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COMPUTING THE DEGREE OF THE MODULAR
PARAMETRIZATION OF A MODULAR ELLIPTIC CURVE

J. E. CREMONA

Abstract. The Weil-Taniyama conjecture states that every elliptic curve E/Q

of conductor N can be parametrized by modular functions for the congruence

subgroup T0(N) of the modular group r = F5L(2,Z). Equivalently, there

is a nonconstant map ip from the modular curve Xq(N) to E . We present

here a method of computing the degree of such a map </> for arbitrary N.

Our method, which works for all subgroups of finite index in I" and not just

r0(Ar), is derived from a method of Zagier published in 1985; by using those

ideas, together with techniques which have recently been used by the author to

compute large tables of modular elliptic curves, we are able to derive an explicit

and general formula which is simpler to implement than Zagier's. We discuss

the results obtained, including a table of degrees for all the modular elliptic

curves of conductors up to 200.

1. Introduction

The Weil-Taniyama conjecture states that every elliptic curve E/Q of con-

ductor TV can be parametrized by modular functions for the congruence sub-

group To (TV) of the modular group T = PSL(2, Z). Equivalently, there is a

nonconstant map <p from the modular curve Xq(N) to E. We present here a

method of computing the degree of such a map tp for arbitrary N. Our method

is derived from a method of Zagier in [5]; by using those ideas, together with

techniques which have been used by the author to compute large tables of mod-

ular elliptic curves (see [2]), we are able to derive an explicit formula which is
in general much simpler to implement than Zagier's, for arbitrary subgroups of

finite index in Y. To implement this formula, one needs to have explicit coset

representatives for the subgroup, but it is not necessary to determine an explicit

fundamental domain for its action on the upper half-plane %?. In particular,

it is simple to implement for To(N) for arbitrary N, in contrast with Zagier's

formula, which is only completely explicit for N prime.

In the following section, we review the necessary background on modular

parametrizations of elliptic curves. In §3 we introduce some machinery con-

cerning coset representatives and fundamental regions, and state the main re-

sult (Theorem 3). This formula for deg((p) is proved in §4. In §5 we discuss

the implementation of the method for the case of To(N), and the results of
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a systematic computation of the degree of the parametrization of all modular

elliptic curves of conductors up to 3000, with a table of the results up to 200.

2. Modular parametrizations of elliptic curves

Let T = PSL(2, Z) be the modular group, and r0 a subgroup of T of
finite index. Both act discretely on the upper half-plane %? and the extended

upper half-plane %?* = ^uQu{oo} obtained by adjoining the cusps QU{oo},

which form a single T-orbit. The quotient X = XrQ = Tq\^* can be given the

structure of a Riemann surface; in the case we are most interested in, where Tn

is a congruence subgroup, X is also an algebraic curve defined over a number

field, and is called a modular curve.

An elliptic curve E defined over Q is called a modular elliptic curve if there

is a nonconstant map <p:X -> E for some modular curve X. The pull-back of
the unique (up to scalar multiplication) holomorphic differential on E is then

of the form 2nif(x)dx, where f(x) is a holomorphic cusp form of weight 2

for To . According to the Weil-Taniyama conjecture, this should be the case

for every elliptic curve defined over <Q>, with To = Tq(N) > where N is the

conductor of E. Moreover, the cusp form f(x) should be a newform in the

usual sense. [It is also conjectured that f(x) should be normalized, with first

coefficient equal to 1. In general, / will be a rational constant c times a

normalized newform. In the sequel it will be irrelevant whether the "Manin

constant" c is equal to 1, since we define the curve Ef below in terms of a

normalized newform, and it is irrelevant whether or not this curve is minimal

in the usual sense.]

We will suppose that we are given a normalized cusp form f(x) of weight 2

for r0 . Since the differential f(x)dx is holomorphic, the function

(Pi(x) = 2%i i f(QdC   (reX*)
J oo

is well defined (independent of the path from oc to x ). Also, for y e To, the

function

(0(7) = 9i(7(r)) - 9i(r) = 2ni f % f(Ç)dÇ

is independent of x, and defines a function

co:r0^C,

which is a homomorphism. The image Ay of this map will, under suitable

hypotheses on / which we will assume to hold, be a lattice of rank 2 in C, so

that Ef = C/Af is an elliptic curve. Hence (pi induces a map

(p:X = r0\JT* ^Ef = C/Af

via

(p(x modr0) = (pi(x)   mod Ay.

The period map co: r0 -» Ay is surjective (by definition) and its kernel con-
tains all elliptic and parabolic elements of T0 . We may write Ay = Zcoi + Zto2

with lm(to2/coi) > 0. Then

co(y) = ni(y)col + n2(y)co2,

where ni, n2:To —► Z are homomorphisms.   It is important to observe here
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that these functions are explicitly and easily computable in terms of modular

symbols: for the case To = Tq(N) , see [2] for details. Alternatively, given suf-

ficiently many Fourier coefficients of the cusp form f(x), we may evaluate the

period integrals cp\ (x) to sufficient precision that (assuming that the fundamen-

tal periods co\ and co2 are also known to some precision) one can determine

the values of ni(y) and «2(7) for all y e T0. The latter approach is used in

[5]. The advantage of the modular symbol approach here is that exact values are

obtained directly, and that it is not necessary to compute (or even know) any

Fourier coefficients of f(x). On the other hand, it becomes computationally

infeasible to carry out the modular symbol computations when the index of To

in T is too large, whereas the approximate approach can still be used, provided

that one has an explicit equation for the curve E at hand, from which one can

compute the periods and the Fourier coefficients in terms of traces of Frobenius

(assuming that E is modular and defined over Q ). This method was used, for

example, to compute deg(tp) for the curve of rank 3 with conductor 5077, in

[5].
The special case we are particularly interested in is where r0 = To(N) and

f(x) is a normalized newform for Vq(N) . Then f(x) is a Hecke eigenform with

rational integer eigenvalues and therefore rational integer Fourier coefficients.

The periods of 2nif(x) do in this case form a lattice Ay, and the modular

elliptic curve Ef = C/Ay is defined over Q and has conductor TV.

In order to compute the degree of the map q>: X -> Ef, the idea used in

[5] is to compute the Petersson norm ||/|| in two ways. The first way involves

de%((p) explicitly, while the second expresses it as a sum of terms involving

periods, which can be evaluated as above.

Proposition 1. Let f(x) be a cusp form for r0 as above, and tp:X —> Ef the
associated modular parametrization. Then

4n2\\f\\2 = deg((p)Vol(Ef).

Proof. From the definition

ll/ll2 = [ \f(x)\2dudv   (where x = u + iv)
Jx

we have, following [5] exactly,

4n2\\f\\2 = 2in2 [ f(x)dx A/(t^t"
Jx

= ^ / (2nif(x)dx) A (2nif(x)dx)
2 Jx

= l-J <p*(dz)Ar(dz),

since <p*(dz) = 2nif(x)dx, where z = x + iy is the coordinate on Ef,

= -deg(p) /   dz Adz
1 JEf

= de%(q>) /   dxdy
JEf

= deg(<p)Vol(Ef),

as required.   D
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Remark. In terms of the fundamental periods co\ , co2 of Ef, the volume is

given by

Vol(£» = |Im(oJTw2)|.

More generally, if co,  to' e Ay, with co = n\(co)co\ + n2(co)to2  and co' =

n\(co')co\ + n2(co')co2, then (up to sign) we have

n\(to)   ni(to')
n2(co)   n2(co')

3. Coset representatives and fundamental domains

Let S = (, 0 J  and T = ( 0 x j  be the usual generators for T, so that S

has order 2 and TS = (, 0 J has order 3.

As fundamental domain for T we may take the triangular region & with

vertices at 0, p = (1 + z\/3)/2, and oc . Since TS fixes p and permutes 0, oc

and 1 cyclically, the three transforms of S? by /, TS and (TS)2 fit together

around p to form an "ideal triangle" iT with vertices at 0, 1 and oo . Let (y)

denote the transform of ET by y for y e T. Then these triangles (y) form a

triangulation of the upper half-plane ¡ff, whose vertices are precisely the cusps:

the vertices of (y) are the cusps y(0), y(\) and y(oc). Note that

<y) = (yTS) = (y(TS)2)

but that otherwise the triangles are distinct.  The triangle (y)  has three (ori-

ented) edges; in the modular symbol notation of [2], these are

(y) = {y(0),y(<x>)},

(yTS) = {yTS(0),yTS(oo)} = [y(oo), y(l)},

and

(7(TS)2) = {y(TS)2(0),y(TS)2(oc)} = {y(l), y(0)}.

Here the modular symbol {a, ß) denotes a geodesic path in %" from a to

ß-
Assume, for simplicity, that To has no nontrivial elements of finite order,

i.e., no conjugates of either S or TS. (This assumption is merely for ease

of exposition; in fact, it is easy to see that elliptic elements of Tq contribute

nothing to the formula in Theorem 2 below in any case.) Choose, once and for

all, a set S? of right coset representatives for T0 in T, such that y eS" implies

yTS e y ; this is possible since, by hypothesis, To contains no conjugates of

TS.
Let y be a subset of 5? which contains exactly one of each triple y , yTS,

y(TS)2 , so that S? = &' U &"TS U 3"(TS)2. Then a fundamental domain

for the action of T0 on J** is given by

•*„=  U (7).
yd-/"

Im (tuto') = Vol(£y) •
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In general, this set need not be connected, but this does not matter for our

purposes: it can be treated as a disjoint union of triangles, whose total boundary

is the sum of the oriented edges (y) for y e<9*.

The key idea in our algebraic reformulation of Zagier's method is to make

use of the coset action of Y on the set 5?. We introduce notation for the

actions of the generators S and T of Y.

Action of S. For each y G S? we set yS = s(y)a(y), where s:S? —► Yq is a

function and a:S^ -» 5^ is a permutation. Since S2 is the identity, the same
is true of a, and s(a(y)) = s(y)~]. For brevity we will write y* = a(y), so

that y** = y for all y eS".
Note that the triangles (y) and (yS) are adjacent in the triangulation of

%?, since they share the common side (y) = {y(0), y(oo)} = -(yS). (Here the

minus sign denotes reverse orientation.) However, since in general we do not

have y S G 3", in the fundamental domain ^0 for To it is the triangles (y)

and (y*) which are glued together by the element s(y) G To which takes (y*)

to -(y) (the orientation is reversed).

Action of T. Similarly, for y € y we set yT = t(y)x(y) with t(y) e Yq

and x(y) e S?. The permutation t of y plays a vital part in what follows.

Lemma 1 will not be used later, but is included for its own interest as it explains

the geometric significance of this algebraic permutation.

Lemma 1. (a) Two elements y and y' of S* are in the same x-orbit if and only

if the cusps y(oo) and y'(oo) are Yo-equivalent.

(b) The length of the x-orbit of an element y e S? is the width of the cusp

y(oo) ofY0.

Proof, (a) y and. y' are in the same r-orbit if and only if y0 = y'Tjy~] G r0

for some j, which is if and only if yny(oo) = y'(oo), since the stabilizer of oo

in r is the subgroup generated by T.
(b) The length of the orbit of y is the least k > 0 such that yo = yTky~x =

(yTy~x) G T0, which is the width of the cusp y(oo), since the stabilizer of

y(oo) in T is generated by yTy~{ .   □

Thus there is a one-one correspondence between the orbits of x on S? and

the classes of r0-inequivalent cusps, with the length of each orbit being the
width of the corresponding cusp.

In each r-orbit in 5?, we choose an arbitrary base point yi, and set y;+i =

x(yf) for 1 < j < k, where k is the length of the orbit and yk+i = yi . Thus
YjT = t(yj)yj+i, so that

yxT> = t(yi)t(y2)---t(yj)yj+l.

In particular, yx Tk = y0yi, where

Yo = t(yi)t(y2)---t(yk)€YQ.

Lemma 2. There holds
k

Y"(t(7j)) = 0,
7=1
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where the sum is over a complete x-orbit on S? and where co is the period map

of the previous section.

Proof. Since yn = yi^yj"1 is parabolic, we have to(yo) = 0. Since a; is a

homomorphism, the result follows.   □

Lemma 3. We have s(yTS) = t(y) for all y G S?.

Proof. We have t(y)x(y) = yT = (yTS)S = s(yTS)a(yTS), since yTS G S".
Hence t(y) = s(yTS), and also x(y) = a(yTS).   D

Write y -< y' if y and y' are in the same r-orbit in y, and y precedes y'

in the fixed ordering determined by choosing a base point for each orbit. In the

notation above, y -< y' if and only if y = y, and y' = y¡, where 1 <i<j< k.

We can now state our main results.

Theorem 2. Let f be a cusp form of weight 2 for Yq with associated period

function to : Y0 —► C. Then (the square of) the Petersson norm of f is given by

\\f\\2 = ̂ Y1™^^»™^»-
y^y'

Here the sum is over all ordered pairs y -< y' in 5? which are in the same

orbit of the permutation x of y induced by right multiplication by T.

Combining this result with Proposition 1 of the previous section, we immedi-

ately obtain our explicit formula for the degree of the modular parametrization

(p.

Theorem 3.  With the above notation,

deg(p) =        |        Y lm(to(t(y))co(t(y>))) = \ Y

Hence, to compute deg(ç?), we only have to compute the right coset action of

T on an explicit set 5? of coset representatives for To in T, and evaluate the

integer-valued functions n\ and n2 on each of the matrices t(y) for y G S?.

In the case of ro(7V), these steps can easily be carried out within the framework

described in [2], and we will give some further details in §5 below.

Remarks. 1. The formula given in Theorem 3 expresses deg(0>) explicitly as

a sum which can be grouped as a sum of terms, one term for each cusp, by

collecting together the terms for each r-orbit. It is not at all clear what signif-

icance, if any, can be given to the individual contributions of each cusp to the

total.
2. The form of our formula is identical to the one in [5]. However, we

should stress that in [5], the analogue of our coset action t is defined not

algebraically, as here, but geometrically, as a permutation of the edges of a

fundamental polygonal domain for To (and dependent on the particular fun-

damental domain used). Then it becomes necessary to have an explicit picture

of such a fundamental domain, including explicit matrices which identify the

edges of the domain in pairs. This is only carried out explicitly in [5] in the

case r0 = Yq(N) , where N is a prime. In our formulation, the details are

all algebraic rather than geometric, which makes the evaluation of the formula

n\(t(7))   ni(t(Y'))
n2(t(y))   n2(t(y'))  '
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more practical to implement. Also, we have the possibility of evaluating the

functions n\ and n2 exactly using modular symbols, instead of using numeri-

cal evaluation of the periods, which reduces the computation of de%(q>) entirely

to linear algebra and integer arithmetic.
3. There are other formulas for deg((p), involving special values of the L-

function attached to the symmetric square of Ef. This connection is discussed

in [1] and [3]. As pointed out by an anonymous referee, this formula implies that

there should be a simple relation between the degrees of modular parametriza-

tions of quadratic twists. Also, both deg(<p) and the symmetric square L-value

are related to so-called "congruence primes", see [4]. We do not go into these

connections further here, but hope that our methods and the data which we

have computed will help in these and other related investigations.

In the next section we will prove Theorem 2.

4. Derivation of the formula for deg((p)

Proof of Theorem 2. Starting from the definition of ||/]|2, we compute, using

our triangulation,

= 5/   f(x)W)dxATx

/      <P\(*)f(?)dx       (by Stokes's Theorem)
Jd.9r0

Y f (pMJWx

4* Jd*\n

J_
471 y-

= ¿E(7  +/   )<Pdr)f(r)dx,

is an involution. But

/      (Pl(x)f(xW=   I (Px(T)7Wx
J(y) J(siy)-'yS)

y

since *-.y —► y is an involution. But

= f    (p,(s(y)x)f(x)dx
J(yS)

= - j <px(s(y)x)7(T)dl,
J(y)

since s(y) G T0 , and we have used the To-invariance of f(x)dx . Hence,

= ¿E /  l9i{r)-9i(s(7)r)]f(r)dT

ye.?' JM

Now
rr(°°r ry[°°) 1

/   f(x)dx= f{r)dx=—[(pl(y(^))-(pi(y(0))],
Jiy) JylQ) ITU
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so that
2 _

[¿^W(5(y))[p1(y(oo))-Pl(y(0))].
16.

We have now reduced the double integral to a finite sum. But

Y/co(s(y))(Pi(y(oo)) = Y,co(s(Y*))<Pi(y*(oo))       (permuting the sum)

y y

= -]Ta>(s(y))0>i(y*(oo))       (since s(y*) = s(y)~l)

y

= ~Y(o(s(y))<pi(s(y)~iy(0))       (since yS = s(y)y*)
y

=    Y o)(s(y))[<pdY(0))-to(s(y))]
y

= -Y 0)(s(7))MyW) + Y Ms(y))i2.
y y

Hence, since ||/||2 is real, we obtain

\\f\? = ^2lrnY^(7))^rW)-
y

Since we have chosen the set of coset representatives S? to be closed under

right multiplication by TS, we can replace y by yTS in the previous sum, to

get

U/H2 = ^2lmYo}(s(YTS))ç>i(y(œ))
y

= -^2lmYœ(t(7))(P^7(oo)),

y

where we have also used Lemma 3. Finally, in the last expression for ||/||2,

we divide the sum into z-orbits; using the notation of the previous section, the

contribution from one orbit is

k _

Y^(t(Yj))<P\(yj(oc))
7=1

k _

= Yœ(t(Yj))[<Pi(Yj(oo)) - íPi(yi(oo))]       (using Lemma 2)

7=i

* 7-1 _

= YYc°(t(7M<P^(Yi+i(0°)) - <Pi(7i(oo))]
j=\ i=\
k 7-1_

= Y(°(t(7j))Y(Pl(7i+i(00V - <Pl(t(7i)Yi+i(°°))
7=1 ,=i

= -    Y    <*>(t(Yj))a>(t(yi)).
l<j<i<k

Summing over all orbits, we obtain the result of Theorem 2.   D
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5. The case of r0(7V) : implementation and results

In this section we discuss the case r0 = Y0(N) in greater detail. We have
implemented the algorithm in this case as part of our suite of modular elliptic

curves programs which were described in [2]; to date (June 1994) we have

computed all modular elliptic curves of conductors up to N = 3000, together

with the degrees of their modular parametrizations (in all but a very small

number of cases). It is not practical to give complete tables of these results

here, as there are approximately 9500 curves (up to isogeny) with conductor

up to 3000. Instead, we give results in a selection of specific cases, and a table

for TV < 200. A complete table of results is available electronically from the

author, from which phenomena of interest (such as the growth of deg(cp) in

terms of TV, or the set of primes dividing deg((p) ) can be observed.

Let N be an arbitrary positive integer. The index of Y0(N) in Y is given
by

[Y:Y0(N)] = NY[(l + l/p).
p\N

The right coset representatives of Yo(N) in Y are in bijective correspondence

with the set Pl(N) = PX(Z/NZ) of "M-symbols" (c : d), where c, d G Z,
gcd(c, d) = 1, and

(c : d) = (c1 : d') .«=> cd' = c'd   (mod N).

We will also write (c,d) = (c1, d') for this equivalence relation on Z2 . The
correspondence with right cosets is given by

(c:rf)~r0<*)(;   bd),

where a, b e Z are chosen so that ad - be = 1, different choices of a, b

giving the same right coset.

The right coset action of Y on PX(N) is given simply by

(c:d)(^   q^j=(cp + dr:cq + ds);

in particular, we have

a(c:d) = (c:d)S = (d:-c)       and       x(c : d) = (c : d)T = (c : c + d).

Lemma 4. The length of the x-orbit containing (c : d)e Pl (N) is N/ gcd(N, c2).

Proof. xk(c : d) = (c : d) <=> (c : kc + d) = (c : d) <==> cd = c(kc + d)
(mod N) *=> kc2 = 0 (mod N) ^ k = 0 (mod 7V/gcd(7V, c2)).   D

In our earlier work [2], where we used M-symbols to compute modular elliptic

curves, it was immaterial exactly which coset representatives were used, or in

practice which pair (c, d) was used to represent the M-symbol (c : d). For

the application of Theorem 3, however, we must ensure that our set is closed

under right multiplication by TS :

(c:d)TS = (c + d:-c)
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unless (c : d) is fixed by TS, which is if and only if c2 + cd + d2 = 0 (mod TV).

Thus each M-symbol (c : d) will be represented by a specific pair (c, d) G Z2

with gcd(c, d) = 1, in such a way that our set 5? of representatives contains

the pairs (c + d, -c) and (—d, c + d) whenever it contains (c, d), unless

(c : d) is fixed by TS. Even when working with pairs (c, d) we will identify

(c, d) and (-c, -d).
Fixing these triples of pairs (c, d) corresponds to fixing the triangles (y)

which form a (possibly disconnected) fundamental domain for Yq(N) .    If

y = \c d) , the pair (c, d) corresponds to the directed edge {y(0), y(cc)}

= {b/d, a/c]. The other edges of (y) are {a/c, (a + b)/(c + d)} and

{(a + b)/(c + d), b/d}. For this reason we will refer to the pairs (c, d) as

edges, and the triples of pairs as triangles. Right multiplication by TS corre-
sponds geometrically to moving round to the next edge of the triangle, while

right multiplication by S corresponds to moving across to the next triangle

(y*) adjacent to the current one. The r-action is given by composing these,

taking (c : d) (or edge {b/d, a/c] ) to the symbol (c : d)T = (c : c + d) with

corresponding edge {(a + b)/(c + d), a/c} , up to translation by an element of

Yo(N). Note how in this operation the endpoint at the cusp a/c is fixed, as in
Lemma 1 above.

We may therefore proceed as follows. For each orbit, start with a standard

pair (c, d), chosen in an M-symbol class (c : d) not yet handled. Apply T

to obtain the pair (c, c + d). If this pair is the standard representative for the

class (c : c + d), we need take no action and may continue with the orbit. But

if (c, c + d) = (r, s), say, with (r, s) G 5?, then we must record the "glueing
matrix" S, where

and ad - be = ps - qr = 1 , whose period co(S) will contribute to the partial

sum for this orbit. When this happens, we say that the orbit has a "jump" at

this point. Different choices for a, b, p and q only change ô by parabolic

elements, and so do not affect the period co(S). We continue until we return

to the starting pair, and then move to another orbit, until all M-symbols have

been used. As checks on the computation we may use Lemmas 1 and 4: the

length of the orbit starting at (c, d) can be precomputed as N/gcd(N, c2),

and the number of orbits is the number of ro(/V)-inequivalent cusps, which is

5ZrfiAr Ç9(gcd(<i, N/d)). (Here q> denotes Euler's function, of course, not the

modular parametrization.)

Example 1: N = 11 . The 12 symbols form 4 triangles which we choose as

follows:

(1,0), (-1, 1),(0, 1); (1, l),(-2, 1),(-1,2);

(1,2), (-3, l),(-2,3);        (1,3), (-4, l),(-3,4).

There are two r-orbits, corresponding to the two cusps at oc (of width 1 ) and
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at 0 (of width 11). The first contributes nothing. The second is as follows:

(1, 0) h. (1, 1) h* (1, 2) - (1, 3) h. (1, 4) = (-2, 3) Hi (-2, 1) h» (-2, -1)

= (-3, 4) ^(-3,1) ^(-3,-2)

= (-4, 1) h» (-4, -3) = (-1, 2) h» (-1, 1) h> (1, 0).

There are four jump matrices coming from the above sequence. From (1,4) =

(-2, 3) we obtain

ál = (i   "4) (-2  ~3)   =(n   I1):

the others are

*-(u  3)'   *"(n   "21)   and *-(l?  -4)-

Hence,

deg(^) = 2v0\(E)    E    Im(ta(á/)w(^)).
1<'<7<4

Now by using modular symbols, we can compute the coefficients of co(S¡) with

respect to a period basis co\, co2,\.o obtain

to(6\) = -co\ ;        cü((?2) =-ÛJ2;

w(¿3) = wi ;        co(ô4) = to2.

Hence we obtain deg(ç>) = ^(+1 +0 + (-l)+l+0+l)= 1. Of course, this
answer was obvious a priori, since the modular curve A"o (11) has genus 1, so

that <p is the identity map in this case. The curve (11A1 in [2]) has coefficients

[ax, a2, ai, aA, a6] = [0, -1, 1,-10, -20].

Example 2: N = 26 = 2 • 13. Here the genus is 2 and there are two new-

forms. Of the four cusps, only \ (of width 13) contributes to deg(tp), which

is 2 in both cases. The curves are 26A1 = [1,0,1,-5, -8] and 26B1 =

[1,-1, 1,-3,3].

Example 3: N = 30 = 2 • 3 • 5. Here the genus is 3, there are two oldforms

from level 15 and a newform. The cusps \ , ^ and ¿ contribute respectively

1, 5 , and 5 to deg((p), which equals 2. The curve is 30A1 = [1,0, 1, 1,2].

Example 4: A7 = 210 = 2-3-5-7. There are five newforms here giving five

curves, A—E. There are 16 cusps, namely j (of width 21 O/W) for d \ 210.
The contributions to deg(^) are as follows:
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6
7

10
14

15
21
30
35

42
70
105
210

J. E. CREMONA

A7 = 210

Total = deg(ç?)

0
10
2
3

14
10
9

-1

2
3
2

0
0
0
0

48

B

0
12
27
-5

21
-13

19
4
8
12

0
0
0
0

96

0
6
2

5/2

19/2
4

5/2
-5/2

7/2
5/2
2
0

0
0
0
0

32

D

0
2
0
4

1
0
4
0

3
0
2
0

0
0
0
0

16

0
6
16

-5/2

89/2
49

3/2
21/2

27/2
3/2
0

-12

0
0
0
0

128

The curves are A = 210A1 =[1, 0,0, -41, -39], B = 210B1 =[1,0, 1,
-498, 4228], C = 210C1 = [1, 1, 1, 10, -13], D = 210D1 =[1,1,0,

-3, -3] andE = 210E1 =[1,0,0,210,900].
Finally we give a complete table of all results for N < 200. For convenience,

we give for each curve the code from [2] and the Antwerp Code (in parentheses),

and the coefficients of the curve in standard Weierstrass form.
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Table of "strong Weil" curves and deg(ç>) for TV < 200

AN id   [a,, a2 , a} , a4 , a6]

11

14

15
17

19

20
21
24
26
26
27

30
32
33
34
35
36
37
37
38
38
39
40
42
43
44

45

46

48
49
50

50
51
52

53
54

[0, -1,1,
[1,0, 1

[1, 1, 1,
[1,-1, 1
[0,1,1,-

[0, 1,0.
[1,0,0, -
[0, -1,0
[1,0,1,-
[1,-1,1
[0,0, 1,
[1,0, 1
[0,0,0

[1,1,0,
[1,0,0,
[0, 1, 1

[0,0,0
[0,0, 1,

[0,1,1,—
[1,0, 1,
[1,1,1,

[1,1,0,-
[0,0,0, -
[1,1,1,

[0,1,1,
[0, 1,0,

[1, -1,0.

[1,-1,0,-
[0, 1,0, -

[1, -1,0,
[1,0, 1, -
[1,1,1,

[0, 1, 1,
[0,0, 0,
[1,-1,1
[1,-1,0

■10, -20]

4, -6]
10, -10]
-1, -14]

9, -15]

,4,4]
-4,-1]

, -4,4]
-5,-8]

,-3,3]
0, -7]

,1,2]
, 4,0]
-11,0]
-3, 1]

,9, 1]
,0,1]
-1,0]

23, -50]
9,90]

,0, 1]
-4,-5]
-7,-6]
-4,5]

, 0,0]
3,-1]

,0,-5]
-10, -12]
-4, -4]
-2,-1]
-1,-2]
-3, 1]

,-10]
0,0]
12, 8]

deg(<¡>) A' id

B1(A)

A1(B)
A1(C)
B1(A)
A1(E)
B1(B)

C1(F)
A1(A)
B1(B)
A1(A)
Al (A)
A1(A)
A1(B)
Al (A)
Al (A)

Bl (E)
C1(I)
Al (A)
A1(A)
A1(A)
A1(A)
A1(B)

Al (A)
Bl (E)

C1(C)
Al (A)
Al (F)

Bl (D)

C1(A)
Al (A)

Al (A)
Al (F)
B1(B)
Al (A)

Al (A)
Al (C)

[ax ,a2,ai,aA, a6]

[1,-1, 1, 1,-1]
[1, -1,0, -4, 3]

[0,0,0, 1, 2]
[0, -1,0,0, -4]
[0, -1, 1, -2,2]
[1,0, 1, -7, 5]

[0, 1, 1, 20, -32]
[1, -1,0, -1, 1]

[1,1,1,5,9]
[1,0,0, -2, 1]

[1,-1, 1,-1, 1]
[1, -1,0,9,0]
[0,0,0,-4,0]
[1,0,0, -1,0]
[1,0, 1, -6, 4]

[1,1,1,-2, -1]

[1, 0,0, -45, 81]
[0, 1, 1, -12, -21]
[1,0, 1, -1, -1]
[1,-1,1,2, -3]
[0, 0,0, 6, -7]

[1, -1,0, 4, -3]
[0, -1,1, -8, -7]
[1, 0, 1, -1, 23]

[0, 1, 1,2,4]
[0, -1,0, -21, -31]

[0,0, 1,2,0]
[0, 1, 1, -49, 600]

[1, 1,0,4, 11]
[1,1,0, -19, 685]

[1,1,1,-2,0]
[0,0, 0, -7, 6]

[0, -1, 0,4, -4]
[1,0,1,-2,0]
[ 1, 1, 1, 1,0]
[0, 1,0,7,0]

deg(ç>)

2
2
2
4
4

3
12

4
4

2
2
4
2
2
4
4
20
5
2
4
4
3
6
6
6
6
4
20
6

40
2
4
4
4

2
6
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N id [ai ,a2,ai,a4, a6] deg(p) N id [«i, a2, a^, a4, a6]

84 Bl (A) [0,-1,0,-1,-2]
85 Al (A) [1,1,0,-8,-13]
88 Al (A) [0,0,0,-4,4]
89 Al (C) [1,1,1,-1,0]
89 Bl (A) [1,1,0,4,5]
90 Al (M) [1, -1,0,6,0]
90 Bl (A) [1,-1,1, -8, 11]
90 Cl (E) [1,-1,1, 13, -61]
91 Al (A) [0,0,1,1,0]
91 Bl (B) [0, 1, 1, -7, 5]
92 Al (A) [0,1,0,2,1]
92 Bl (C) [0,0,0, -1, 1]
94 Al (A) [1,-1, 1,0, -1]
96 Al (E) [0, 1,0, -2, 0]
96 Bl (A) [0,-1,0,-2,0]
98 Al (B) [1,1,0,-25,-111]
99 Al (A) [1,-1,1, -2,0]
99 Bl (H) [1,-1,1,-59,186]
99 Cl (F) [1,-1,0,-15,8]
99 Dl (C) [0,0, 1, -3, -5]
100 Al (A) [0, -1, 0, -33,62]
101 Al (A) [0, 1, 1, -1, -1]
102 Al (E) [1,1,0, -2,0]
102 Bl (G) [1,0,0, -34, 68]
102 Cl (A) [1, 0, 1, -256, 1550]
104 Al (A) [0, 1,0, -16, -32]
105 Al (A) [1,0, 1, -3, 1]
106 Al (B) [1,0,0, 1, 1]
106 Bl (A) [1, 1,0, -7, 5]
106 Cl (E) [1,0,0, -283, -2351]
106 Dl (D) [1,1,0, -27, -67]
108 Al (A) [0,0,0,0, 4]
109 Al (A) [1,-1, 0, -8, -7]

110 Al (C) [1,1,1, 10, -45]
110 Bl (A) [1,0,0, -1, 1]
110 Cl (E) [1,0, 1, -89, 316]
112 Al (K) [0, 1,0,0,4]
112 Bl (A) [0.0,0, 1, -2]
112 Cl (E) [0, -1,0, -8, -16]
113 Al (B) [1,1,1, 3, -4]
114 Al (A) [1,0,0, -8, 0]
114 Bl (E) [1, 1,0, -95, -399]

6
4

8
2
5
8
8
16
4

4

2
6
2
4

4

16
4

12
12
6
12
2
8
16
24
8
4

6
8

48
10

6
4

20
4
28
8
4

8
6
12

20

114
115
116
116
116
117
118
118
118
118
120
120
121
121
121
121
122
123
123
124
124
126
126
128
128
128
128
129
129
130
130
130
131

132
132
135
135
136
136
138
138
138

C1(G)
A1(A)

A1(E)
B1(A)
C1(D)
A1(A)
A1(A)
B1(B)
C1(D)
D1(E)
A1(E)
B1(A)
A1(H)
B1(D)
C1(F)
D1(A)
A1(A)
A1(A)

B1(C)
Al (B)
B1(A)
A1(A)
B1(G)
A1(C)
B1(F)
C1(A)
D1(G)
A1(E)
B1(B)

A1(E)
B1(A)

C1(J)
A1(A)
A1(A)
B1(C)
A1(A)
Bl (B)
A1(A)
B1(C)
A1(E)
B1(G)
C1(A)

[1,1,1, -352, -2431]
[0,0, 1, 7, -11]

[0,0,0, -4831, -129242]
[0, 1,0, -4,4]

[0, -1,0, -4,24]
[1,-1, 1,4,6]
[1, 1,0, 1, 1]

[1, 1, 1, -25, 39]
[1,1,1,-4, -5]

[1, 1,0, 56, -192]
[0, 1,0, -15, 18]

[0, 1,0,4,0]
[1,1,1, -30, -76]
[0, -1, 1, -7, 10]
[1, 1,0,-2,-7]

[0, -1,1, -40, -221]
[1,0, 1,2,0]

[0, 1, 1, -10, 10]
[0, -1,1,1, -1]
[0, 1,0, -2, 1]

[0,0,0, -17, -27]
[1,-1, 1, -5, -7]

[1, -1,0, -36, -176]
[0, 1,0, 1, 1]

[0, 1, 0, 3, -5]
[0, -1,0, 1, -1]
[0,-1,0,3,5]

[0, -1,1, -19, 39]
[1,0, 1, -30, -29]
[1,0, 1, -33, 68]
[1, -1, 1, -7, -1]

[1,1,1, -841, -9737]
[0,-1,1,1,0]
[0, 1,0, 3,0]

[0, -1,0, -77, 330]
[0,0, 1, -3,4]

[0,0, 1, -27, -115]
[0, 1, 0, -4,0]

[0, -1, 0, -8, -4]
[1, 1,0, -1, 1]

[1, 0, 1, -36, 82]
[1, 1, 1,3,3]
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N id [ai, a2 , a3, a4, a6] deg(ç>) N id [ai, a2 , a3 , a4 , a6]

139
140
140
141

141
141
141
141
142
142
142
142
142
143
144
144
145
147
147
147
148
150
150
150
152
152
153
153
153
153
154
154
154
155
155
155
156

156
158
158
158
158

A1(A)
A1(A)
B1(C)
A1(E)
B1(G)
C1(A)
Dl(l)
E1(H)
A1(F)
B1(E)
C1(A)
D1(C)
E1(G)
A1(A)
A1(A)
B1(E)
A1(A)
A1(C)
Bl (I)
C1(A)
A1(A)
A1(A)
B1(G)
Cl(l)
A1(A)
B1(B)
A1(C)
B1(A)
C1(E)
D1(D)
A1(C)
B1(E)
C1(A)
A1(D)
B1(A)
C1(C)
Al (E)
B1(A)
A1(E)
B1(D)
C1(H)
D1(B)

[1, 1,0, -3, -4]
[0, 1,0, -5, -25]
[0,0, 0, 32, 212]
[0, 1, 1, -12,2]

[1,1,1, -8, -16]
[1,0,0, -2,3]

[0, -1,1,-1,0]
[0, 1, 1, -26, -61]
[1, -1,1, -12, 15]
[1, 1,0,-1, -1]

[1,-1,0,-1,-3]
[1,0,0, -8, 8]

[1,-1,0, -2626, 52244]
[0, -1,1,-1, -2]

[0,0,0,0, -1]
[0,0,0,6,7]

[1,-1, 1, -3,2]
[1, 1, 1,48,48]

[0, 1, 1, -114,473]
[0, -1, 1, -2, -1]
[0, -1,0, -5, 1]
[1,0,0, -3, -3]

[1, 1,0, -75, -375]
[1,1,1, 37, 281]
[0, 1,0, -1, 3]

[0, 1,0, -8, -16]
[0,0, 1, -3,2]
[0,0, 1,6,27]

[1, -1,0, -6, -1]
[0,0, 1, -27, -61]
[1, -1,0, -29, 69]
[1,-1, 1, -4, -89]
[1,1,0, -14, -28]

[0, -1,1, 10,6]
[1,1,1,-1,-2]
[0, -1, 1, -1, 1]
[0, -1, 0, -5, 6]
[0, 1,0, -13, -4]
[1, -1, 1, -9, 9]
[1, 1,0,-3,1]

[1,1,1, -420, 3109]
[1,0, 1, -82, -92]

6
12
60
28
12
6
4

12
36
4

9
4

324
4
4

8
4
24

42
6
12
8

40
48

8
8
8
16
8

24
24

24
16
20
8
4
12
12
32
8

48
40

158
160
160
161
162
162
162
162
163
166
168
168
170
170
170
170
170
171
171
171
171
172
174
174
174
174
174
175
175
175
176
176
176
178
178
179
180
182
182
182
182
182

E1(F)
A1(A)
B1(D)
A1(B)
A1(K)
B1(G)
C1(A)
D1(E)
A1(A)
A1(A)
A1(B)
B1(E)
A1(A)
B1(H)
C1(F)
D1(D)
E1(C)
A1(D)
B1(A)
C1(I)

D1(H)
A1(A)
A1(I)
B1(G)
C1(F)
D1(A)
E1(E)
A1(B)
B1(C)
C1(F)
A1(C)
B1(D)
C1(A)
A1(A)
B1(C)
A1(A)
A1(A)
A1(E)
B1(A)
C1(J)
D1(D)
El (I)

[1, 1, 1, 1, 1]
[0, 1,0, -6,4]

[0,-1,0,-6,-4]
[1,-1, 1,-9,8]
[1, -1,0, -6, 8]
[1,-1,1, -5, 5]
[1, -1,0, 3, -1]
[1,-1,1,4,-1]
[0,0, 1, -2, 1]
[1, 1,0, -6,4]

[0, 1,0, -7, -10]
[0, -1,0, -7, 52]

[1,0, 1, -8,6]
[1,0, 1, -2554,49452]

[1,0,0, 399, -919]
[1,0, 1, -3, 6]

[1, -1,0, -10, -10]
[1, -1, 1, -14,20]

[0,0, 1,6,0]
[0,0, 1, 177, 1035]
[0,0, 1,-21, -41]
[0, 1,0, -13, 15]

[1,0, 1, -7705, 1226492]
[1, 0,0, -1, 137]
[1,1,1,-5, -7]
[1,0, 1,0, -2]

[1,1,0, -56,-192]
[0, -1,1,2, -2]

[0, -1,1, -33,93]
[0, 1, 1, 42, -131]
[0,0,0, -4, -4]
[0, 1,0, -5, -13]

[0,-1,0,3,1]
[1,0,0,6, -28]
[1,1,0, -44, 80]
[0,0, 1, -1, -1]

[0, 0, 0, -12, -11]
[1,-1,1, 866, 6445]

[1,0,0, 7, -7]
[1,0, 1, -4609, 120244]

[1, -1, 1, 3, -5]
[1, -1,0, -22, 884]
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N id [ai ,a2,a3,a4, a6] deg(ç>) N id [ai ,a2,a-s,a4, a6] deg(í¡>)

184
184
184
184
185
185
185
186
186
186
187
187
189
189
189
189
190
190
190
192
192

Al (C)
Bl (B)
Cl (D)
Dl (A)
Al (D)
Bl (A)
Cl (B)
Al (D)
Bl (B)
Cl (A)
Al (A)
Bl (C)
Al (A)
Bl (C)
Cl (F)
DI (B)
Al (D)
Bl (C)
Cl (A)
Al (Q)
Bl (A)

[0, -1,0,0, 1]
[0, -1,0, -4, 5]

[0,0,0,5,6]
[0,0,0, -55, -157]
[0, 1, 1, -156, 700]

[0,-1,1,-5,6]
[1,0, 1, -4, -3]

[1,1,0, -83, -369]
[1,0,0, 15,9]

[1,0, 1, -17, -28]
[0, 1, 1, 11, 30]
[0,0, 1,7,1]

[0,0, 1, -3, 0]
[0,0, 1,-24, 45]
[0,0, 1, -6, 3]

[0,0, 1, -27, -7]
[1,-1,1, -48, 147]

[1, 1,0, 2, 2]
[1, 0, 0, -30, -100]
[0, -1, 0, -4, -2]

[0, 1,0, -4, 2]

12
24

48
8

6
44

20
28
16
30
12

12
12

36

24

192
192
194
195
195
195
195
196
196
197
198
198
198
198
198
200
200
200
200
200

C1(K)
D1(E)
Al (A)

Al (A)
Bl (I)
C1(K)
DI (J)
Al (A)
B1(C)
Al (A)
A1(I)
B1(E)
Cl (M)
D1(A)

El (Q)
Al (B)

Bl (C)
Cl (G)
DI (E)

El (A)

[0, 1,0,3, 3]
[0, -1,0, 3, -3]

[1,-1,1, -3, -1]
[1,0,0, -110, 435]

[0, 1, 1,0, -1]
[0, 1, 1, -66, -349]

[0, -1,1, -190, 1101]
[0, -1,0, -2, 1]

[0, 1,0, -114, -127]
[0,0, 1, -5,4]

[1, -1,0, -18, 4]
[1,-1,1, -50, -115]
[1,-1, 1,-65, 209]
[1, -1,0, -87, 333]

[1, -1,0, -405, -2187]
[0,0,0, 125, -1250]

[0, 1, 0, -3, -2]
[0,0,0, -50, 125]

[0, -1, 0, -83, -88]
[0, 0,0, 5, -10]

14
24
12
84
84
6

42
10
32
32
32
32
160
120
8

24
40
24
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