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A SPECTRAL METHOD FOR THE VORTICITY EQUATION
ON THE SURFACE

GUO BEN-YU

Abstract. A spectral scheme is proposed for the vorticity equation defined on

the spherical surface. Generalized stability and convergence are proved. The

approximation results in this paper are also useful for other nonlinear problems.

1. Introduction

Since the spectral method has convergence rate of "infinite" order, it has be-

come one of the most powerful tools for the numerical solution of nonlinear

partial differential equations arising in fluid dynamics, e.g., see [2, 4, 5, 7, 8, 12,

13, 16, 17]. Many authors provide various spectral schemes and analyze the er-

rors. Usually, only nonlinear problems in Descartes coordinates are considered.

But in meteorological science and some other fields (see [9-11, 19]) one also has

to deal with problems defined on the spherical surface. As pointed out in [2],

so far, no rigorous approximation theory is available for spectral methods in

spherical polar coordinates. Thus, it is desirable to develop the spectral method

for spherical surfaces theoretically. In this paper, we take the vorticity equation
as an example to show how to deal with such problems. In §2, we construct the

scheme by using spherical harmonic functions. In §3, we list a series of lemmas

which play a fundamental role in the theoretical analysis. Finally, we prove

generalized stability and convergence of the scheme.

2. The spectral scheme

Let S be the unit spherical surface,

S = {(A, 0): 0 < X < 2n, -| < 0 < |} ,

where X and 6 are the longitude and latitude. Let <*(A, 6, t), y/(X, 6, t) and

v > 0 be the vorticity, the stream function and the kinetic viscosity coefficient,

respectively. The gradient, the Jacobi operator and the Laplace operator are as
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follows:
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The vorticity equation is of the form

|f + /(«?, V) - vV2Ç = f

{ -A<p = Ç + f2,

£(A,0,O) = &(A,0),

ja
cosedë) + cos2edX2-

(X,e)eS,te(0,T],

(X,e)eS,te[0,T],

(X,d)eS,

where fx, f2 and Co are given functions. It is natural to assume that all func-

tions have period 2n for the variable X, and are regular at 0 = ±f . For fixing

ip, we require in addition that

(2.2) P(¥(t)) = II ip(X, e, t) dS = 0.

We shall consider the weak representation of (2.1). Let D(S) be the set of

all infinitely differentiable functions which are regular at Ö = ± | and have the

period 271 in the variable X. The duality of D(S) is denoted by D'(S). We
define generalized functions u € D'(S) and their derivatives in the usual way

as in [15]. Furthermore, we can define the generalized gradient, the generalized

Jacobi operator and the generalized Laplace operator. For instance, if

II uAv dS = II vüdS,    Vv e D(S),

then the mapping A such that u = Au is called the generalized Laplace opera-

tor. For simplicity, we denote A by A, etc.

Now, let

L2(S) = {ueD'(S): \\u\\ <oc}

with the inner product and the norm being as follows:

(u,v) = jjuvdS, (u, u) 1/2

Furthermore, let

HX(S) / 1= { u: u, —
{ cos

du   du

cosöcU' de

with the following seminorm and norm:

G L2(S)

«i =
1    du

cos e dX

du

de

1/2

l"lll |M||2 + |«|Î),/2.

For positive integer r, we can define the space Hr{S) with the norm

similarly. In particular, the norm of H2(S) is equivalent to (see [15])

wr + HAMin2nI/2
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For real r > 0, the space Hr(S) is defined by complex interpolation between

the space //M(S) and H^+l(S), [r] being the integral part of r.  Clearly,

H°(S) = L2(S) and ||u||0 = ||m|| . Besides, let ||w||r>00 = ||w||c(S) and ||k||oo =

IMIo.OO  •
It can be verified that

-(Am, v) = (Vu, Vv).

Thus, the weak version of (2.1) is to find (£, y/) £ HX(S) x HX(S) such that
for all veHx(S),

(2.3)
' (§-¿(t) ,v) + (J(Ç(t), y/(t)), v) + u(VÇ(t), Vv) = (f2(t),v),    te(0,T],

«   (Vy/(t),W) = (i(t) + f2(t),v), ie[0,71,

,í(0) = ío.

The existence and uniqueness of the solution of (2.3) was discussed in [19].

Indeed, we can follow a technique similar to the proof of Theorem 6.10 in [ 14] to

show that if fx e L°°(0, T; L°°(S)),f2 e L2(0, T; L2(S)) and {„ € L°°(S),
then (2.3) possesses a unique solution ¿; e L2(0, T; HX(S)) with d£/dt e

L2(0, T;H-X(S)),H~X(S) being the duality of HX(S).
We now turn to constructing the spectral scheme for (2.3). First, let L„(z)

be the Legendre polynomial of degree n ,

The normalized associated Legendre function is defined as

l m. .       ¡(2n + l)(n - m)\.,      -,.„,,-> d"
Lm'n{z) = y       2(n + m)\      (1 - zr   d^Ln{z)>     m^°'n^\m\>

Lm>„(z) = L_m,„(z),     m<0,«>|w|.

Furthermore, the spherical harmonic Ymt„(X, 0) is

Ym,„(X, 0) = -±=eimkLm,n(sine),     n > \m\.
V2n

It can be verified that (see [3])

(2.4) -AYm,n(X, 0) = n(n + l)Ym,n(X, 0)

and

r2n f*/2 „    „   „x„.     ,,   „,      „ ,„ ,,     Í1   if m = m',n = n',
I " i' Ym<n(k, e)Y*m, „,(x, e)œsededx = ( l

Jo   J-n/2 ' I 0   otherwise.

ç2%    rn/2

ùm,„=      /    u(x,e)Y¿ „(x,e) cose de dx.
JO     J-n/2

Let

VM = span{ymi„: \m\ < M, \m\ < n < N(m)),

where N(m) determines the construction of spectral approximation. Usually

we take N(m) = M or N(m) = M+ \m\. For simplicity, suppose N(m) = M.

Let VM be the subset of Vm containing all real-valued functions.
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Let Pm be the orthogonal projection from L2(S) onto VM such that for any

u £ L2(S)

(PMu-u,v) = 0,    Mv£VM,

or equivalently,

PmU=    Y,     Y/   um,nYm,n(X, O).
\m\<M n>\m\

Let t be the mesh size in the variable t, and

RT = lt = kx:l <k<   - j,    RT = RTo{0}.

Define

ôTu(X,e,t) = -(u(X, 0, t + x)-u(X, 0, o).
X

Let (n, <p) £ VM x VM be the approximation to (<*, y/) and b and a pa-

rameters with 0 < b, o < 1 . The spectral scheme for (2.3) is as follows:

( (Sxn(t), v) + (J(n(t) + bxôxu(t), f»(0). v)

-v(A(n(t) + oxô,n(t)),v) = (fx(t),v), Vv£VM,t£Rr,

<   -(Atp(t), v) = (n(t) + f2(t), v), \fv£VM,t£RT,

p(<p(t)) = 0, Vt£RT,

1(0) = PmZo-
Clearly, if b = o = 0, then (2.5) is an explicit scheme. If b = 0 and a / 0,
we still can obtain the value of n(t) explicitly by the orthogonality of spherical

harmonic functions. Indeed, this is one of the advantages of spectral methods.

Otherwise, the scheme is implicit, and so an iteration is needed for evaluating

n(t) at each t £ Rz.
We now consider the existence and uniqueness of the solution of (2.5) with

b 7= 0. We have

(2 6) (í7(í) ' V) + bx{J{r¡{t) ' ^ ~ T)) ' V) ~ "o^lW ' w)

= (F(t),v),     W£Vm,t£Rx,

where

F(t) = r,(t - x) - x(l - b)J(n(t - x), <p(t - x))

+ vx(l - o)An(t -x) + xfx(t - x).

Clearly, this is a linear algebraic system for the unknown coefficients of the

spherical harmonic expansion of n(t). Thus, we only have to show that the

equation
(Z,v) + bx(J(Z,<p),v)- uox(AZ ,v) = 0

has only the trivial solution. By taking v = z, we obtain from Lemma 6 (see

§3 of this paper) that

\\Z\\2 + UCTX[Z}2 = (J

and thus Z = 0. Therefore, n(t) is determined uniquely at each time t £ RT.

3. Some lemmas

For analyzing the errors, we need some basic estimates. In this section,

we prove several lemmas. Throughout this paper, we denote by c a positive

constant independent of M, x and any function, which may be different in

different occurrences. The notation " ç " means the embedding of spaces.
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Lemma 1. We have HB(S) Q Hr(S) for 0 < r < ß and HX+^(S) c C(S) for

ß>0.
Proof. The first assertion follows directly from the definition. We now prove

the second one. Let B be the unit ball in the three-dimensional Euclidean
space, and w a function defined on B . We denote by y(w) the restriction of

w on S. We can take HX+P(S) to be the trace space of H3/2+^(B) equipped

with the norm

IM I//■'+/* (S) =       inf      IM|//3/2+£(fi).
weH}'2+ß(B)

y(w)=u

By embedding theory, H3/2+ß{B) Q C(B), and so for any w £ H3'2+8(B),

IHIC(B) < c\\w\\Hy2+ß{B).

On the other hand, for any u £ HX+B(S), there exists w £ H^2+B(B) such
that y(w) - u and

1.._..
llMll//'+^(S) > 2xxWxxHV1+flB)'

Therefore,

||W||C(5) = SUP|W(X)| = SUP|ÜJ(JC)|
xes xes

< sur)\w(x)\ < c||W||//3/2+/)CB) < 2c||m||//i+<((5),
x€B

which implies the second assertion,   o

Lemma 2. There exists a positive constant c such that \\u\\ < c\u\x for all u £

HX(S) with p(u) = 0.

Proof. By the Poincaré inequality, we have

H2<c2(/<(M) + |w|2),

and so the claim follows.   D

Lemma 3. If u e L2(S), v £ HX+I3(S) and ß > 0, then

\\uv\\ <c||u|||M|1+/¡.

Proof. By Lemma 1,

\\uv\\ <c||w||2||v||^ < c||«||2|M|2+/?.   D

Lemma 4. If u £ VM and 0 < r < ß, then

\\u\\ß < CAff-'WuWr.

Proof. Let
M M

W=    Y     H   Ùm,nYm,n(X, 0).
m=-M n=\m\

By (2.4), Ymtn(X, 0) is the eigenfunction of the operator -A on S, corre-

sponding to the eigenvalue n(n + l). Thus, for the space Hr(s), the norm ||u||r

is equivalent to (see [15])

(oo

Y Y "r(" + iri*m,ni2
m=-oo n>\m\

'I*.
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Then

M        M

\\utß<c  Y    E ^(n + l)B\ûm,n\2
m=—M n=\m\

M        M

<cM2B~2r  Y    E nr(n + l)r\ûm,n\2

m——Mn=\m\

< cM2ß-2r\\u\\2r.   D

Lemma 5. If u £ HB(S) and r < ß, then

\\u-Piiu\\r<cMr->\\u\\ß,

\\PiiU\\r < C\\u\\r.

Proof By (3.1),

M oo oo

\\u-PMu\\2<c  Y    E   nr(n+l)r\ûm,n\2 + c Y   53 «r(« + l)r|"m,«|2
m=—M n=M+l \m\>M n=\m\

M oo oo

-c  E     E   nr(n + l)r\ûm,n\2 + c Y    E   nr(n+l)r\ûm,n\2

m=-M n=M+\ \m\>M n=M+\

oo oo

<cM2r-2B y  E ^(» + i)/?i^,«i2

m=-oon=M+l

< cM2r-2ß\\u\\2.

The second inequality follows from the first with ß = r by using the triangle

inequality.   D

Lemma 3 and Lemma 4 are the approximation and inverse inequalities for

spherical harmonics. In [1], Bramble and Pasciak gave similar results with
different proofs.

Lemma 6. If u,v £ HX+^(S), w e HX(S) and ß > 0, then

(u, J(v , w)) + (v , J(u, w)) = 0.

Proof. We have

r2n    ,k/2      (QVQW       dvdW^i        ti « Í       f        fdvdVJ       dvdw\,û,.
(u,J(v,w))=JQ   J_n/2»{-uJë-ôëJx)dedX

r2n    rn/2      (QUQW       dudw\,nJ,

"~l J^,'(snfsrsi)MM

-jf"(*-í) •(*•!)&(*• S)*

We know from the regularity of w that w approaches the limits independently

of A, as 0 -> ±7r/2 (see p. 314 of [3]). This means that dw/dX = 0 at
0 = ±7i/2, and so the conclusion follows.   G
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Lemma 7 (see [6]). For any u£C(0,T; L2(S))

2(ôru(t), u(t)) = ST\\u(t)\\2 - T||áTM(í)||2.

Lemma 8 (see [6]). Assume that

(i) E(t) is a nonnegative function defined on RT,
(ii) p ,bx,b2,dx and d2 are nonnegative constants,

(iii) for t £ Rr

t-x

E(t) <p + x Y(d\E(f) + d2Mb'Eb>+x(t')),

i'=0

(iv) E(0) < p and pe^+d^ < A/-*1'*2.

Then for all t £ RT and t < tx

E(t) < pe(dx+dl)t.

If in addition d2 = 0, then for all p and t < T

E(t) < ped'1.

4. Generalized stability of the scheme

As is known, nonlinear schemes are usually not stable in the sense of Lax,

but might be so in the sense of generalized stability [6, 18]. We now analyze

the generalized stability of scheme (2.5). Suppose that n(0), fx and f2 have

errors fjo, f\ and f2, respectively. They induce errors of n and <p, denoted

by f¡ and <j>. Then

r (ôxrj(t), v) + (J(W) + bxôtf}(t), <p(t) + <p(t)), v)

+(J(n(t) + bxôxn(t), ip(t)), v) - v(A(f¡(t) + oxoxf¡t(t)), v)

= (fx(t),v), VV£VM,t£ÈT,

-(A$(t), v) = (ij(t) + f2(t) ,V),     VV£VM,t£RT,

p(0(t)) = O, t£Rx,

{fi(0) = m.

By taking v = 2r\ in the first formula of (4.1), we have from Lemmas 6 and

7 that

(4 2)  ST\\fj(t)\\2 - T\\SrW)\\2 + 2u\fj(t)\] + v°^m)\\ - uox2\ôxf,(t)\\ + Fi(t)

- 2bx(J(f,(t), <p(t) + <p(t)), <M(0) = 2(/i (t), fl(t)),

where

Fx(t) = 2(J(n(t) + bxôxri(t),<p(t)),m)-

Next, let d be an undetermined constant. By taking v = dxdxr\ in the same

formula, we get

¿T||aTrX0||2 - \vdxàm)\\ + y dx2 (o - i) |M(f)|? + F2(t)

+ dx(J(ñ(t), f(t) + <p(t)), ôTf)(t)) = dx(fx(t), ÔTfj(t)),

where

F2(t) = dx(J(n(t) + bxôzn(t), <p(t)), M(0)-

(4.1)
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Putting (4.2) and (4.3) together, we obtain

Sr\\ij(t)\\2 + r(d - l)\\örfj(t)\\2 + 2u\fj(t)\\ + vx (a + \ )

(4.4)
+ ux2[do-o-u-)\6Tñ(t)\\ +

where

+ vx2 [do - a - Çj \ôxi)(t)\\ + Y FJW = (/> W. 2*M + ¿*M(0).

F3(t) = x(d-2b)(J(fi(t),9(t)),ô,m),

F3(t) = T(d-2b)(JW),m),mt)).

Furthermore, we put v — <p in the second formula of (4.1) and obtain

l#(í)IÍ<¿ll#(0l|2 + C(||9(/)||2 + ||/2(/)||2).

Thus, Lemma 2 leads to

(4.5) l#(í)IÍ<c(IW(0ll2 + ll/2(í)ll2).

Moreover, by Lemma 2 and (4.5),

\\m\W < c(\W(t)\\2 + \\A<p(t)\\2) < c(Wt)\\2 + Wf2(t)\\2).

We now estimate the \Fj(t)\. Let e > 0 and

|||w|||r= max ||«(0llr,        IIMIkoo = max ||«(0||r,oo, etc.
0<(<r o</<r

By Lemma 1, Lemma 6 and (4.5), we know that for any ß > 0,

\Fx(t)\ = \2(J(rj(t),ñt)),r,(t) + bxozri(t))\

<*HW)l? + ¿lll»;lllLl#(OI?

Similarly,

<ev\m\2+^\\\m2+ßm(t)\\2+\\f2(t)\\2).

cd2
F2(t)\ < ̂ t2|M(0I2 + —Ill'/lll.^flWOII2 + ll/2(0ll2).

eu

Furthermore, Lemma 3 leads to

|/r3(r)|<£T||<M(0lt2+ — U\\<P\\\lß\m\2.

Since

e ..l2+/?l

\\<p(t)\\22 < c(\\9(t)\\2 + \\A<p(t)\\2) < c(\\n(t)\\2 + \\f2(t)\\2),

we have from Lemma 4 that

|F3(0| < et||M(0ll2 + CTMß{d~2b)2(\\\ri\\\2 + lll/2|||2)l^(0lf-
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Also, by Lemma 3, Lemma 4 and the second formula of (4.1), we obtain

1/4(01 < «iimwii2 +CT{d ~2b)1 \w(t)\\l+ßm)\\

< £T\\ôxf,(t)\\2 + cr(d~2b)2(\\m\\} + ii/2(oii})W(oiî

< eT||¿^(/)ii2 + CTMß{dE~2b)2(\\m\\2 + imoiñimil

Finally,

|(/i(0 > m + dx6xr)(t))\ < «||M(0ll2 + c\\f¡(t)\? + c(l + ^) ||/,(r)||2.

By substituting the above estimates into (4.4), we obtain

ôrWmW2 + r(d-l- 3e)\\Srij(t)\\2 + "Mt)\2 + "* (° + Ç) «rWOli

+ Aor\Srr)(t)\2 < Ax\\f)(t)\\2 + A2(t)\f,(t)\2 + A,(t),

where

Aq — vx I do - a - — - s

(.     1+d2.,
Ai = c [1 +-^-\\\ri\\\2+f

A2(t) = -u + e+ °-^-(d - 2b)2(\\\n\\\2 + \\\f2\\\2 + \\rj(t)\\2 + II/2WII2),

xd2
A3(t) = C [l + ?Ç) \\f(t)\\2 + ¿(1 + ¿2)||/2(0ll2.

Let po > 0 and e be suitably small.  We choose the value of d in three

different cases as follows:

(i) o > 1/2. We take

j ^ j              (.     ->            2o + 2po + 2e\
d>dx= max Í 1 + 3e + p0, -jo^~\-J '

Then

(4.7) x(d - 1 - 3e)||>M/)||2 + Aox\r)t(t)\\ > Pot||*/,(/)||2.

(ii) o = 5 . According to Lemma 4, there exists a positive constant q such

that |w|2 < c7M2||m||2 for any u £ VM . We take

¿ > d2 = 1 + 3e + /?o + ^iW2 ( - + e j ,

and so (4.7) holds again.

1 + 3e + po + quxM2(o + e)

(iii) ct < 5 and tM2 < qu,2_2a) . Then we take

d>di
1 +qvxM2(o - \

It can be verified that (4.7) is still fulfilled.
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Now, let

E(t) = ||r/(i)||2 + X Y(vmz)\2+P0T\\Srf)(z)\\2) ,
z=0

P(t) = \\W)\\2 + ux(o + ^) |^(0)|? + tYA3(z).
V ' z=0

By summing up (4.6) for t £ Rx,v/e obtain

(4.8) E(t) < p(t) + xY(AxE(z) + A2(z)E2(z)).
z=0

Finally, by applying Lemma 8 to (4.8), we get the following result.

Theorem 1. Assume that

(i)   xMB is suitably small, ß being an arbitrarily small positive constant,

(ii)   o > i or xM2 < ^¿^ ,

(iii)   11/2(011 < bx and p(t) < b2 for t < tx,

where tx < T,  bx  and b2  are suitably small constants depending only on

\i+ß > \Wf2\W and v . Then for all t < tx

(4.9) E(t) < p(t)eb>'.

We now consider a special case, i.e.,

' 2b>dx    for o > \ ,

(4.10) I  2b>d2    forcr = i,

. 2b > di    for a <\.

Then we can take d = 2b and so A2 = -v. Thus, the following conclusion

follows.

Theorem 2. Let o > \ or xM2 <     (1'_2, .  If in addition (4.10) is fulfilled,

then (4.9) holds for all f2(t), p(t) and t <T.

5. Convergence

In this section, we deal with convergence. By (2.4),

-PMAu(X,e)=   Y    E n(n+l)ûm,HY„iH(k,d)
\m\<M n>\m\

=   -E     E   Ûm,nAYm,n(X,e) = -APMu(X,e).
\m\<M n>\m\

Let ÇW = PmÇ, and y/<M) = PMW ■  Then from (2.3) we obtain that for all

V £VM
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( (3x&M)(t), v) + (J(&M\t) + bxôx^M)(t), y/{M)(t)), v)

+u(V(&M)(t) + oxôrÇM(t)), Vv)

= (eJ=, Gj(t) + fx(t), v) + (VG4(t) ,Vv), t£Rx,

(VipW\t), Vv) = ({W(0 + f2(t) ,v), t£Rx,

p(y/(M\t)) = Q, t£Rx,

{^(0) = iWio,

where

Gi(0 = «w(0-^(M)(0,

G2(t) = bxJ(S£M\t),yW\t)),

G3(0 = J(Hm(t), y/M(t)) - /({(i), v(t)),

G4(t) = oxôxeM\t).

Next, let n = &M) +1 and q> = y/W + ^. Then we have from (2.5) and (5.1)
that for all v £ VM

{ (o¿(t), v) + (/(|(0 + bxo¿(t), wm(t) + ip(t)), v)

+(J(#MKt) + bxo¿M(t), m), v) + "(A(í(0 + axôÀ(t)), v)

= - (zU °jW 'v) - (VG*w -Vu) ' <e ** '

(Ay(t),v) = (Ç(t),v), t£Rx,

p(ip(t)) = 0, t£Rx,

11(0) = 0.

Clearly, we can get the same estimate as in (4.9). But n and i) are replaced by

£ and <f, respectively, and p(t) is replaced by

0(i) = t£(||C7,(z)||2 + ||G,(z)||2 + ||C73(z)||2 + |C74(z)|2).

According to

2=0

a¿(t)
dt (0

i f'-\ ,dH, ..
xl  e+*-*)a?w-'*.

we have

rY\\Gx^\\2^crl\\^mo,r,ms)r
z=0

By Lemma 3 and Lemma 5,

||G2(0II2<ct2|||^m)|||2+^
d£(M)

Ot

<CX2(\\\Z\\\} + HI/21112,)

(0

oí

<CT'

a?

2+ß
di

dt
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Furthermore, for r > 0,

HGMOII2 < c\\w{M)(t)\\2+ß0MKt)-m\\i + c0M)(t)h\\¥{M)(t) - <p(t)\\22+ß

<cA/-2r(iii^iii2+^iiicriii2+r + iiiíiii2iiiV/||i2+/?+r)

< cM-2r[(\\U\} + ll!/2|||^)IHÍ|||2+r + (Hlílll^ + |||/2|||J+r)|||í|||,].

H   2

Finally,

|C74(0|2<cr2|||a?

Therefore, p(t) = 0(t2 + M~2r), and so we obtain the following results.

Theorem 3. Let r > 0 and ß be arbitrarily small positive constants. Assume

that
(i) (4.10) or condition (i) of Theorem 1 holds,
(ii) condition (ii) of Theorem 1 is satisfied,
(iii) f eC(0, T;Hx+r(S))nCx(0, T; Hx(S)) f) H2(0, T;L2(S)) and f2£

C(0,T; HP+r(S)). Then, for all t<T,

K(t)\\2<b*(x2 + M
-2/-X

where b* is a positive constant depending only on the norms of £ and f2 in the

spaces mentioned above.
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