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HALF-STEP MODULAR EQUATIONS

HARVEY COHN

Abstract. The classical modular equations relating Klein-Weber's j(x) to

j(bz) can be computed as the composition of two "half-step" equations relating

jm(t) and jm{xy/b), where jm is an extended modular function (correspond-

ing to t —> t + y/m , t —► — 1/t , et al.). The half-step equations are easily

constructed and manipulated in computer algebra. The cases computed here are

b prime, m = a (or ab ), gcd(a, b) = 1 , aZ>|30. This includes many cases

where the property of "normal parametrization" occurs, which is of interest in

class field theory. Extended modular functions have found recent application

in group character theory but they arose in the present context as traces at cx>

of Hubert modular equations.

1. INTRODUCTION

In view of the readily available computer algebra systems, the explicit com-

putation of modular equations can be regarded as achieved implicitly by the

potential use of resultants of explicit equations. A reasonable objective is to use

the simplest structured equations for this purpose.
For instance, a classical method of Klein and Fricke [10, Ch.5, §2] represents

the modular equation (of order N) between j(x) and j(Nx) when the equation

yields a curve of genus zero (for 14 values of TV between 2 and 25), by

eliminating t between equations of the form

(1.1) j(Nx)  = FN(t),   j(x) = FN(l/t)

for Ff/(t) an appropriate rational function. For instance [5, Ch.l 1, §3],

(1.2a) F2(t)  = 64(4t+l)3/t,

so the modular equation of order 2 can be found by eliminating / between the

equations

(i.2b)       ,(2t,. «öLti£, ,,„ = «apt.

Anticipating later terminology (of §4), we would write this equation (in terms

of z = j(x) and Z = j(2x) ) as

<Dlv2(Z ,z) = zi + Zi- z2Z2 + 243 • 31(z2Z + Z2z) - 243553(z2 + Z2)

(1.2c) + 34534027zZ + 283756(z + Z) - 2123959 = 0.
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The parametrization (1.2b) is surely easier to grasp than the expanded result

(1.2c).
We propose to extend this process of definition of modular equations through

(implicit) elimination of parameters. We shall introduce "half-step" modular

transformations (denoted in §3 by f(u, z) = 0). They involve auxiliary func-

tions where symbolically the transition x —> Nx seems to be broken into two

steps, each resembling " x —> y/Ñx." The required auxiliary functions are ex-

tended modular functions defined as jn(t) in §3 below. They are the global

uniformizing parameters (Hauptmoduln) of certain extended modular groups.

The exact result is given in the Main Theorem of §4 below.

The parametrization of cases of genus zero is explored further for evidence

of "normal parametrization" (used in class field theory [8]).

2. Extended modular functions and groups

The parametrization process requires equations of genus zero, but there is a
reduction process for handling higher genus (see [10, Ch.5, §3], [6]). To this

end, we define "extended modular functions."

The traditional Klein modular group Y operates on H+ , the upper-half w-

plane so as to preserve j(w). For a given N eZ+ ,we next define Y°(N), the

subgroup of T which keeps j(w/N) as well as j(w) invariant. Then Y°(N)
has an extension YC(N), which was discovered by Fricke and Bessel-Hagen [11]

in 1929 and proved by Atkin and Lehner [1] in 1970 to be (within equivalence)

the maximal discrete normal extension group of Y°(N) in SL2(R). In partic-

ular, YC(N) is a collection of sets of matrices ST (over Z) indexed by T, a

divisor of N restricted to primary factors, i.e.,

(2.1) T\N, gcd(T,N/T)=l.

The matrices in St are represented for convenience by the linear fractional

formulation w' = St(w) with coefficients in Z. Thus,

(2.2)

r(N) = {ST}, Sr:{^'= ^Z + D' AD~BC=T>  T\gcd(A, D), N\b}.

Of course, Sx =Y°(N). Thus, as special cases,

(2.3) {w' = w + N} e Sx,  {w' = -N/w}  eSN.

To see the transformations in terms of isometric circles when C ^ 0, we could

write the transformation of St in (2.2) in terms of only A , C, and D as

(2.4) (w'-£)(w + ^j  = -¿,  ^l = 0modN,  T\gcd(A,D).

It can be verified (see [6]) that if MT e ST and My e Sv , then MTMV e Sv ,
where V =2 TU (equivalent modulo square factors). Thus, each Mj e S\, so

that if there are v (> 1) distinct prime factors in N, it follows that

(2.5) |P(/V)/r°(7V)| = 2".

In order to standardize these groups for differing values of N, it is useful to

make the change of notation

(2.6) w = y/Ñx (T6//+),
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so from now on in (2.2) the transformation of St is modified to read

(2.7) r< = él±Aal.
Cxy/Ñ + D

The special transformations of (2.3) are now

(2.8) {t' = x + SÑ} e Si, {t' = -1/t} e SN,

and the isometric form of (2.7) is

T
(r' " c7ñ) {z+c7ñ) = -:NC2(2.9) ^VJV/  v        ^viy/ iVC

AD — T
—-— = 0mod/V,  T\gcd(A,D).

The use of x calls for the local uniformizing parameter at oo :

(2.10) r = exp2nix/VÑ.

The notation adopted here permits a certain uniformity in the ubiquitous role

of t' = -1/t , useful in the interaction of different orders N.

We finally introduce the notation

(2.11) yn = P(/v),

now viewed as a group acting on the upper-half r-plane. We shall consider only

cases where Yn is of genus zero. There are 64 such N (> 1). The last is 119,

and first exception is N = 37 (see [6]).

2.12. Lemma. If the definition of T# is modified to the subgroup YNtQ by the
requirement that B is divisible by a fixed Q relatively prime to N, i.e.,

(2.12a) rN.Q = YN n{Q\B}  (gcd(Q, N) = 1),

then the index is

(2.12b) \YN/YNtQ\ = Q]l(l + l/p),   prime p|ß.

2.13. Lemma. If the definition of YN is modified to the subgroup Y^.q by the
requirement that AD - BC = T is relatively prime to Q, a primary divisor of

N, i.e.,

(2.13a) r^:C = T* n {gcd(7\ Q) = 1}  (gcd(ß, N/Q) = 1),

then the index is

(2.13b) \YN/YN:Q\ = 2K,

where Q has k distinct prime divisors.

The proofs are classical. Lemma 2.12 is proved analogously to the case zV =

1, where YN*Q reduces to T°(ß) in the usual terminology (see [5, Ch.10, §2]).

Lemma 2.13 follows from the removal of k generators {St, T\Q} in YN.

3. Modular equations and their Riemann surfaces

The global uniformizing parameter jN(x) for YN can be constructed by

classical methods based on the Dedekind eta function
00

(3.1a) rj(x) = qx/24Y[(l-qh),        q = exp2nix

h=l
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(see [6, 9]), for (at least) those small zV (factors of 30 ) which figure into the

current computation. In practice, we simplify the computation by use of the

function

oo

(3.1b) Um(r) =  ]~[(l-rhm),        r = exp2nix/sfÑ.

h=l

The relevant formulas are summarized in Table I, as well as the elliptic gener-

ators and fixed points of the fundamental domains. Also the values of jn are

given at these points (noted later in Table II).

We note that Jn(t) is the familiar Klein-Weber modular function for zV = 1

and the Hecke modular function (see [8]) for N = 2 and 3 . (For these cases

alone, the relations (2.8) suffice to define YC(N).) There is a "free" parameter

in the choice of jn(*) , namely an additive constant, but (compare [12]), there

seems to be no convenient universal criterion of choice (short of just omitting

the constant)! In general the constant is chosen (ad lib) so as to make the values

at the elliptic points small or to make coefficients of later modular equations

small (see Table II).
We now consider the Riemann surface generated by any function element

u(z) defined implicitly (by elimination of x ) from the relation between u =

jab(t) and z = ja(tvŒ), with (say) a, b e Z+ . Clearly, the relation is multival-

ued. For instance, from x —> -1/x it is seen that (ja(-\fb/x) = ) ja^/v^b) is

another value of z for the same u. There are only a finite number of branches

since the invariance groups YC(N) are of finite extensions of Y. We specialize

the choice of a, b for simplicity and find the equation of this Riemann surface:

3.2. Theorem (Case a V b). For b prime and gcd(a, b) = 1, there is an
irreducible algebraic (compact) Riemann surface determined by the "half-step"

polynomial

f(u, z):=ub+x +z2 - zub + (c0 + d0z) + (cx+dxz)u
(3.2a)

+ --- + (cb_x + dh_xz)ub  x+chub = 0,

which has branches denoted collectively by "u "and " z " as follows:

(3.2b)

Í Jab(^^b),

[Z =)ja(T) ^(U=){

(* = 0, ••• ,0-1);

ja{ry/b),

Proof of left-hand branching: Here ja(x) is invariant under Ya, so we just

prove that under ra the branch y0 = jab{^lvrb) has the b + 1 conjugates

shown by the arrow. The conjugates are achieved by the repeated application

of x' = -1/x and x' = x + y/a (in ra ). Now consider a general element of

ra,

(3.3a) r-r' =   A* * g/v? ,  AD - BC = T\gcd(A , D), T\a\B.
L y/ax + D
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Table I. The modular invariants

The modular invariants Jn(x) are described here for all Ar|30. Explicit formulas are given for

N > 1 in terms of
oo

n«(r) = Hil-i*"1)
h=l

(abbreviated Tim )■ Here the local parameter for the Laurent series of Jn(?) a' r = co is

r = exp27tix/y/~Ñ.

Here, exr + e%r2 H-v emrm is written r[ex, ej, ... , em] (with m = 10 , see §5.1).

The group TN  has the translation  x' = x + y/Ñ.   This places the fundamental domain of

H+ /Tf) between the boundaries

-y/Ñ <  S(t)  < y/Ñ.

A full set of elliptic generators is listed in a form which displays the isometric circles bounding

the floor of the fundamental domain of H+/FN .

The elliptic points x where these circles intersect are next listed in the form of values of Jn(x) .

;,(T) = 1 /r + 744 + r[ 196884, 21493760, 864299970, 20245856256,

333202640600, 4252023300096, 44656994071935,

401490886656000,3176440229784420,

22567393309593600, ■••];

tt' = -1;  7.(0=1728, j(±l+y^)=0.

=  — +  128 + 4096zz>, w = r(^)

= l/r+ 104 + r[4372, 96256, 1240002, 10698752,74428120,

431529984, 2206741887, 10117578752,

42616961892, 166564106240, •••];

+_V
V2

xx'=-I;     j2(i) = 256, j(^

j3(t) = — + 54 + 729zz), w = r ,
w \l\x

= l/r + 42 + r[783, 8672, 65367, 371520, 1741655, 7161696,

26567946, 90521472, 288078201, 864924480 • •

xx' = -l;     73(0=108, z(-1±i)-»

7s(t)=  — + 22 + 125»,   w = r(—5
w V«,,

= l/r+ 16 + r[134, 760, 3345, 12256, 39350, 114096, 307060,

776000, 1867170,4298600, ■•■];

Ä(0-22+10v^, A(M+i)-0, j5(^Lp±y 22-10V5.



1272 HARVEY COHN

1

Table I (continued)

/Ti,n6y2
J6(t) =  —  -2 + w,   w = r.

w \ 112113/

= l/r+ 10 + r[79, 352, 1431, 4160, 13015, 31968, 81162,

183680,412857,864320, ■••];

_\_~2''*m*$
j6(i) = 32, j6 (±V2

V     v^
Uo,y6i±4±i|

yfl

1 fn.n.oy
V n2n5 )

Jio(t) =   —  + 2 +w,    w  =  r\
W \ 112II5

= l/r+8 + r[22, 56, 177, 352, 870, 1584, 3412, 5952,

11442, 19240, •••];

,*m(<±&
7*10(0 = 20, 7io (—/^-J = 4- Jio (

2 '

±y/5 + i

V2
= 0.

7is r)=-ui,        w  = r( ——-
w v n3n5 /

= 1/V +3 +r[8, 22, 42, 70, 155, 246,421, 722, 1101, 1730, ■•■];

t±f)(,±f
-¥)(-f

1

3'

'±l + y/ñ\       .    (±13 +
7is(0 = 11,  7|5 |      ,  ^     | =7i5

2-/Ï5 2v/T5
= 0,

715
±vT5 +

73o(r) =   -  + i".
Vn,n6n10n15,'

tt' = -1,      t±

l/r-3 + r[4, 2, 6, 10, 15, 18, 37, 30, 57, 70 •■ • ] ;

rir*M-5 r*Mj

/3o(0 = 2,   730

'2

±y/5 + i

730

76

(±2y/6 + i

V      *

r'±

-2, 730

(5
2 y     2

±7T5 + ;

2\/2

,'±yT5 + /\
-6, 730 I —-/=—
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In terms of the argument of 70, namely a = x/yfb (and a' = x'/y/b), the

transformation (3.3a) is now

(3.3b) *-•-  A(J + Bl^~b
Cvabo + D

This transformation preserves the branch 70 if it is in Yab or b\B (whence

ab\B ). The subgroup Yaifb , however, is of index b + 1 by Lemma 2.12. This
accounts for the b + 1 branches.

Proof of right-hand branching: Here jab(t) is invariant under Yab , so we

just prove that under Yab the branch 70 = 7a(Tv//5) has the two conjugates

shown by the arrow. The conjugates are achieved by x' = -1/x (in Yab ). Now

consider a general element of Yab ,

(3.4a) t^t' =  Ar+^ab f  AD-BC = T\gcd(A,D),T\ab\B.
Cxy/ab + D

In terms of the argument of 70, namely o = xyfb (and a' = r'y/b), the

transformation (3.4a) is now

,, AUy 1       Aa + B/yß
(3.4b) a -> a' = ——   ' *   .

Coy/a + D

This transformation preserves the branch 70 if it is in Ya or T\a whence

gcd(T, b) = 1. The subgroup Yab.b, however, is of index 2 (p = 1 ) by
Lemma 2.13. This accounts for the two branchings.

The polynomial f(u, z) = 0 which determines the Riemann surface is

clearly of degree b + 1 in u and 2 in z. The behavior at 3t = cxd is given by

(3.5a) ja(r) «   1/exp2nix/y/d,   jab(x) «   1/e\p2nix/y/ab.

So the left-hand branching produces the b + 1 relations

(3.5b) u « z,   u « z{lbe\p2nik/b (k = 0,... ,b- I).

Likewise, the right-hand branching produces the two relations

(3.5c) z « u,   z « ub.

Of course the relations (3.5c) include (3.5b) and lead to a Newton polygon

dominating f(u, z) and given by the terms:

(3.5d) Case av b:   f(u, z) « ub+x + z2 - zub.

4. Classical modular equations as resultants

of half-step modular equations

We now can exhibit the polynomial relation for the Case a V b (in Theorem

3.2) as a half-step modular equation

f(u, z):=ub+x + z2 - zub + (co + d0z) + (cx +dxz)u

+ ■ ■ ■ + (cb_x + db_xz)ub-x + cbub = 0,

which connects the function elements of (3.2b). For example,

(4.2)       (z=)ja(x)  ->  (u=)jab(xsfb)),   (u=)Jab(x) -> (z=)jG(xVb),
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so by iteratively transforming from z to u and u to z (= Z) again, we have

a relation between 7a("r) and ja(bx), i.e., a modular equation:

(4.3a) <Dav6(z,Z) = 0,   z = ja(x), Z = ja(bx).

Likewise, starting the cycle with u , we again have a modular equation,

(4.3b) VaVb(u,U) = 0,   u = jab(x),  U = jab(bx).

The application of the factor y/b twice in (4.2) leads to the designation "half-

step" for each application.
The correspondences in (4.2) are multivalued, so it is necessary to count

conjugates. To begin with, as an iteration (4.2) provides z (or «) with 2(b+1)

conjugate values of Z (or U resp.), which we can now enumerate.

4.4.   Lemma. Under the iteration (4.2) where (ja(?) =)z —> u —► Z, Z is one

of the following sets of 2b + 2 conjugates:

(4.4a) Z = Ja(bx),ja(X+^)(k = 0,--- ,b-l); ja(x) (b + 1 times).

The orders of magnitude represented here may be listed as

(4.4b) ZKzb, z*Zb;   z = Z (b + 1 times).

Likewise, under the iteration (4.2) where (jab(*) =)u —> z ^> U, U is one of

the following sets of 2b + 2 conjugates:

U = Jab(bx),jab{X + k¿ab\(k = 0,--- ,0-1),

(4.4c) jab (x + W|) (k = 1, • • • , b - 1) ; jab(x) (twice).

The orders of magnitude represented here may be listed as

(4.4d)
{/««*, wwi7A,  uttUexp2nik/b   (k = 1, ■■ • , b - 1) ;   u = U (twice).

The proof consists of a trace of branches of the trees in (3.2b). To illustrate,

look at the special branches of u —> z,  z -> U given by

(4.5a)    jab(x) -V ja(xVb),   ja(r) - jab ([*+^f") (k = 0, ■■■ , b-I).

These branches on composition become part of (4.4c), namely

(4.5b) (u=)jab(x) - (U=)jab(r + kjf)(k = 0,- ,b-l).

The case k = 0 of course is one of the two components of u = U in (4.4c).

4.6. Main theorem. The resultants (or éliminants) of f(u, z) in (4.1 ) yield (for

gcd(a, b) = 1) the modular polynomials Q>avb(z, Z) of '(4.3a) and ,FaV¿,(z, Z)

o/"(4.3b) as follows:

(4.6a) u -résultante(u, z), f(u, Z)) = (z - Z)A+1$ûV6(z, Z),

(4.6b) z -résultante (u, z), f(U, z)) = (u - í/)2Tav6(M, U)
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The Newton polygon terms are deduced from (4.4b) and (4 Ad) as follows:

(4.7a) <DaW,(z, Z) = zb+x + Zb+X - zbZb + ■■■ ,

(4.7b)   ^v^M, U) = u2b+ U2b-ubUb(ub-x+ub-xU + --- + Ub~x) + ---.

4.8.   Corollary. The Newton polygons of f(u, z) z'zz (4.1) and Q>avb(z, Z) and

*FaVft(w, Í7) in (4.7a,b) are valid only if gcd(a, b) = 1.

For proo/", note that if gcd(a, b) > 1, then in (3.2b) jab would have more

than the b + 1 branches shown. For instance, under t —> -1/t the branch

Jabiit + vtyl^b) could become jab((r + kyfä)/y/b) under Ya (as in the proof

of Theorem 3.2) only if 1 +ka = 0 mod b .

5. The computation of half-step modular equations

This section is largely an explanation of Table II (next page) which covers all

cases avi where b is prime and a/3130 (so gcd(a, b) = 1).

5.1. Half-step polynomials. First we calculate the polynomial f(u, z) of (4.1)

for Table II. We need to know the Laurent expansions up to 0(r2b+x) (in the

parameter r = exp2nix/y/a), namely

(ja(x) =)z « l/> + /c0 + • • • + k2br2b,

UabirVb) =)u*l/r + K0 + --- + K2br2b.

The ki and K, of course come from Table I, which is valid up to rx0 (for

b = 5).
Then we can view (4.1) as a quadratic equation in z with the roots z> = z(r)

(as in (5.1a)) and z2 = z(rb) (derived by r -+ rb ). Next we consider the

symmetric root functions (using the unknowns c,, d¡),

(5.1b) z\ + z2 = ub-d0-dxu-db_xub~x,

(5.1c) zxz2 = ub+x +c0 + cxu + ■■■ + cb_xub~x +cbub.

These equations are now known from (5.1a) to 0(rb+x) (after the cancellation

of l/rb+x on both sides in (5.1c)). In each of (5.1bc) we expand both sides as

Laurent series in r and compare coefficients of r~' to obtain equations for the

c¡ and d¡ (in descending order of the subscripts).

5.2. Discriminants and parametrizations. The genus of the curve f(u, z) = 0

is determined by the z-discriminant of the quadratic equation z = z(u) which
it implies. In those cases where the genus is zero, a parametrization z(t), u(t) is

given in Table II. The parametrization is standardized by the symmetry t —> 1/t

in the rational (quadratic) function u(t). The case 1 V 5 is the only one where

a radical ( V^ ) occurs.
Also the roots of the z-discriminant are values of (u =)jab at special points,

which include the elliptic points of its fundamental domain (and likewise for

the roots of the H-discriminant and ja ). In fact, in Table I the values of jN at

the elliptic points had been determined experimentally by selecting from among

these roots. (Details of this hand calculation are omitted.)
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Table II. The half-step modular equations

Listings include f(u, z) with discriminants, parametrizations, and equations for singular moduli.

Case 1 v 2 :

(z=)7'l(T)-(«=)/2(V^T),

(k=)72(t)-(z=)7'i(V2t).

f(u, z) = -62208m + 3456z - 207wz - 432M2 - m3 + u2z - z2 - 2985984,

z-disc = u(u - 256)(—81 + iz)2 ,

iz-disc = z2{z - 1728)(z + 3375)2 ,

z(z) = 64(4z+ 1)3/Z,     m(Z) = 64(f + l)2/7.

7'i(t) = 7i(2t) =>(z- 1728)(z-8000)(z + 3375)2p=0,

72(t) = 72(2t) => (-648 + u)(u + 144)2(-81 + iz)2 = 0.

Case 1 v 3 :

(z=);íW-(«=)73(v1t),

(u=)ji(x)^(z=)jx(s/3x).

f(u, z) = 7077888m - 2944mz+ I26u2z+ 1 10592m2 + 576m3

- tz3z + u4 + z2 ,

z-disc = m(m - 108)(m - 8)2(m - 64)2 ,

«-disc = z2(z - 8000)2(z + 32768)2(z - 1728)2 ,

z(t) = 27(9/ + 1)3(/+ l)/i,     m(Z) = 27(Z+ 1)2/Z.

7,{t) = 7,(3t)  => z(-54000 + z)(z + 32768)2(z - 8000)2 = 0,

73<t) = 73(3r)  => (¡z2 - 576m - 1728)(m + 192)2(m - 8)2(m - 64)2 = 0.

Case 1 v 5 :

(z =)7'i(t) -* (u =)7'5(v/5t) ,

(m=)75(t)-(z=)7,(v/5t).

f(u, z) = -u5z-m6zu+ 12600ZM2- 1890zm3 + 80zm4 + 2985984

+ 13436928m + 20217600m2 + 10264320m3 + 140400m4

+ 648m5 + m6 + z2 - 3456z,

z-disc = u2(u2 - 44m - 16)(m - 36)2(m - 18)2(m - 4)2 ,

M-disc = zA(z - 287496)2(z + 32768)2(z + 884736)2(z - 1728)4 ,

z(z) = 5v/5(25z2 + lOzv^-t- l)3/i,    m(0 = 5y/5(t+ 1/0 + 22.

7.(T) = 7',(5r)  =>

( - 681472000 - 1264000z + z2)(z - 287496)2(z + 32768)2

x (z- 1728)2(z + 884736)2 = 0,

75(t) = 7'5(5t)  =>

m2(m2 - 540m - 6480)(m - 18)2(m - 36)2(m - 4)2(m2 + 216m+144)2ppppp 0.
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Table II (continued)

Case 2 V 3 :

(z=)72(r)-(M=)76(v/3T),

(« =)76(t) - (z =)72(v/3t).

f(u, z) = 1536m2 + 64m3 + m4 + 30m2z - m3z - 64mz + 16384m

-512z + z2 +65536,

z-disc = u2(u + 4)(m - 32)(m - 16)2,

M-disc = zl{z + 1024)2(z - 256)3,

z(Z) = 9(3z+ 1)4/Z,     m(Z) = (9z2 + 14z + 9)/Z.

72(t) = 72(3t) => (z + 144)(z - 2304)(z + 1024)2(z - 256)2 = 0,

76(t) = 76(3t) => m2(m - 96)(m - 16)2(m + 16)3 = 0.

Case 2 v 5 :

{z=)j2{x)->(u=)jxo{yßx),

(" =)7'io(r) - (z =)7'2(v/5t).

f{u, z) = z2 + 2048z - 40960m2 + 5120m3 + 1040m4 - 262144m + 56m5 + m6

+ 1048576 - zu5 + 40zm4 - 530zm3 + 2760zm2 - 5376zm,

z-disc = m(m - 20)(m - 16)2(m - 2)2(m - 8)2(m - 4)2 ,

M-disc = z\z + 12288)2(z - 648)2(z - 2304)2(z - 256)3 ,

z(Z) = (5z2 + 6z + 5)(5z+ I)*/t,     m(/) = 5(/ + l)2/t.

72(r) = 72(5t) =>

z2(z + 1024)(z - 20736)(z + 12288)2(z - 648)2(z - 2304)2 = 0,

7io(t) = 7io(5t) =>

(m3 - 100m2 + 640m - 1280)(m - 16)2(m - 2)2(m - 8)2

x (m-4)2(m+ 16)3 = 0.

Case 3 v 2 :

(2 =)73(T) - (M =)76(v/2t) ,

(« =)76(r) -> (z =)73(v/2t).

f{u, z) = -64- 19mz + m2z-48m+ 16z- 12m2-m3-z2,

z-disc = m(-m + 32)(5-m)2,

M-disc = z2(-4z + 432)(27 + z)2 ,

z(t) = 8(2i + 1)3/Z,     M(Z) = 8(i+ \)2/t.

7j(t) = 73(2t)  => (100 - 2m)(m + 4)2(5 - m)2 = 0,

76(t) = 7'6(2t) => (-z + 8)(-z + 216)(27 + z)2 = 0.
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Table II (continued)

Case 3 V 5 :

(2=)73(t)-("=)7i5(v/5T),

(« =)7'l5(T) - (z =)7'3(v/5t).

/(m, z) = 4096 + 6144m + 3840m2 + 1280m3 + 240m4 + 24w5 + u6 - zu5 + z2

- 128z - 96zm + 20zm2 - 50zm3 + 15zm4,

z-disc = m2(m - 1 1)(m + 1)(m2 + 4)(m - 2)2(m - 8)2 ,  (genus 1),

M-disc = zs(z - 216)2(z + 1728)2(z - 64)2(z - 108)3.

AW = A(5t) =>

(z + 27)(z - 3375)(z2 + 32z + 8000)(z - 216)2

x (Z+ 1728)2(z-64)2 = 0,

AsW = 7i5(5t) => m2(m3 - 42m2 + 48m - 44)(« - 2)2(m - 8)2(m + 4)5 = 0.

Case 5 V 2 :

(*=)AM-(*=)Ao(V5t),
(u =)7io(t) - (z =)7s(v/2t).

f'u, z) = ui - u2z + z2 - 16-44z + 20m- 8m2 + 15«z,

z-disc = (m - 4)(m - 20)(m - 5)2 ,

M-disc = z(z2 - 44z - 16)(z + 3)2 ,

z(Z) = 4(Z+ l)(l+2z)2/Z,     m(0 = 4(3z + Z2 + 1)/Z.

AW = 7'5(2t) =>z(z-72)(z + 3)2 = 0,

AoW = 7io(2t) => (m - 2)(m2 - 30m + 100)(m - 5)2 = 0.

Case 5 V 3 :

(z=)7'5(T)-("=)7'i5(v/3r),

(« =)AsW - (z =)7'5(v/3r).

f(u, z) = u* - ulz + z2 + 16-8z+ 16m + 12m2 + 4m3 -4mz + 9m2z,

z-disc = m2(m + 1)(m - 1 1)(m - 4)2 ,

M-disc = z2{z2 - 44z - 16)(z + 28)2(z - 4)2 ,

z(0 = 3(1 + 3z + 3z2)2/Z,    u(t) = (3i2 + 3 + 50/r.

AW = A(3t) => (z + 3)(z - 147)(z + 28)2(z - 4)2 = 0,

7isW = 7'is(3t) => m2(m2 - 18m - 44)(m2 + 2m + 4)(m - 4)2 = 0

Case 6 V 5 :

(Z=)76W-("=)730(V^T),

(« =)73o(t) - (z =)76(v/5t).

/(m , z) = m6 - m5z + z2 + 12544 + 16128m + 8320m2 + 2240m3 + 340m4 + 28m:

+ 224z +144ZM - 80zm2 - 70zm3 - 15zm4,

z-disc ppppp m2(m - 2)(m + 7)(m + 3)(m + 2)(« + 6)2(m + 4)2 ,  (genus l),

M-disc = z3(z + 112)2(z + 16)2(z + 4)3(z - 32)4.
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Table II (continued)

AW = A(5t) => (z + 49)(z - 5)(z - 320)(z - 16)(z - 32)2

x (z-rll2)2(z+ 16)2 = 0,

AoW = Ao(5r)  =>

m2(m3 + 16m2 + 72m + 108)(m3 + 14m2 + 72m + 1 12)(m2 - 8m - 24)

x (m + 6)2(m + 4)2 = 0.

Case 10v3:

(z =)AoW -> (" =)Ao(v/3t) ,

(« =)AoW - (z =)7,o(v/3t).

f(u, z) = u4 - ulz + z2 + 256 - 4z + 320m + 132m2 + 20m3 - 16mz - 9m2z ,

z-disc = (m - 2)(m + 7)(m + 6)(m + 3)(m + 2)2 ,  (genus l),

M-disc = -27z3(z - 20)2(z - 4)3.

AoW = Ao(3t) => z\z - 5)(z + 5)(z - 40)(z - 8) = 0,

73oW = Ao(3t) => (« + 8)(m2 - 24)(m + 2)2(M + 4)3 = 0.

Case 15 V2:

(z=)7',5(t)-(iz=)730(v/2T),

(u =)73o(r) - (z =)7'i5(v/2r).

f(u, z) = m3-m2z + z2 + 52- 10z + 44m+ 12m2- 7mz,

z-disc = (m + 6)(m-2)(m + 3)2,

M-disc = (z- ll)(z2 + 4)(z + l)2,

z(t) = 2(2i3 + 2z2 + 2t + I)/1,    u(t) = (2/2 - 2t + 2)/t.

AsW = 7i5(2t) => (z - 2)(z - 14)(z + l)2 = 0,

73oW = Ao(2t) => (m - 3)(m2 + 10m + 26)(m + 3)2 = 0.

5.3. Modular equations and singular moduli. The modular equations are de-

termined as described in §4, by elimination. They are not listed, in the interests

of brevity and, in principle, it should not be necessary to do so. Nevertheless,

we might remark that for a large index N the modular equation for j'h does

have small coefficients. For instance, with z = _/i5(t) and Z = 7is(2t) (Case

15V2),

«I)i5v2(z, Z) := Z} + z*- z2Z2 + 6z2Z + 6Z2z - 2z2 - 2Z2

+ 7zZ - 20Z - 20z - 28 = 0.

(Compare this for coefficient size with the modular equation (1.2c) for 7(t)

and j(2x) !)
The singular moduli, or the roots Z = z and U = u are also listed in Table

II. Historically, these values were the objective in computing modular equations

(see [5, Ch.ll]).
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6. Normal parametrization

It is natural to ask which properties of the polynomial f(u, z) in (4.1)

characterize a half-step modular equation. A partial answer is a normaliza-

tion property first used in [8] for traditional modular equations related to class

field theory.
When f(u, z) is of genus zero, it can be parametrized as u = u(t), z = z(t).

The modular equation in (4.3b) is not just a transition from (u, z) to (U, z),

because if we write U = u(t*), z = z(t*), it is a transition from t to t* (but

note z(t) = z(t*) ). Under certain conditions we can choose t* so that (as

before) u(t*) = U, but z(t*) = Z ^ z(t). Hence, (u, z) with parameter t

shall be transformed (below) into a completely different (U, Z) with parameter

t*, satisfying f(U,Z) = 0. The transition t -* t* is a simplification of the

modular relations (4.3ab) between u and U (or z and Z).

We shall use notation like " f(u) " to denote the degree n (maximum expo-

nent of u ) in a rational function f(u).

6.1.   Definition of normal parametrization. An irreducible (polynomial) equa-

tion of genus zero,

(6.1a) /(«,") = 0,

with n > 2 is said to be normally parametrized in (say) u if, first of all, the

usual birational parametrization holds:

n m
(6.1b) u = u(t),   z = z(t).

Suppose further that for any given t and z(t) we can regard (6.1a) as an equation

in u, with one root assuredly u(t) but with other roots {"7,, 1 < i < n - 1}

(£/, t¿ u(t)) satisfying

(6.1c) *(V , ""T") := /(^M)-/(»('>.*('>>  . o.
U - u(t)

Normal parametrization will (by definition) require that the roots {£/,•} can be

parametrizable further in (say) s as

n—l (n—l)m
(6.1d) t = t( s ),   U = U(   s    ).

The n - 1 roots s, of t = t(s) are then parameters in U, = U(s¡).

We use the new variable 5 for the transition from the old parameter t for

the point (u(t), z(t)) to the new parameter t* for one of the conjugate points

(U(s), z(t)). In fact, from (6.1b) and (6.Id), the transition t -+ t* comes from

the determination of t* in

(6.2a) u(f) - U(s) = 0,

which must factor into n rational factors linear in t*.   Hence (6.2a) must
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produce n (rational) determinations of t*(s). Only one of these functions pre-

serves z(t*) = z(t), so we take any one of the other n-l. Thus, we are defining

(U, Z) ( Z / z(t) ) at the parameter

(6.2b) f = t*Cs\

6.3.   Definition of iterated (pure) parametrization. The equation

(6.3a) t(s*) - t*(s) = 0

defines an (n - Ifvalued transformation s —> s*, which in turn describes

(u, z) —> (U, Z). This transformation may be iterated indefinitely often. In the

event that it takes the form

(6.3b) s* =   ñ-<i/w(s),

for w(s) a rational function of s, then the iteration is called pure.

The iteration is most useful when the equations (6.3ab) are used to find

singular moduli fields of the form K(jN(bkx)) for k = 0, 1, 2, ... . Then each

factor of b in bk is an iteration step and the values s —> s* —► ■ • • generate

successive class fields K(s) -> K(s*) -»•••. (See [2], [5, Ch.l 1, §3]).
Thus, in Table III (next page), we see some pure iterated forms simplifying

the modular equations for type <P(z, Z) or *¥(u, U) :

Case 1 V 2 : 5*
y/S(s+l)'

/ s2+ 3
(6.3c) Case 3 V 2 : s* =

Case 1 V 3 : s* =

2(5+1)

s + 2

^9(52 + 5+1)'

6.4. Theorem on normal parametrization from Table III. Where f(u, z) has

the pattern of singularities of a V 2, i.e., with dominant terms

(6.4a) f(u,z) = u3 -u2z + z2 + ■■■ ,

the only cases of normal parametrization are given (esssentially) in terms of one

parameter a.

Where f(u, z) has the pattern of singularities of a V 3, i.e., with dominant

terms

(6.4b) f(u,z) = u* + z2-u3z + --- ,

the only cases of normal parametrization over R are given (essentially) in terms

of one parameter a.

Both of the above cases lead to pure iteration.
Finally, the case 1 V 5 is authenticated as normally parametrized (but not

with pure iteration).
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Table III. Normal parametrizations

Special cases a v b of order b = 2,3, and 5.

Case a V 2 : f(u, z)  = m3 - m2z + z2 + • ■ • ,

oV+i)!   H(0 = °3(' + i)2;
z <

/(m,z)  =  M3 - M2z + z2 + (a - l)(4a2+a+ l)MZ + 3a2(a- 1)2M2

-2q3(q- l)3z + 3a4(a- l)4M + a6(a- l)6.

4 r„ ,        {s2 + 2as - 2s + 1 + 2a)2a2
'(5) = (73ÏJS- "« = —2(5 + i)(,-D2—;

2(5+ l)a
m(/*)  -   (7(5)  =  0 =>  /*(s)  =

(5-1)2

/(2i2+sa2-4i+ 2 + a2)
t(s ) - t*(s)  = 0  =>  s*

(5+l)a2

Case 1 V 2 (a = 4) : /*(*) = f(i+1) ,  «V) = -J— , 5* =
(5-1)2' 5*2-l' v/8(s+l)

4(5+11 1 / 52 + 3
Case 3 V 2 (a = 2) :  ,*(*) = , , ,  t(s") = „    '     „ , 5* -   '

(5-1)2'    v   '     2(5*2-l)' y 2(5+1)'

Parametrization Remark. The cubic f(u, z) = 0 has a double point at (mo , z0) where

M0   =   1 - 3a2 + 2q3 ,    z0   =   1 - 3a2 + 3a4 - a6.

If m' = m - Mo and z' = z - zo , then f(u, z) simplifies to

F (tí , z')  =  m'3 - M,2z' + z'2 + 3(«2 - 1)m'z' + (a6 - ia2 + 2)u'2.

The parameter t is defined uniquely from (m, z) (or (m', z') ) by

a3í  +   1   =   z'/V.

(Caw a v 3 : f(u, z) =  u4 + z2 - u*z + ■ ■ ■ ,

=   n2(«t+l)\at + 9) = »2(/+l)2

27/ ' 3Z       '

/ =  a4(a - 9)2(<» - l)6 + 36r»3(«2 - 6« + 21)(o - 1)4M + 54r»2(a - 9)(« - l)3z

+ 54«2(5«2 - 18« + 45)(a - 1)2M2 - 243(« - l)(3a3 - 13«2 - 3« - 3)mz

+ 729z2 + 1458r»(« - 2)m2z + 108a(7a2- 18a + 27)m3 + 729m4-729zm3.

9 a(53 - 352 + a52 + ns + 35 + a - I )2

l(S>  ~   «(JÎ-1)'      (S)  "   " 3(52+5+l)(5-l)3 ";

<t(S2 +5+1)
u(t') -  (7(5)  = 0 =>  t'(s)  =

(s- l)3

„   . - , 3/953-2752 + 275-9 + <-»252+ct25 + f»2
t(s')   -   t'(s)   =   0   =>   5*    =    .3/-r-r-.

V <»2(52 +5+1)

Q(c2 + s + l) 1
Casel v3(p-» = 9):."(5)=    [,       ,//   .  t(s"

(s- l)3     '    v    '~ 5*3- 1

5 + 2

y9(52T7TTj'
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Table III (continued)

Case 1 v 5 :

/ = m6 + z2 - m5z - 3456z + 1 3436928m + 2021 7600m2 + 1 0264320m3

+ 140400m4+648m5-7776mz-1890zm3 + 80zm4+12600zm2 + 2985984

(3125-250/+ Z2)3       , .           125-22Z + Z2
z(<) =  ----5--,  u(t) =-;

t(s) =s5 -5s4+l 553 - 2552 + 255,

_     (52 - 25 + 5)(54 - 1053+4552- 1005+ 125)2
{S'~ 55(54-553 + 1552-255 + 25)

«(f)   -    (7(5)   =   0   =>(*(5)   =   Mj)  -

t(s") - t*(s) = 0 =>  125 = t(s)t(—

For proof, we first note that the "essential" uniqueness asserted here is of

course valid only to within translations of u and z and fractional linear trans-

formations of t. The two singularities are taken to be t = 0 and oo and the

translations are so chosen that both u = 0 and z = 0 have multiple roots in /.

Case a V 2 : In view of the behavior at oo inferred from (6.4a) we must start

with two parameters a and ß . They are used in such a fashion that as t —► oo,

z « u2, and as t —> 0, z « u :

(6.5a) z =  ^ß^+l)\ßt+l)t   u =  a2ß(t+l)2_

Proceeding, as in the definition (and omitting routine steps in computer alge-

bra), we obtain /(«, z) as the i-resultant of (6.5a) with parameters a and ß .

Likewise, we compute R(U, t) from (6.1c), and we next calculate the discrim-

inant

(6.5b) U-disc (R)   =  t(ßt + \)(a2ßt2 + a2t + 4aßt + 4b) • F2,

where F is some rational function of t (with parameters a, ß ). This will lead

to a nonuniformizable (elliptic) curve unless (ßt + 1) divides the last factor,

possible only if a = ß . Thus, now,

(6.5c) U -disc (R)   = ta\at + 4)-F2,

which leads to the uniformization t(s).

The parameters are in Table III, and the familiar cases " 1 v 2 " ( a = 4 ) and
" 3 V 2 " ( a = 2 ) are also shown.

Case a V 3 : Similarly, we must start with three parameters used in such a

fashion that as t —► oo , z « zz3, and as / —> 0, z « u:

....                        aß(at+l)2(ß2t2 + yt+l)                 aß(t+l)2
(6.6a) z =  -^--^--,   u =  -^-—.

Once again, we define f(u, z) and R(U, t), this time with a, ß, and y as

parameters. We know again that for further parametrization there must be a

square discriminant, which we calculate as before:
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U-disc(R) = adxd2-F2,

dx  = ß2t2 + yt+l,

d2 = 36a2ß4t + 26a3ß4t2 + 7a5ß4t4 + 27ß4a + 4a5ß2t2+18a3ß2yt

(6.6b)       + 16a4 ß6t5 + 34a3 ß6t4 + 20t3a4ß4 + ai' ß2y2t4 + 48a2/3 V

+ 5a5ß4t5y + 2&a4ß4t4y + 20a4ß2yt2 + lSa3ß2y2t2 + 56a3ß4yt3

+ 6a5ß2yt3 + Sa4ß2y2t3 + 36ß6a2t3 - y3a5t3 - a5y2t2

+ 12a2ß2y2t + 4ß6t + 15aß4yt - 4y3a3t - 4a4y3t2

+ 3a5ß6t6 + 19 ß6at2.

To have a perfect square, dx\d2, thus

(6.6c) t-resultant (dx, d2): =  I6ßx4(-ay+ a2 + ß2)4 = 0.

So we substitute ß2 = ay - a2 and ask when the polynomial dx2 = d2/dx is a

perfect square. Thus,

dx2 = 3a6t4-6a5t4y+l6a5t3 + 3a4t4y2-34a4t3y + 30a4t2

(6.6d) + 18a¥y2 - 76a3t2y + 32a3? + 45a2y2t2 - 90ya2t

+ 21a2 + 54ay2t - 54ay + 21y2 ,

which is a perfect square only when

(6.6e)   r-disc(dx2) : = 256(-9y + 10a)2(-v + a)2(-y + 2a)2(2a - 3y)4a14 = 0.

There are four possible relations in a and y as seen by the factors. The second

is degenerate ( y = a, ß = 0 ) and the last two lead to ß imaginary, so we are

left with

(6.6f) y =  10a/9,   ß = a/3.

The parameters again are in Table III, and the only familiar case is " 1 V 3 "

(a = 9).
Case 1 V 5 : Here "icosahedral" techniques enter which are computationally

much more difficult, and no requirement for parametrization can be established

at this point. We content ourselves with a reference to [2], where the iterative

parameters have been already calculated and are summarized in Table III. (Note

the variable / of Table II is changed to -y/Ï25/t in Table III mostly for the

convenience of removing \/5).

7. Concluding remarks

This work would not have been possible without the intensive use of Taylor

series, discriminants, resultants, and polynomial factorization all in multivariate
mode. The system used was MAPLE for the Sun Workstation.

The immediate context in which the half-step modular equation arose was

that of the Hilbert modular equations for Q(v/2) and for QJv^). Without

burdensome details (see [3, 7]) we can make the analogy that the transformation

" x —* 2x " becomes

(7.1a)   Q(v/2):   (t,t') --  ((2 + vp2)x, (2 - V2)x'),  (2 ± V2)2 = 2 ■ (unit) ;

(7.1b)   Q(v-3):   (t,0  -,  ((\ + y/3)r,(l-V3)r'),  (1 ± v^)2 = 2 • (unit).
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Thus, the transformation for Hilbert modular equations is intrinsically "half-

step." This is seen explicitly. While the modular equations in one variable x
are curves, the modular equations in two variables (t , t') are two-dimensional

varieties in four-space. As such they have trace curves at oo which are half-step

curves. For instance, Q(-\/2) leads to Case 1V2 (see [4]), while Q(v^3) is more

complicated. The latter has a curve at oo with two branches denoted (see [7])

by " D* ", which is Case 1 V 2 again, and " D ", which is Case 3 V 2.
If the modular equations in two variables can also be built out of infinite

behavior (like singularities) then these modular equations would also be easier

to compute.

As often before, we must acknowledge our debt to John McKay for his advice

on many details and for his unrelenting advocacy (see [12]) of extended modular

functions as a tool for group characters. We also thank the referees for valuable

suggestions.

Bibliography

1. A.O.L. Atkin and J. Lehner, Hecke operators on r0(m), Math. Ann. 185 (1970), 134-160.

2. H. Cohn, Iterated ring class fields and the icosahedron, Math. Ann. 255 (1981), 107-122.

3. _, An explicit modular equation in two variables and Hilbert's twelfth problem, Math.

Comp. 38(1982), 227-236.

4. _, Some examples of Weber-Hecke ring class field theory, Math. Ann. 265 (1983),

83-100.

5. _,_, Introduction to the construction of class fields, Cambridge Univ. Press, 1985.

6. _, A numerical survey of the reduction of modular curve genus by Fricke's involu-

tions, Number Theory (New York Seminar (1989-1990)), Springer-Verlag, New York, 1991,

pp. 85-104.

7. H. Cohn and J. Deutsch, Some singular moduli for Q(i/3), Math. Comp. 59 (1992),
231-247.

8. H. Cohn, How branching properties determine modular equations, Math. Comp. 61 (1993),

155-170.

9. H. Cohn and M.I. Knopp, Application ofDedekind eta-multipliers to modular equations, in
The Rademacher Legacy to Mathematics (G. E. Andrews, D. M. Bressoud and L. A. Parson,

eds.), Contemp. Math., vol. 166, Amer. Math. Soc, Providence, Rl, 1994, pp. 9-34.

10. R. Fricke, Lehrbuch der Algebra III (Algebraische Zahlen), Vieweg, Braunschweig, 1928.

11. R. Fricke, Über die Berechnung der Klasseninvarianten, Acta Math. 52 (1929), 257-279.

12. J. McKay and H. Strauss, The q-decompositions of monstrous moonshine and the decom-

position of the head characters, Comm. Algebra 18 (1990), 253-278.

Department of Mathematics, City College (CUNY), New York, New York 10031

E-mail address: hihccacunyvm.edu


