we use the obvious definition for Pk(Y}■; x), j - I,... , N;

k = 2, 3, 4,... . The following lemma shows how Pk(Y* ; x) -Pk(Yj; x) and

its derivatives are bounded in terms of the mesh function Y* — Y.

Lemma 2. There holds

(i)     \\p'k\Y¡; ')-p'¿(Yj; Oll/, <Hk\\Y* - Y\\0,

(4.7)      (ii)    \\p'k(Y¡; -)-pk(Yj; Oil/, < 2||r - r||, + ^||7* - r||0,

(iii)    \\pk(YJ; -)-pk(Yj; ■)% <(l + Hkh2/6)\\Y*-Y\\0,

where H2 = aL2(8j) and Hk+i = aLk(0j)(l +Hkh2/6), k>2, with Lk(9j)

being the norm of the Lagrange interpolation operator on [-1, 1] for the 2k - 1

points ti(8j), I = 0,±l,... ,±(k-l).

Proof. A simple induction based on

\\p'¿(Y¡; -)-p'¿(Yj; •)\\lj<Lk(0j)a\\pk_i(Y;; -)-pk_i(Yj; OH/,.    □

We have not emphasized the point, but note that the bounds in (4.7) are just

in terms of Y* - Y at points j - 1, j, j + 1.

5. HIGHER-ORDER ACCURACY BY DEFECT CORRECTION

We compute a sequence {Yk}, k-2,3,4,..., of mesh functions which

will be shown to be (2k + 2)th-order approximations to Y*. Their defining

equations are

(5.1)       (D2Yk)j + Qj(ej){f(x,Pk(Yk;x))} = 0,        j=l,...,N-l,

with Y0k = Y§ = 0. Here, Qk(9) is the weighted Gauss-Lobatto rule with k
interior points for approximating

J   z(t)tpedt

i2N

k-2
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and, by a change-of-variable, Qk(6j){f(x, Pk(Z¡■; x))} approximates

-\f(x,Pk(Zj\x))cpjdx.
ht

Hence, Qk integrates (2k + l)th-degree polynomials exactly, and Qk is

0(h2k+2) accurate for sufficiently smooth integrands. Existence, local unique-

ness and construction of Yk is based on the fixed point equation

(5.2) Z = &k(Z),

where

\Sk(Z)\¡ = Zj - Wj

with W satisfying

(L\W)j = (D2Z)j + Qk(dj){f(x, pk(Zj ; x))},        j=l,...,N-l,

and Ifó = Wn = 0. We will show that ^, for sufficiently small h, is a
contraction mapping on B(Yk~x, dk), where

dk = 2(\\^k(Y*)-Y*\\i + \\Yk-x-Y*\\i),

and hence that the defect correction iteration

(5.3) Z(m+X) = 5*(Z<m>),

starting from Z(°> = Yk~x, will converge to a locally unique Yk . First, how-

ever, we analyze &k(Y*) - Y*, i.e., the accuracy of the higher-order methods.

Note that

(5.4) (L¡[2?k(Y*)-Y*])J = Tk + nk,

where

(i)    x) = 1 j f(x, y*(x))cpj dx - Qj(6j){f(x, y*(x))},

(ii)   n) = Qk(dj){f(x,y*(x))-f(x,Pk(Y; ; x))}.

We consider these two terms separately.

(a) The first, rk , as in the defect correction error analysis for Yx, is just a

quadrature error. By our choice of Qk(0) we have

|T)|<C,Äf+2||y^+2)||/..

(b) The second term, nk, was not present in the defect correction error

analysis for Yx and appears here because, for k > 2, we need to use the

polynomials pk to generate extra approximations for the quadrature. Using

Lemma 1, we may write

n) = h2k+x Yifyixj, Y;)]k-"+xy<2"+x\xJ)Qk(ej)

p=2

Pk,p{eJ;^ + dJ^ + 0(h2k+2),
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and so the key terms are

Qj(6j) {pktP (dj; ZjZL + 0,) } = 1^ Pk,p(Qj-,f)<pe¡dt,       p = 2,..., k.

However, PktP(0; t) is an odd polynomial. In addition, the formula

rx       _ i + (-ir+2 + 0[i-(-ir+2]-20"'+2
U ndt~ (m+l)(m + 2)(l-02)

shows that integrating an odd polynomial in t against cpe gives an odd poly-

nomial in 0. Hence,

sWs/-', Pk,p(6;t)(pedt

is a rational function of 0 with g(0) = 0, and this ensures that

{2*:+2

h2k+1 Y lly'^l
P=5

Hence, d2 just depends on ||t2||_i , ||7r2||_i and Ht1 || —i ; and we shall show by

induction that, for k > 2, dk only depends on ||t*||_i , ||rcfc||_i, Ht*-1!!-! and

II«*"1«-! •
Now we will show that S?k ,_for sufficiently small h , is a contraction mapping

on B(Yk~x, dk). If U, V e B(Yk~x, dk), then

(5.5) (L°hmU) - &k(V)])j = -Sk~x - A}"1,

where

(i)    ôk~x = Qkj(e]){f(x, pk(Uj; x)) - f(x, PkiVj ; x))}

-[f(x,Uj)-f(x,Vj)],

(ii)   X)-x = f(Xj, Uj) - f(Xj, Vj) - y^(Xj, Yf)[Uj - Vj].

We consider these two terms separately.

(a) The first, Sk~x, as in the case of Yx, is the key term in the defect

correction error analysis and relies on the smoothness of U —V. Since Qk(6)

integrates linear functions exactly against cpe , we may write

Sk~x = Qk(6j){f(x, pk(Uj ; x)) - f{x, pk(Vj ; x)) - ek(x)}

+ \{hj+i(DE)j+{-hJ_,(DE)J_{}

+ ^{hj^(DE)jH+hj_{(DE)j_{},

where e\ is the linear polynomial interpolating

f(x, Pk(Uj ; x)) - f(x, Pk(Vj ; x))

at Xj±i and Ej = f(Xj, Uj) - f(Xj, Vj). The first term on the right-hand side

will be 0(hj\\Uj -Vj\\i) if we use standard interpolation theory, Lemma 2 and

the conditions on / given by (2.2).  [Note that it is only here that Lipschitz
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continuity of the second derivatives of / is needed; cf. §6.]  The other two
terms we write as

k[(DE)j+h - (DE)j_.]

*{?
- hj ̂  Q[{DE)J+Ï - (DE)j_i] + e-j[(DE)j+h + (DE)j_>]

The 8j factors will ensure supraconvergence of the latter term, while for the
former we have

Y^[iDE)i+h-(DE)i_h]
i=i  ¿

h2 l   h2    -h2 h2
-i(DEh + E J-Yh-(DE)i_ï + ̂ (DE)J+h

i'=2

< íh2 + 2hYhi\ei\) llalli

Consequently, on a supraconvergent mesh we have

||<5*_1||-i < const(Z7, C, Ñ)h2\\E\\i

and thus

||J*_1||-i <aconst(F, C, N)h2\\U - V\\i.

We emphasize again that this constant only depends on the supraconvergence

properties of the mesh.

(b) As before, kk~x is just a simple linearization error satisfying

Uk-x\\o<a(b-a)di\\U-V\\o.

Hence &k , for sufficiently small h and dk , is a contraction on B(Yk~x, dk),

and we may assume that the contraction constant yk < \ .

In addition, 2?k maps B(Yk~x, dk) onto itself since Z e B(Yk~x, dk) im-

plies

\\9k(Z) - Yk~x\\i < ||^(Z) -.?*(m|, + IIW) - F*||, + ||7* - 7fc-1||1.

So our final conclusion is that the sequence of defect correction iterations

(5.3) converges to locally unique {Yk} satisfying (5.1) and that, as usual,

7* -Yk = 7* - &kiY*) + &kiY*) - Yk

implies

(5.6) ||y*_r||,<T^-(||T*||_i + ||Je*||_i).
1 -Ifk

We finish by repeating the crucial fact that the global mesh size h only appears

in the contraction constants {yk} , while the errors {Yk - 7*} just depend on

the product of local mesh size and local derivative size.

6. Generalization and variations

(a) Systems of differential equations. For simplicity we have described the
application of defect correction to a single second-order differential equation,
but there is no difficulty in extending our results to systems.
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(b) Derivative boundary conditions. Although we are specifically considering
second-order differential equations without a first derivative term, there is no

difficulty in catering for a derivative in the boundary conditions. These may be
imposed variationally in the usual finite element way. For example, if

f (Xi -x)/hx,    X£h,

[0, x$I±,

then integrating (1) against cpo gives

y*'(0) = *•(*'>-?'<*>> -jf(x,y*(x))cpodx,
ï

and this expression can replace y*'(0) in any boundary condition. Of course,

the integral must be approximated by increasingly accurate weighted quadrature

rules, this time with weight tpo , using only 70*, 7,* and the differential equation.

(c) Alternatives to Pk . There is a natural alternative to our definition of Pk

in §4, which should be somewhat more accurate. We define p2(Y* ; x) to be

the continuous piecewise quartic polynomial which satisfies

(i)     p2(Y¡;Xi) = Y*, i = j-l,j,

( ■ a) (ii)   P'{(YJ ; Xi) = f(Xi ,Y?),       i = j-l,j,j+l,

for x e Ij_i , and

(i)    p2(Y*;Xi) = Y*, i = j,j+l,

['    ' (ii)   p'{(Y;;Xi) = f(Xi,Y*),       i = j-l,j,j+l,

for x G Ij+\ . Similarly, for k — 3, 4, 5,... we define Pk(Y* ; x) inductively

to be the continuous piecewise (2/c)th-degree polynomial which satisfies

(6.2a)

(i)    pk(Y* ; Xi) = Y*, i = j-UJ,

(ii)   p'¿(Y¡;xjl) = f(xj,,pk.i(Y¡;xJi)),    I = 0, ±1.±(k- 1),

for x e Ij_\ , and

(6.2b)
(i)    pk(Y¡ ; Xi) = Y*, i = j,j+U

(ii)   p'¿(Y* ; Xjl) = f(Xji, pk-i(Y* ; Xj!)),    I = 0, ±1, ... , ±(k - 1),

for x € Ij+\ , where x¡¡ is defined in (4.3).

It is easy to develop analogues of Lemmas 1 and 2 for the pk , but a complete

defect correction error analysis is complicated by their piecewise polynomial

nature. It is, however, expected to hold and the numerical results in §7 provide

verification.
We further note that it is possible to vary the xjt in the definition of pk and

Pk , always enforcing the condition that they are symmetric with respect to the
center of /, when 0, = 0. The appearance of norms of Lagrange interpolation
operators in the proof of Lemma 2 indicates that an analogue of Chebyshev

points would be advantageous, but this has yet to be investigated.
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(d) Alternative Qk(0). There is no special reason for our choice of weighted

Gauss-Lobatto quadrature, apart from the fact that it provides the highest ac-

curacy with the minimum number of function evaluations. If the pk piecewise

polynomials are used, so that f(Xj,p(Yj\ Xj)) = f(xj, Yf) is an extra free
integrand value, there are other possibilities which use an equal number or

sometimes even fewer function evaluations.

(i) For odd k we look at a generalization of the k = 1 approach. Thus, we

require a "generalized" weighted Gauss-Lobatto rule with k interior points, one

of which is fixed at Xj . For 0, = 0, these are ordinary weighted Gauss-Lobatto

rules and integrate (2k + l)th-degree polynomials exactly. For 0 ^ 0 the

schemes will only have abscissae in (-1, 1) for |0| sufficiently small (bounds

given in the table below), and the supraconvergence property must be relied on

to obtain the required accuracy, as with k = 1.

1 5

|0|< 1    .27   .16

Note that one integrand evaluation is saved, compared with the weighted Gauss-

Lobatto rules.
(ii) For even k we may look at a generalization of the k = 0 approach, i.e.,

"generalized" weighted Gauss rules with one point fixed at Xj. For 0; = 0 these

are ordinary weighted Gauss rules and integrate (2k + l)th-degree polynomials

exactly. For 0 ^ 0 the schemes will only have abscissae in (-1,1) for |0|

sufficiently small (bounds given in the table below), and the supraconvergence

property must again be relied on to achieve the required accuracy, as with k =

0.

0

|0|< 1    .30   .17

Note that these schemes use the same number of extra integrand evaluations as

the weighted Gauss-Lobatto rules.

(e) Alternative k = 0 formulae. There is no difficulty in using a different

difference equation as the basic second-order accurate method on which our

defect correction procedure relies. Those derived by integrating linear func-

tions (weighted trapezoidal rule) or continuous piecewise linear functions ex-

actly against cpj are respectively:

(i) {°2y)j+G+^)f{xj+i 'Yj+i)+G " 6i) f{xj~i ' Y]-i)=°'

(ii)    (D2Y)j + l—llf(xj+x, Yj+i) + Ifixj, Yj) + l-±^if(Xj_i ,Yj-i) = 0.

It is easily checked that the defect correction analysis in §5 still carries through.
More interesting is the choice of the fourth-order accurate method (2.7) as

our basic k = 0 formula. Our new L\\ will still only involve the solution of a

tridiagonal system, so this is a serious possibility. It is straightforward to adapt
the theory to show that a similar improvement of 0(h2) per correction is still

achieved, and this is verified numerically in the next section.
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7. Numerical results

In this section we present some numerical results for the integration of two
challenging second-order equations. The particular problems we consider are:

(1) e2y" = y-x,       0 < x < 1, y(0) = 1, y(l) = 2,

which has the solution

e(x-i)/e      e~xle — e~(x+x^e

y(x) = x + --¡-T- H-;-tj--.

For small positive e, this solution has a boundary layer at both ends of the

integration range and is smooth away from these layer regions. For the purpose
of our numerical experiments we take e = 10-2.

(2) y" = psinhpy,       0 < x < 1, y(0) = 0, y(l) = 1.

This is a very well-known problem due to Troesch. This equation does not have
an analytic solution and becomes increasingly more difficult to solve numerically

as the parameter p increases. In particular, it presents a very difficult problem

for p = 20, owing to the presence of a sharp boundary layer at x = 1 .

For both of these examples, the behavior of the solution varies significantly

over the interval of x, and so it makes good sense to use a nonuniform grid.

The purpose of using such a grid is two-fold. First, by concentrating grid points
in regions where the solution is varying rapidly (and putting relatively few grid

points in smooth regions) we hope to achieve good accuracy using relatively few

grid points, certainly less than if a uniform grid were to be used. Secondly, for

nonlinear problems, we expect that a nonuniform grid will facilitate the con-

vergence of the Newton iteration scheme used to solve the nonlinear algebraic
equations which define the numerical solution.

The deferred correction algorithm on which we base our integration scheme

is

<p4(n) = 0,

Mí) = -n(i),
(p^) = (p^r\)-niñ),

where cp¡ denotes a formula which is of order i on a uniform grid. It is not dif-

ficult to derive these formulae explicitly using the theory presented in previous

sections, and they are available from the authors on request. The precise way in

which these formulae are used in a deferred correction framework is described

in [6]. Although our theory applies to very general meshes, we simplify our

implementation by allowing only mesh halving/doubling. This corresponds to

the case 0 = 0 or ±1/3 in §2. It is straightforward to store quadrature formu-

lae for these three cases and also to store coefficients which generate pk(Yj\ •)
from pk_i(Yj ; 0 • However, in future work we wish to examine the possibility

of using more general meshes in our numerical implementation.

In a practical algorithm it would be necessary to derive an automatic mesh

selection procedure. However, this has proved to be difficult and is certainly

beyond the scope of the present paper. In deriving our numerical results, we

have used a somewhat crude method for deriving an adaptive grid. As in the case
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of the deferred correction algorithm described in [5, 6], we seek to choose the
grid so as to equidistribute the eighth-order deferred correction \cp^(tj) - <ps(tj)\.
However, in the second-order case considered in this paper we have imposed

the constraint that successive grid spacings should be in the ratio 1 : 1, 1 : 2 or
2:1. Although this does simplify the mesh selection process, it is still nontrivial
to satisfy this constraint. In deriving our numerical results, what we actually did

was as follows. Given an initial grid, we used our deferred correction program

to compute 4th, 6th and 8th-order numerical solutions and to derive the eighth-
order deferred correction cpt(tj) - <Ps(tj) associated with each mesh. If the error

criterion was not satisfied, we worked out a new grid by hand on the basis
of approximately equidistributing the eighth-order deferred correction, fed this
new grid into our deferred correction algorithm and computed one more loop

of the iteration. This process was continued until either the required accuracy
was obtained or more than a maximum number of grid points was used.

Using the procedure just described, we solved problem (1) with a requested

absolute accuracy of 10~10 . We ended up solving this problem on a nonuniform

grid of 146 points, of which 51 were in JO, 0.1] and 47 in [0.9, 1]. On this
mesh, the maximum errors in n, rj and Ij were .203 x 10-5, .553 x 10~8 and

.551 x 10-10, respectively. On an equally spaced grid we found that about

500 points were needed to obtain the same accuracy. Finally, we halved the

nonuniform grid to obtain a grid with 291 points to see how these maximum

errors behaved. On this new halved grid, the maximum errors in r\, rj and rj
were .129 x 10~6, .877 x 10-10 and .169 x 10-12, with the ratio between the

new and old maximum errors being 15.7, 63 and 311, respectively.

For problem (2) the situation is more complicated. Not only do we need to

choose an adaptive grid to satisfy the accuracy requirements, but we also need

to ensure that the Newton iteration scheme used to solve for the numerical

solution will converge. So, as not to introduce additional complications, we
used a straightforward (undamped) Newton scheme with initial approximation
y = 0. In what follows, we describe the solution of problem (2) with an accuracy

requirement of 10~8. We started with p = 2 and 10 equally spaced grid points,

and performed continuation in p with increments of 2 to get a reasonable grid

for p = 20. This process produced a grid of 59 points with 46 of these being
in [0.9, 1]. We solved problem (2) on this grid (using Newton with initial

guess y = 0) and found that the maximum errors in n, Jj and rj were .287 x

10-5, .368 x 10-7 and .700 x 10-8. Halving this grid, we found the maximum

errors to be .190 x 10~6, .628 x 10-9, .290 x 10-10 , with the respective ratios
being 15.1, 59, 276. Finally, we attempted to solve problem (2) using our

deferred correction scheme on a uniform grid. However, we found that we
were unable to obtain convergence of the Newton iteration scheme, even with

a grid of 2000 points.
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