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A RECURSIVE METHOD TO CALCULATE
THE NUMBER OF SOLUTIONS OF

QUADRATIC EQUATIONS OVER FINITE FIELDS

KENICHIIYANAGA

Abstract. The number Sm(a) of solutions of the quadratic equation

x2+xl + --- + xl, = at   (xf ± ±x]    for i ^ 7')

for given m , with a and x¡ belonging to a finite field, is studied and a recursive

method to compute Sm(a) is established.

Introduction

Given a finite field Wq (q = p" , p: odd prime), the estimation of the number

of solutions of the quadratic equation in the abstract (x¡ e F*) is reduced to the
study of certain vectors pm , and a recursive method to calculate this number

is established. When q = p , the latter computation may be applied to calculate

the number Nm of solutions of the congruence

x2 + ---+X2, = 0    (modp),     1 < x\ < ••• < xm < —y-.

The number Nm is known to be related to the class number of Q(y/p) (Agoh

[1]), and an algorithm, different from ours, to calculate it is given by Maohua

[3] (see also Sun [4, 5]).

1. Preparatory lemmas and proposition

1.1.   In this section we shall establish three lemmas and a proposition, which
will be used to prove Theorem 1. The latter gives an algorithm for computing

the number of solutions of the quadratic equation specified in the abstract.

Given an odd prime number p and q = p" , we let F = F? and set

F2 = {x2\x e ¥*}.

We also set, for "ef,

«_*-¿0+(5))- <-K'-G))-
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1320 KENICHI IYANAGA

Lemma 1. Given Ç, n e¥*, we have

(i) v( + i/ç=l,    vtvç = 0,     vl = v¡_,     (v'í)2 = v'i,

(ü) 2vzvn = ui + i/n + u(n-l,

(iii) 2v[v'n =v[ + v'n- v¡,r

Proof. Assertion (i) follows directly from the definition. Since

(f)-**-i.
we have

^=2i/e,-l = (2i^-l)(2i/,-l),

which implies (ii). Similarly, since

G)---*
(iii) follows from

{^j = \-2u'in = (l-2v'i)(l-2u'ri).    □

It is convenient to introduce the following notation:

(2) P={
4

g-3
4

ifi/_, = l,

if i/_, -0.

We note that

«7-1 l/' i

(3) V-' + i1-
1.2.   Given a, ß, y belonging to F, we set

(4) A{^y = {(x,y)e¥2x¥2\ax + ßy = y,y= 1 if ß = 0}

and

These numbers will be used in the algorithm described in Theorem 1.

The following relations are easily deduced from the definitions:

(6) #!,-<ííV.-'7   <a€P>-

(7) k*ß,**r = Xß.7      (i,rier),

(8) A$ = 2p + uLx, 40,0 = 40), = 0, Xf7 = (2p + v'_x )vßy   (ß,yeW),

(9) ¿0,0 = 0,    Xß,o = (2p + v'_x)v-ß,    X0,y = vy       (ß,ye¥*)-

Given ß, y e F*, it is known that Xß, y may be computed by using Jacobi

sums [2]. In the following, we shall show that group-theoretical considerations

can be used to compute Xßy.
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1.3.   We set, for a given a e F*,

4.-{x.6i«rax(î ;)-(? s)*}
and

A*a = Aan GL2(¥),        Axa = Aan SL2(¥).

We have

*-{(; *2>-'«4
Lemma 2. The following sequence is exact:

1 -4-»^*^Sf*-> 1.
Proo/. It is sufficient to show, for a given ß e ¥*, that there exist x, y G F*

satisfying x2 - ay2 = ß or, equivalently, x2 = ay2 + ß . We now have

B{x2|x e¥} = »{ay2 + ß\ye¥} = ^-,

whence

{x2\x e ¥} n {ay2 + y5|y e ¥} ¿ 0,

which implies Lemma 2.

Lemma 3. Given a e F*, we have

(i) lA: = (q-l)(q+l-2va),

(ii) K = ? + 1 - 2*V
Proo/. We have

whence we readily obtain (i).   The second assertion (ii) then follows from

Lemma 2.   D

Proposition 1. Given a, ß, y e ¥*, we have

(i) 4Xß%y = q+ 1 -2(v_ß + vy + vßy),

(11) *'-'~l/- + -'V¿7   (^ = o).
/Voo/. Since

Ml/? = tt{(x,>')eFxF|x2 + ySy2 = l}

= J{(x,^)6FxF|x2 + ^2 = y}

= 4^,, + «{(x, y) 6 F x F|x2 + /?y2 = 7, xy = 0},

the first claim (i) follows from Lemma 3(ii). We have

Aß ,y — Ap-»-,£,r*-,)>

«7+11

fl—1   1   1.
= —¿- + 2 - 2^~nß + Vny + "^

= p+^(l+y'_x - v_a& - vny - Vßy).
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If i/ßy = 1, we have

tfîly = P + jit - v-l - "-aß - »ay)

= P+ ^(l -V-l -V-aß ~Vaß).

Whence, by Lemma 1 (ii), we obtain

¿ß,y = p-V-\V*ß-

If, on the other hand, Vßy = 0, we have

XftY = p + -(l+vLx- v_aß - vay)

=  P+~(l>'-l-l>'-ay + v'ay),

whence, by Lemma l(iii),

°, = A/-r-v-l"ayti\ = p + vLxv>       G

2. A RECURSIVE METHOD TO COMPUTE THE NUMBER OF SOLUTIONS

OF CERTAIN QUADRATIC EQUATIONS

2.1.   Given a e¥ and m (1 <m<(l +¿^_1)ijr1), we set

(10) Sm(a) = J J (xi, ... , xm)\Xi e ¥*, ¿x2 = a, xf ¿ ±xj (i # j) 1.

In order to compute this number, we consider the following set:

M$}a = \(J, x)\J C¥2,J: irreducible,

(11) ^ V

xeJ,$J = m,ßx+    ^2    y = a\ ,
yeJ-{x] J

where jSeF and / is defined to be irreducible if and only if it does not contain

any pair {z, -z}. Further, we set

(12) Mm>a = \ J CF2|7: irreducible, U = m, ¿Zx = a\ '
I xSJ )

(13) pi!!]* = W{mßl ,pm,a = Wm,a.

We have

(14) ^Í = A       (Lr,e¥*),

(15) Pm\a = mpmya,

(16) Sm(a) = 2""m!//m,Q.
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2.2.   Now fix an element r e ¥* such that vr = 0 and consider the following

vectors (ß e¥, 1 < m < (1 +u'_l)^-):

(17)

(18)

(ß)
f*m (u{ß)    u(ß)    u{ß) )v."m,0> r>m,l'™.r''

Pm — (Pm,0, Pm,l • P-m,r)-

Since Sm(a) equals either Sm(0), Sm(l) or Sm(r), the problem of computing

Sm(a) is, by virtue of (16), reduced to the computation of the vectors pm .

2.3.   Given an element ß e F and a fixed element r e F* such that vr = 0,

we shall introduce here a matrix L^] which will be used to compute pm :

(19) £,<« =

A0,0 A0,

;(/¡) ;0»
Al,0     Al,

i(ß

;(/»)
Al,r

4^;Ur%      4
The following proposition follows easily from (8), (9) and Proposition 1 (ii).

Proposition 2. We have

(i) L^ = (2p + v'_x)E3.

For ß e ¥*,

/ 0 vß u'ß

(ii) Üß)=\(2p + v'_x)v_ß   p-v_xv&   p + v'_xvß

\(2p + v'_x)u'_ß   P + v'_xv'ß   p-v_xvß

Theorem 1. Given 'eF', set

--¿(■♦(S))-  <-K'-(5))-
^4/ío, g'v<?M a e F and 1 < m < (1 + v'^)^ , set

Sm(a) = f J (xi, ... , xw)|x, e F*, ¿x;2 = a, x2 ^¿ ±xj (i ¿ j) \ ,

and let p^ = (p{ß]0, p(ß)A , p(£]r) and pm = (Pm,o, Pm,u Pm,r) be the vectors

defined by (17) and (18) (ß e ¥, ur = 0, r e ¥*), and let L<-ß) be the matrix
defined by (19). We then have

(i)

(Ü)

(iii)

Sm(a) = 2mm\pm,a       (a = 0,l,r),

p{„\} = mpm,

li\P) = (0,Vß,v'ß)(ßtO), xo)=(V,

(iv) rt>~ßm-iiP>-ßZ:i,-''-i&:i'   (!<•")■
Proof. The first three statements (i), (ii) and (iii) are clear from the definitions

(see (15), (16)); the fourth, (iv), is equivalent to

ßm,a — ßm-l,0^o,a + ^".-l,lAi>Q + Pm-l,r^r,a ~ ßm-l,» ~ v-\P-m-l,a-
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In order to prove the above, suppose we are given (J, x) e M$}a with J =

{x,yi, ... ,ym-\) satisfying

m-l

ßx + Y, y i = a-
i=l

Then, the set J' = {yx, ... , ym-i} belongs to Mm^x>a_ßx . We have

a - ßx = 0 or a - ßx = y2 or a - ßx = rz2       (y,ze¥*),

and accordingly,

(/', (x, 1)) e A/m_,,0 x A^,, (y-2J', (x,y2)) e Mm.lA x A^

or

(z-2J',(x,z2))eMm_x,rxAißl,

where

wJ' = {wyx,... ,wym-i) (we¥*).

Conversely, given

(x,y)eA7ß}a       (y = 0,l,r; y=lify = 0),

and J' = {yx,... , hm-X) belonging to Mm-X¡y, we have

({x,yyx,..., yym-i), x) € M$}a   ■

unless
x = ±yyj   for some j ( 1 < j < m - 1 )

(x = -yyj may occur only when i/_i = 1 ). Let us set J = {x,yyx, ... , yym-X}.

If x = yyj, then J = {yyx, ... , yym-X), and we have

(ß+ l)yyj + ^yyk = a,

k*j

whence (J, yyj) e A/^,1^ . If, on the other hand, x = -yyj (v_x = 1), then

(ß- l)x + ^yk = a,

k*j

and we have

({x,yyx, ... , yyj-x, yyj+x,..., yym-X), x) e A/^fj,1^.

Combining the above, we obtain (iv). This completes the proof.   D

Specifically, for 1 < m < (1 + z/,)2^-, we obtain the following:

^=pm_x^-^_{-u_xp^_\

= (2p + v'_x)ftm-x -(m- l)pm-x -v-.\(m- \)ßm-\,

whence

(20) /¿0) = (2p + v'_x-(m - 1)(1 +i/_i))/im_i.

2.4.   We set (1 + i^,)2"^ = k . Given 1 < m < k , we have

2m(£)    ifiz-i-1,
8{7cF2|7: irreducible,  »7 = m}

{      (*)    ifi/_,=0.
Vm/
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(23) Pk,0+ —J- 0*K,l+/h.r) = \
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Hence, we have

O if ̂ i = o.
In particular, we have

(22) /Vo + ̂ (/V>+/W) = {2mS   i'I/"1=i'
2 I»      («)   1^-1=0.

For m = k , we have

«7-1,.    ,     f 2*   ifi/_. = l,
1     ifi;_i=0.

When i = 3, we have k = 1 and pK = px = (0, 1, 0) ; whereas when i/_i = 0

and q > 3, we have ^"p > 1 and therefore pK = ( 1, 0, 0).

2.5.   We now compute p2 and p-¡. We have

2ß2 = M2i]

-ßxLW-ßf-v-xßf

(        ° * °     \= (0,1,0)        2pi/_!        ¿>-i/_.    p + i/1,    -(0)(v2,^)

\(2p+iy_x     p        p   )

-v_x(2p + v'_x)(l,0,0)

= (0, p-v_x -v2,p + v'_x -v'2)

= (0, p-v_x -v2, p-v-x +v2).

Whence, we obtain

(24) 2p2 = (0,p-v_x-v2,p-v_x+v2).

We also have

= p2L^-pf-v_xpf,

ß¥-ßiiP-ßf-v-Xßf
= (0, l,0)L<2>-(0,i/3,i4)-(0,i/_,,0).

By Proposition 2 (ii), we have

M2] = ((2/> + v'_x)v_2, p-v-x -vl-v_xv2, p-v'y + v'_xv2),

and, by the remark made following the proof of Theorem 1,

i/_i/40) =i/_i(2/> + !/L, - 1 -i/_i)/fi =2v_x(p- l)px,

and therefore,

6^3 = (2/?2 + (1 - 3i/_| -4l/_1iy2 -4l/_2 + 2l/2)/> + ivi,(iV2 -2i/_2),

2/>2 - (2 + 7v_x)p + 7v_x +3v_xv2 + 2vi,

2p2-(l + 3v_x)p + 2v^-3vLxv2).
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Lemma 1 implies that

2v_xv2 = v-X + v2 + v_2 - 1,

whence

3/13 = [p2 + Q - \v-i - 3i/_2J p + vLx(j- v-2) ,

(25) />2- Í1 + 2^-1 Jp+ 2^-1 + 2V-xVl + V3'

P2- ( 2 + 2I/-1) /~ + K " 2^-1^2

2.6. We note here that some of the classical formulas concerning quadratic

residues can be obtained from the formulas (24) and (25) describing p2 and

Pi. The formula (24) for p2 leads to

(26) p = v-X+v2   (mod 2),

or, equivalently,

q ~ 5 (mod 2)   if (—) = 1,
4     v V«?

5 (mod 2)   if ( — )4     v

the latter implies the classical formula

(?-<-'>*•

(The above formula for  q = p, may also be deduced from computing the

number of solutions of x2 + x\ = 4 (mod /?), as shown by Kenneth S. Williams

[6]-)
The formula (25) describing p3, on the other hand, implies

(27) p2 + Q - |i/_,) /> + «/l, (Ç - i/_2) = 0 (mod 3),

(7     \        7 3
1 + -i/_! J /> + -i/_, + j17--^ + "3 = 0 (mod 3),

(29) p2 - (i + ^m) /> + (^ - ^>2) = 0 (mod 3).

When i/_! = 1, it follows from the formulas (27) and (29) that

p2 - p = p2 - 2/7 + v'3 = 0   (mod 3),

whence

(30) p = v'%   (mod 3).

When, on the other hand, v_x = 0, it follows from formula (28) that

(31) p2-p + u3 = 0   (mod 3).
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Combining the congruences (30) and (31), we obtain the following special case

of the law of quadratic reciprocity:

(?)(!)=<-
i)*'

2.7.    We now illustrate how Theorem 1 may be used to compute the vectors

pm by looking at an example: q = p = 17. In this case, we have

p = 4,      I/_i = l,      «v±2 = l,      ¿^±3 = 0.

We use the general formulas derived above to compute px, p2, and /13 :

px = (0, 1,0)   (Theorem l(iii)).

Now, by virtue of (24), we have

ßi = j(0, p-v-x -v2, p- !/_, + v2) = 1(0, 2, 4) = (0, 1, 2).

By (25), we have

p - I 1 + 2V~X ) P+ 2V~{ + 2v'-xl'2 + l/3'

p2-(\+r-x)p+(^-r-^2))

= 1(0,3,9) = (0,1,3).

Also,

and

and therefore,

4,<4 = rf>
= p,L^-pf-u_xpf,

( 0        1       0\
L(D=¿(2) =     2/7   p-l    p     ,

\0       p      p)
/ 0     0       1

L<3> =0/7      />

\2/7     /7     /7-1

p2Z) = (0, l,0)L^-(0, 1,0)-(0,1,0)

= (0,p-2,p)

= (0,2,4),

pf=p2L^-pf-2p2
= (0, l,2)L(2'-(0,2,4)-(0,2,4)

= (2/7,3/7-5,3/7-8)

= (8,7,4).
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We have, by (20),

flf = (2/7 + 1/1,- 2(1 +I/-,))/l2

= (2/7-4)(0,l,2)

= (0,4,8),

so that

p4 = ^((0, 1, 3)L^ - (S, 7, 4) - (0, 4, S))

= 1(2/7-8,4/7-12,4/7-12)

= 1(0, 4, 4) = (0,1,1).

3. Computation of Nm

3.1.   We set, for an integer m > 1 and a e¥,

(32) Çlm,a = {JÇ¥2\U = m
xeJ )

(33) A'i«,o = |ßm,a» Nm = Nm,o,

(34) Nm = (iVm,0,A*w,i,iVm>r)       (i/r = 0).

When ¥ = ¥p , the number JV„, is the number of solutions of the congruence

(35) x\ + --- + x2m = 0   (mod/7)        ( 1 < xx < ••• < xm < p-^- J .

Agoh [1] proved that, if p = 1 (mod 4), then

(36) eh = y/pa2-l+ay/p,

where h, e (> 1)  stand for the class number and the fundamental unit of

Q(y/p), respectively, and

i   /   S
(37) fl= i + £(_i)«^

y        m=l

In [4, 5] Sun gave a formula for Nm when w = 2, 3 and 4. Maohua showed

in [3] that

U / y
where j4m is determined recursively by means of the following formulas:

om = ^(Am + BmA),        A=\](-l)erp,

Sm = x(-1 +
?)*)■

i

2

ffi =íi,        mcrm =íi«7m_i -s2c"m-2 + --- + (-l)m_1i«

We have the following
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Theorem 2. Given 1 < m < K± and a e ¥, set

Nm,a = HJç¥2\ïJ = m,J2x = a\

Choosing r e ¥* such that vr = 0, set

^m = (Nm,0,NmA,Nm,r).

Let pk (0 < k < p) be the vector given ¿>y (18) and let p be as in (2) (we set

po = (1, 0, 0)). We then have:

(i) //t/_i=0.    thenNm=pm;

(ii) if v-i = 1,    then Nm = N2/,_m (we set N0 = po).

If v-X = 1 and 1 < m < p, we have

..... „       [Jlfp-m + 2k\
(m) Nm = 2^( k )f*m-2k-

k=0 ^ '

Proof. If î/_i = 0, it is obvious that Nm = pm .
Suppose iv_i = 1. Then

£x = 0,        »F2 = 2/7,

xer2

and therefore Nm = N2/)_m holds. Suppose, further, that 1 < m < p. Denote

the canonical projection from F2 onto F2/{±1} by n. Suppose / e Nm,a.

We have

J = J0 U -J0 U Jx,        n(Jo) n n(Jx) = 0,

where

Jx e Mm_2k%a      (k = $Jo,Ji = 0ifm = 2k).

Conversely, suppose we are given 0 < k < [y] and Jx e Mm_2ka (if m = 2k

we set Jx = 0). Since m < p+k, we have k < p-m+2k and therefore we may

choose Jo ç F2 such that $Jo = k, n(Jo)nn(Jx) = 0 ; the set / = JoU-JoU7i
then belongs to Nm,a. Combining the above, we obtain Theorem 2.   D

3.2.   We now use Theorem 2 to compute Nm (m = 2, 3)   (N< = (0, 1, 0)) :

{p2 if i/_i = 0,

/fo if q = 5,

^2 + /Vo   if 5 < q and z^- = 1.

Therefore, when 1 < p (5 < q), we have

(38) N2=/i2 + im/7/io.

We also have

(M3 ifiv_i=0,

Pi ifq = 9,

pi + (p - l)px   if 9 < q and i/_i = 1.
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Hence, when 11 < q , we have

(39) N3=pi + u_x(p-l)px.

Now using the formulas (23) and (29) describing p2 and p3, we obtain:

When 5 < q,

v-ip,
p -v-\ -v2    p - V-X +v2

when 11 < «7,

PL
3

1     i/_,\        i/i

6 + T-K + i
^1^2

3 = \

We have, therefore, the following formulas, which contain expressions for %>N2

and 48A*3 agreeing with Sun's results [4, 5]:

(2(«7-l),«7-9,«?-l) if «7=1 (mod 8),

(0, «7-3, «7-3) if q = 3 (mod 8),

(2fo-l), «-5,0-5) if 0 = 5 (mod 8),

(0,0-7,0+1) if0 = 7(mod);

f ((0 - 1 )(0 - 17), (0 - 1)(0 - 7) + 32 + I61/3,

(0-l)(0-9)+16^)    if 0=1 (mod 8),

((0-l)(0-ll),(0-3)(0-7)+16i/3)

(0-3)(0-5)+16i/J)   if 0 = 3 (mod 8),

((0-l)(0-5),(0-3)(0-5) + 16i/3,

(0-l)(0-9)+16i/^)   if 0 = 5 (mod 8),

((0-l)(0+l),(0-3)(0-7) + 16^,

(0+l)(0-9)+16^)    if 0 = 7 (mod 8).

3.3. We now show how Theorem 2 can be used by looking at an example:

0 = p = 17. We have p = 4, !/_• = 1. We also have po = (1 > 0, 0), px =
(0, 1,0). As shown in 2.7, we have

p2 = (0,1,2),    pi = (0,1,3),    p4 = (0,1,1).

Hence, by Theorem 2, we have

Nx=px = (0, 1,0),     H2=ß2 + pß0 = (4, 1,2),

N3=/f3 + (/> -l)/»i= (0,4, 3),

N4 = p* + (p - 2)p2 + (P)po = ((>, 3, 5),

N5 = N3,     N6 = N2,     N7 = N,,     Ng = N0 = /io.
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We can now compute a given in (37):

a = ̂ y + EyirNmj

= tz(! -0 + 4-0 + 6-0 + 4-0+1)
lo

= 1.

Whence, by virtue of Agoh's result (cf. (36)), we have

eh = y/Vr^T +yfÏ7 = 4 + \fñ.

It is well known that the class number h of Q(v 17) is 1, and that e = 4 +VT7
is a fundamental unit of the latter real quadratic number field.
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