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AN ITERATIVE METHOD FOR THE NUMERICAL
INVERSION OF LAPLACE TRANSFORMS

CRISTINA CUNHA AND FERMÍN VILOCHE

Abstract. We present an algorithm for the numerical inversion of Laplace

transforms that is a particular case of the iterated regularization method pro-

posed by Vainikko in 1982. To construct the finite-dimensional space, we use

Laguerre polynomials. Error bounds for the approximations are derived.

1. INTRODUCTION

Let X = Llj(R+) be the weighted Lebesgue space associated with w(t) =

e~', Y = L2([c, d]), d > c > 0 and A: X -> Y the Laplace transform
operator,

(1) (Ax)(s)=        e-s'x(t)dt = y(s).
Jo

As is known, the problem of solving (1), for a given y £ Y, is ill-posed. The

problem of determining A+y, where A+ is the generalized inverse of A, is

still ill-posed: the solution depends discontinuously upon y .

If we only know the perturbed data y¿ , with

(2) \\y-ys\\Y<s,

then one must use "regularization methods". This is a family of operators Rn'.

Y —► X, indexed by some regularization parameters N, together with some

strategy to choose the parameter such that RNys is an approximation to A+y.
There are also other kinds of perturbations when, instead of the operator A,

we use an approximation An such that \\An - A\\ < ßN ■

In this paper, we use the arguments presented by Vainikko, in [6], to design

an algorithm for the inversion of the Laplace transforms of data with noise. The

Laplace transform methods are helpful techniques for differential and integral

equations; however when discretization is required to solve the problem in the

Laplace domain, errors are introduced. Similar situations arise when we deal

with the Laplace inversion of scientific measurements or observations.

2. The Laguerre approximations

If the data are only imprecisely known, that is, only y¿ £ Y is available

satisfying (2), we can use the implicit successive approximation method [4]
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(3) xk = (XI + A*A)-x(Xxk~x+A*yô),        X>0,

where A* is the adjoint operator of A .

Let Vx ç V2 C • • • be a sequence of finite-dimensional subspaces of X where

Vn is spanned by the Laguerre polynomials of degree < N [1]. The Laguerre

polynomials, (¡>¡(t), are such that

2

e-t4>l(t)<t>J(t)dt = Sl]

and they form a complete set in L20(R+) [2, for example]. We will denote by

Pn the orthogonal projection of X onto VN and An = APN .

In the finite-dimensional subspace VN , we define the approximation

N

xN = Ya'(t>'it)
¡=i

such that

((XI + A*NAN)xN+x, <j>}) = (XxkN + ANys, cp}),        j = 0, ... , N, X> 0,

where (•, •) is the usual inner product in X.

Let tpi(s) £ Y be the Laplace transform of c/3,(i). As we know,

«o-¿(í)
;—n   \      /

(-0*
k\

k=0

so that

(-i)*   i/f   iVVi(s) = J°Ce-stMt)dt = Y(lk)
sk+1       s \      s

k=0

With these functions we construct a matrix M,

rd fd I  (       l\i+j c'+J+x - di+j+x
Mij = Jc  y,i(s)¥j(s)ds = jc   72[x--)     ds=       . + j+l      ,

where c = (I - c)/c and d = (1 - d)/d . If we define a vector f,

ft- I   ys(s)¥i(s)ds,

the variational formulation of the implicit scheme (3), in VN , will be

(4) (X\ + M)ak =Xak~x+f.

For a given X > 0, we can state the Procedure

1. Do the Cholesky decomposition LLr = M + XI ;
2. a° = 0

solve the system LLrafc = Xak~x + f, /c = 1, 2, ... .

We must observe that, in this process, the regularization is an important

feature. The condition number of M becomes insupportable as N increases;

for example, if N = 15 , the condition number of M is 0(1O19).
By direct calculations we can show that the adjoint operator A* is, in this

case,

(A'v)(t) = e' j e~tsv(s)ds.
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Under the limitation c > \ it can be shown that A*v £ L2V(R+). Also, we

can see that z(t) = (A*v)(t), v(s) £ Y, is an analytical function, and for

k = 0, 1,...

(5)
fd

:ik)(t)= /   e~t{s-x)(l-s)kv(s)ds.

3. Error bound estimates

Assume that the data are on the interval (c, d), with c > \ , and, as before,

let c = (1 - c)/c and d = (1 - d)/d .

Lemma. Let c > 5 and a = max{|c |, \d ¡} ;  then a < 1 and

ßN = \\A-AN\\<V2il_a2)l/2.

Proof. We know that

\\A - AN\\ = \\A(I - PN)\\ = ||(7 - PN)A*\\ = sup {||(7 - PN)A*v\\x}.
II« ||=i

Let z(t) = (A*v)(t), v £ Y, such that \\v\\Y = 1. Then

||(7 -PN)A*v\\x = \\(I -PN)z(t)\\x = z(t)-Ybi<t>i(t)
i=l

where b¡ are the Laguerre-Fourier coefficients of z(t). The next step is to

calculate the rate of convergence of the Laguerre-Fourier approximants. We

will use a basic property of the Laguerre polynomials [1] :

e-<<f>k(t) = l^k(tke-t),       k = 0,l,....

By successive integration by parts, and the last equation, we get

/■oo {—])k     r°°

bk = Jo   e-'z(t)ci>k(t)dt={-jf- jo   e-Hkz^(t)dt.

Using (5) and the Laplace transform of tk , we obtain

..\k   rd

(6)

1 il-s
v(s)ds.

bk=y—^-j   v(s)(l-s)k       e~sttkdtds

(7) =(-»* [\(-

By the Schwarz inequality,

(8)

(9) ={-±_{c^-d2k+x)} = [y(k)]2k(c-d),

**{{*(
1  il-s

2k

ds\\\v\\\
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and y(k) £ (d, c) from the mean value theorem. But -1 < (1 - x)/x < 1, if

x > j , so that -1 < d < y(k) < c < 1. If we choose a = max{|c |, \d\}, we

have a < 1 and
00 °° ^,2(^+1)

Y bi<(c-d) y a2' = (¿-¿)-r^T>
k=N+\ i=N+l

and the lemma will follow.   □

The method of successive approximations (3) is familiar for ill-posed prob-

lems [3-6]. In particular, Theorem 1 in [6] is concerned with "a priori" speci-

fication of k. It claims that if

(i) yeR(A),
(ii)   x+ £ R([A*A]P/2), where x+ is the solution of (1) closest to 0,

(iii)   k = dx(Ô + ßN)-2/iP+X) for some dx > 0,

then for any X > 0

\\xk -x+\\x < d2(ô + ßN)p/lP+x),       d2 = const(p,dx).

Our final conclusion follows directly from this result and the previous lemma:

Proposition. Under the conditions (i)-(iii), the successive approximations (4),

with
/ „Jv+i     \-2/(p+')

k = dx (¿ +
;i-q2)i/2/

d i = constant and a defined in the previous lemma, will give Xk such that

( aN+x     \p/{p+X)

\\Xk-x+\\x<d2[ô+ {l_a2y/2j

where d2 = d2(p, dx).

4. Numerical experiments and conclusions

The examples of this section will give a qualitative idea of the performance

of the proposed scheme. We choose X in such a way that the first iterate is an

approximation for x+ ; this is possible since the first iterate is the Tikhonov

regularization solution. In this case there are "a priori" estimates for X, as is

shown in [3]. To stop the iterative process, we use a number of iterations k

such that

(10) \\AxkN-ys\\<Tol,

where Toi = cxô, cx > 0 and ô from (2). The a posteriori stop rules are

optimal but, in our case, they will demand excessive computational work.

In the numerical experiments we simulated the noise, taking y¿(s) = y(s) +

esin(lOOs), e > 0 and í £ [1, 5]. The other parameters used in the examples

are: TV = the maximal degree of the polynomials in VN ; k = the number of

iterations required by the stopping criterion.

Example 1. If y(s) = l/(s + 1.5)2, then x(t) = /<?"'5'. The noise on the data

was simulated using e = 10"2. The approximations were calculated taking

N = 10. In this example, k = 2 iterations were required, i.e., x20(t) satisfies

(10) with Toi = 1.4xl0~3. The comparison between x(t) and x20(t) is shown

in Figure   1.
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Figure 1. Example 1

Example 2. If y(s) = arctan(-j-), then x(t) = sint/t. In this case we tested

N = 10 and N = 15 , with noisy data corresponding to e = 10"4. In the first

case, k = 4 iterations were performed to obtain (10) with a Toi = 1.4 x 10-5.

When TV = 15, k = 3 iterations were required for a Toi = 1.4 x 10~5. The
results are shown in Figure 2.

The error bound presented here, as well as in the above numerical computa-

tions, encourage the use of the successive approximation method in the Laplace

inversion problem. In different tests we got similar results, but especially good

results were obtained when we used polynomials for x(t).

The increase of the error for t > 5 , exhibited in the figures, is compatible with

the norm used to measure the error: the weight e~' allows these large absolute

errors. On the other hand, Laguerre polynomials exhibit strong oscillations

when N and t increase [1]; we believe that this fact also produces damaging

effects.

Figure 2. Example 2
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