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CONSISTENT STRUCTURES OF INVARIANT

QUADRATURE RULES FOR THE «SIMPLEX

J. I. MAEZTU AND E. SAINZ DE LA MAZA

Abstract. In this paper we develop a technique to obtain, in a systematic way,

the consistency conditions for the «-dimensional simplex T„ for any dimen-

sion n and degree of precision d . The introduction of a convenient basis of

invariant polynomials provides a powerful tool to analyze and obtain consistent

structures. We also present tables listing the optimal consistent structures for

dimensions n = 2, ... ,8 and degree of precision up to d = 23 . This paper

is devoted only to structures. No quadrature rules are presented here.

1. Introduction

Constructing quadrature formulas with a given structure requires the solu-

tion of a system of moment equations. These are nonlinear and the system can

be very large. Such a major computational task may be helped if information

about structures for which there is likely to be a solution is available. Some

information of this type is provided by a set of consistency conditions. We de-

velop here a theory which allows one to obtain the set of consistency conditions

for the system of nonlinear equations arising for the «-simplex. For example,

this would allow a solver to discard a priori many structures (the nonconsis-

tent ones) whose corresponding systems of moment equations do not have any

solution.

Let Tn denote a nondegenerate simplex in the «-dimensional Euclidean

space R" and let &„ be the symmetry group of Tn, that is, the set of all

affine transformations s : R" —> R" that leave Tn invariant. For every x G R" ,

let u(x) denote the number of different points in the so-called orbit of x, that
is,

(1.1) i/(x) = card{s(x):sG^„}.

The value u(x) depends on the relative position of the point x in the simplex

T„ . More specifically, v(x) is determined by the form taken by the barycentric

representation of x (see later).

Let N denote the set of all nonnegative integers. Given a point x = (xi, ... ,

x„) G K" and a multi-index a = (ax, ... , a„) G N", we denote as usual xQ =
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Xia' • • -x„a" and \a\ = at-\-\-an . Let & be the space of real polynomials in

the « variables xi, ... , x„ . Let 9°d denote the space of real polynomials of

degree not greater than d and let %¿ denote the space of real and homogeneous

polynomials of degree d. That is, &d = span {xa : a G N", |a| < d} and %?d =

span{xQ : a G N" , \a\ = d}.

Definition 1. A polynomial p G & is said to be invariant when

(1.2) p(s(x))=p(x)   Vsg5?„,    Vxel".

Let us denote by ¿P* the space of all invariant polynomials of 9°, and let

^=^*r\^>d and ^7 = â°* n^ be the spaces of all invariant polynomials

of 0"d and %¿ , respectively.
Now, let us consider the integral

(1.3) ,(/) = _i_^/WA

and the problem of constructing a quadrature rule

KG)

(1-4) Q(f) = YW'f^
i=i

that approximates /(/) with a given degree of precision d , that is, verifying

(1.5) Q(p) = i(p)  vpe&a,

and having a number of nodes, say v(Q) , as low as possible. A familiar ap-

proach to this problem is by considering the coordinates of nodes x, and the

weights Wi of the rule as unknown parameters that will be obtained by fitting

the moment equations

(1.6) ß(xQ) - 7(xa) = 0 ,     |a|<rf.

For every s e f„ , we have s(T„) = T„ and hence, /(/o s) = /(/). This

means that integration over Tn is an axis-independent concept in the sense

described in Bez [2]. Therefore it is convenient to use for computing /(/)

an algorithm Q(f) with the same independence property, according to the

definition below.

Definition 2. A quadrature rule (1.4) is said to be invariant when it satisfies

(1.7) Q(fos) = Q(f)   VsG^.

An invariant quadrature rule can be written in the form (see [14])

(1.8) ß(/) = E^(x,W;x;),
i=i

where the numbers u(x¡) are defined by (1.1) and the so-called basic rules

R(f; x¡) are given by

(1.9) i?(/;x/) = ^rl^y^/(s(x;)).



CONSISTENT STRUCTURES FOR THE n-SIMPLEX 1173

Let us note that the number of separate function values, i.e., the number of

nodes, involved in a basic rule (1.9) is v(x¡). In fact, R(f; x¿) can be written

as

(1.10) R(f;xi) = 1±-   Y   /(■)•
^   ,; z€orb(x,)

As in [14], we use this characteristic to classify basic rules in different types,

where the form that takes the barycentric representation of the generator node

x, is what determines the type of the corresponding basic rule R(f;x¡). Then,

the so-called rule structure of an invariant quadrature rule (1.8) is given in the

form

(1.11) (Ko,Ki,... ,KMn),

where the numbers K¡ indicate how many basic rules of each type are involved

in (1.8).
For a given rule structure, the generic form of the corresponding invariant

quadrature rule contains a number of unknown parameters that is considerably

smaller than in the case of a generic noninvariant quadrature rule with a similar

number of nodes. But, on the other hand, this fact is partially compensated by

a substantial reduction on the number of moment equations to be satisfied, as

can be deduced from the following well-known theorem.

Theorem 1 (Sobolev). An invariant quadrature rule (1.8) has degree of precision

d if and only if

(1.12) Q(p) = i(p) v/jg^;.

The search for rule structures satisfying certain consistency conditions is a

first step towards the construction of a quadrature rule of a given degree of

precision. The rule structure is essential not only to determine the (expected)

number of nodes of the rule, but also because it defines the functional depen-

dence on the unknowns in the (reduced) system of moment equations.
These consistency conditions are linear inequalities to be satisfied by a rule

structure ( 1.11 ) in order to guarantee that, if the quadrature problem is consid-

ered as solving a system of nonlinear equations, then each subsystem will have

a number of unknowns larger than or equal to the number of equations. They

attempt to ensure that a quadrature rule can be of a given degree of precision

d, but for the nonlinear system of moment equations the hazards of nonlinear

relationships and complex solutions still remain. Thus, strictly mathematically,

consistency conditions are not necessary nor sufficient for the existence of so-

lutions of a quadrature problem.
There have been many authors who have contributed to the calculation of

quadrature rules for multidimensional regions. Basic references on this field are

[4, 9, 14 and 20]. More specific results for 2-dimensional polygons are given in

[3, 5, 7, 15 and 16]. Some results for the «-dimensional simplex are given in [1,

10 and 12]. The introduction of some kind of consistency conditions is mainly

due to Keast, Lyness, Mantel, Rabinowitz and Richter (see [18] and [19] for 2-

and 3-dimensional regions, and [14] for more general cases). These conditions
are difficult to apply in high dimensions, owing to the lack of closed expressions

to calculate the dimensions of the null spaces of invariant polynomials. In this



1174 J. I. MAEZTU AND E. SAINZ DE LA MAZA

paper we give a systematic approach to the consistency conditions that hold for

a general «-dimensional simplex, and develop a technique to obtain, at least

computationally, the dimensions of the null spaces of invariant polynomials.

We now give a brief description of the sections of this paper. In §2 we

describe the structure of an invariant quadrature rule for the «-dimensional

simplex T„ , and in §3 we analyze and calculate the dimensions of the spaces

of invariant polynomials and give recurrence relations to obtain them. We also

define a convenient basis of invariant polynomials, which simplifies greatly the

calculation of these dimensions. In §4 we develop the theory to a point where

we can define the consistency conditions of an invariant quadrature rule. In

§5 we give some details of how these structures are obtained in practice and of

how some of the various computational problems encountered are treated. We

finish with listings of the optimal structures for dimensions « = 2 up to « = 8.

2. Structure of an invariant quadrature rule

Barycentric coordinates are a useful tool to study questions related with the

symmetry group of a simplex Tn . Let vo, ... ,\„ denote the « + 1 vertices of

Tn . The barycentric coordinates X = X(x) of a point xel" are defined by

n n

(2.1) X = (X0,... ,Xn):  EA7 = 1 »    EV7 = x.
7=0 j=0

It is well known that each symmetry s£^ can be identified with a permutation

of the barycentric coordinates, that is,

(2.2) Xj(s(x)) = Xnj(x) ,   j = 0,... ,n,

where (^o, ... , n„) is a permutation of (0, ... , «). Therefore, &„ consist of

(« + 1)! symmetries and, for each xel", the number v(x) defined in (1.1) is

the same as the number of different points obtained permuting the barycentric

coordinates of x. This suggests a classification of the points in R" according

to the following

Definition 3. For a given « let r and mo, ... ,mr be positive integers satis-

fying

r

(2.3) mo > m\ > - ■ ■ > mr > 1 ,    Y, mi' - n + 1 •
7=0

A class [mo, mi , ... , mr] is defined as the set of points x G R" such that for

some symmetry s G &„ the barycentric coordinates representation of s(x) has

the form

m¡) times tn, times m, times

(2.4) A(s(x)) = (a0, ... ,a0, ai, ... , ax , ... , ar, ... ,ar),

with
r

(2.5) Y m>a> = ' •
7=0

From a geometric point of view the class [mo, mx, ... , mr] coincides with

the set  \s(V): s G %}, where   V  denotes the r-dimensional affine manifold
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Table 1. Classes and types of basic rules for dimensions « = 2 to 7

Class (Type)

4

4

4

4

4

4

4

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

[3]

[2,1]

[1,1,1]

[5]

[4,1]

[3,2]

[3,1,1]

[2,2,1]

[2,1,1,1]

[1,1,1,1,1]

'o

r.
?2

r3
25
'4

r5

r6

r7

r8

r9

'10

r„
25=»12

25
= 13

25
514

r15

r17
2?
'18

519

25'20

25"21

[8]

[7,1]

[6,2]

[5,3]

[4,4]

[6,1,1]

[5,2,1]

[4,3,1]

[4,2,2]

[3,3,2]

[5,1,1,1]

[4,2,1,1]

[3,3,1,1]

[3,2,2,1]

[2,2,2,2]

[4,1,1,1

[3,2,1,1

[2,2,2,1

[3,1,1,1

[2,2,1,1

[2,1,1,1

[1,1,1,1

1]

1]

1,1]

1,1,1]

r, + l

1

5

10

20

30

60

120

1

8

28

56

70

56

168

280

420

560

336

840

1120

1680

2520

1680

3360

5040

6720

10080

20160

40320

Class (Type)

'0

25
'1

r2

r3

?4

r5

r7

%
r9
25
'10

'0

r,
r2

?3

25'4

r5

r9
25"10

r„
25
'12

r13
25"14

4]

3,1]

2,2]

2,1,1]

1,1,1,1]

6]

5,1]

4,2]

3,3]

4,1,1]

3,2,1]

2,2,2]

3,1,1,1]

2,2,1,1]

2,1,1,1,1]

1,1,1,1,1,1]

7]

6,1]

5,2]

4,3]

5,1,1]

4,2,1]

3,3,1]

3,2,2]

4,1,1,1]

3,2,1,1]

2,2,2,1]

3,1,1,1,1]

2,2,1,1,1]

2,1,1,1,1,1]

1,1,1,1,1,1,1]

n + l

with parametric representation in barycentric coordinates given by the right-

hand side of (2.4) and by (2.5). Let us note that for a given « , the intersection

of two classes is a class, and that all the classes contain the class [« + 1].
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Table 2. Classes and types of basic rules for dimension « = 8

n Class (Type)

-[9]

= [8,1]

= [7,2]

= [6,3]

= [5,4]

= [7,1,1]

= [6,2,1]

r7 =[5,3,1]

% =[4,4,1]

% =[5,2,2]

r,o = [4,3,2]

fu =[3,3,3]
?12 =[6,1,1,1]

r,3 = [5,2,i,i]

?i4 = [4,3,1,1]

r, + l

1

9

36

84

126

72

252

504

630

756

1260

1680

504

1512

2520

Class (Type)

is = [4,2,2,1]

Î6 = [3,3,2,1]

xi = [3,2,2,2]

is =[5,1,1,1

Ï9 = [4,2,1,1
= [3,3,1,1

= [3,2,2,1

= [2,2,2,2

= [4,1,1,1

24 = [3,2,1,1

25 = [2,2,2,1

26 =[3,1,1,1

27 = [2,2,1,1

28 =[2,1,1,1

29 =[1,1,1,1

©20

^21

W22

^23

1]

1]

1,1]

1,1,1]

n + l

3780

5040

7560

3024

7560

10080

15120

22680

15120

30240

45360

60480

90720

181440

362880

For a given n, the inclusion relation between sets establishes a partial or-

der relation, say -<, among all the classes of points of R" . The corresponding

relationship trees can be easily constructed using a concept similar to the con-

tracted version given in [14]. For example, the set of integers [3, 1, 1] may

be obtained from the set [2, 1, 1, 1] by replacing 2,1 by 2+1. Hence, we
have [3, 1, 1] -< [2, 1, 1, 1]. In a similar way, the set [2,2, 1] may be ob-
tained from the set [2,1,1,1] by replacing 1,1 by 1 +1. So we also have

[2,2, 1H[2, 1, 1, 1].
In Tables 1 and 2 we describe the different classes that are used in this paper.

For each dimension «, the classes have been enumerated and are represented

in the form

(2.6) Wi = [m0, mx,... , mr¡] ,  i = 0,...,M„.

Let us note that the classes have been numbered in such a way that

(2.7) -< KJ

n + l times

and therefore for every « we have that Wo = [« + 1 ] and Wm„ = [ 1, ... , 1 ].

Definition 4. A basic rule R(f; x,7) is said to be of type % if and only if %
is the smallest (i.e., the intersection) of all the classes to which the generator
node x,j belongs.

If Wj = [mo, mi, ... , mr¡], the generic form of the nodes of a basic rule of

type % is given by (2.4), where r = r, and the parameters ao, ax , ... , ar, are

different and related by (2.5). Hence, for each basic rule R(f; x¡j) of type %

we have r¡ free parameters and a number of nodes, say i/¡, given by

(2.8) v\ = V(*ij) =
(n+l]

mo\mx\ mr :
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Definition 5. For a given n ,let K0, Kx, ... , KMn be nonnegative integers with

Ko < 1. We say that an «-dimensional invariant quadrature rule (1.8) has a

rule structure (Ko, Kx, ... , Km„) when it can be written in the form

M„   Ki

(2.9) ö(i) = EEW/;«ü),
1=0 7=1

where, for every i = 0, ... , M„ , {R(f; x/y) ; j = 1, ... , K,} is a set of K¡

different basic rules of type % .

Ki = 0 means that there is no basic rule of type % in (2.9). The only

basic rule of type Wo is the one generated by the barycenter of the simplex.

Therefore, Ko can only take the values 0 or 1.
Now, let us consider the problem of constructing an invariant quadrature rule

with a given rule structure and a given degree of precision. The rule structure

allows us to define, by using Tables 1 and 2, the generic (parametric) form of

the rule. The global number of nodes of an invariant quadrature rule Q with

rule structure ( K0, Kx, ... , Km„ ) is given by

(2.10) u(Q) = YViKi>
1=0

and the number of free parameters to be determined by moment fitting is given

by

M„

(2.11) NP(Q) = Yin+ l)Ki-
;=o

3. On the space of invariant polynomials

Sobolev's result (Theorem 1 ) shows that the degree of precision of an invari-

ant quadrature rule only depends on its exactness for invariant polynomials. On

the other hand, it is important for our purposes to analyze the space ¿P* of in-

variant polynomials in such a way that each of the spaces J^* of homogeneous

and invariant polynomials of degree d can be identified. This will be done by

constructing a basis of J3* formed by homogeneous polynomials. Then we will

have

(3.1) &>; = jr¿®%\* &••■&&/ ,

and the dimension of the problems involved in the construction of consistent

structures of invariant quadrature rules will be considerably reduced.

First of all, let us note that it is not difficult to obtain a basis of ¿Pd by using

the barycentric polynomials X¡ = X¡(x). Let ß = (ßo, ßx, ... , ßn) denote a

multi-index, ß e Nn+1 , with \ß\ = ßo + ßi + ■ ■ ■ + ß„ . Given that X, G &\ ,

we have that )ß = XßoXß'■ ■ ■ Xßn" G &\ß\, for every ß G Nn+1 . Then, it is

straightforward to show that

(3.2) &d = span {xß : ß G N"+1 , \ß\ = d} .

On the other hand, we can use basic rules (1.9) for representing the invariant

part of each polynomial X? as

(3.3) qp(x) = R(Xl>;x).
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Then,

(3.4) &*d = span [qß : ß g N"+1 ,  \ß\ = d}

and hence, denoting by

(3.5) A(n , d) = card [ß e N"+1 : \ß\ = d, ßo > ßi > ■ • ■ > ßn} ,

we have

(3.6) dim 3P¡ = A(n, d) ,  n,deN , n>l.

Now it is important to guarantee that invariance and homogeneity are com-

patible. This will be done through the following

Definition 6. A nondegenerate «-simplex Tn is said to be centered at the origin

when its barycenter coincides with the origin of coordinates, that is, when

(3.7) ¿,(0,0,... ,0) = —j— ,  ; = 0,... ,«.
« + 1

Note that when the simplex is centered at the origin we have

s(0,0,... ,0) = (0,0,... ,0) ,  Vsg^,,

which ensures that (1.2) can be satisfied by a homogeneous polynomial p .

Lemma 1. For every «, d G N ,  n > I , let A(n, d) be given by (3.5) and let

[d/2\ stand for the integer part of d/2. Then,

(3.8) A(l,d) = l + [d/2\ for every d&N,

(3.9) A(n,d) = A(n-l,d) ifn>2andd<n,

A(n,d) = A(n-\,d) + A(n,d-n-l)

(3.10) ifn>2andd>n + l.

Proof. It is clear that

A(l,d) = card{(ß0,ßi)eN2 : ß0>ßi, ßo + ßi = d} = 1 + [d/2\.

Now, let « > 2 and d < n . This implies ßn — 0 in (3.5) and therefore

A(n,d) =card\(ßo,... , ßn-i, 0) G N"+1 : ßo > ■■■ > ßn-i > 0, ¿Ä = ¿1

= cardI (ß0, ... , ßn-i) G N" : /io > •• • > ßn-i ,  ¿ßi- = d 1

= A(n-l,d).

Finally, when « > 2 and d > n + 1 we can consider two possibilities in (3.5).

Either ß„ = 0 or ßn > 1 . Then,

A(n,d) = A(n- 1, d)

+ card J (ß0, ... , ßH) G N"+1 : ßo > ■■ ■ > ß„ > 1 , ¿ ßi- = d 1
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and calling y¡ = ß,■ - 1, we have

A(n,d) = A(n- 1, d)

+ card | (70, ... , 7«) G N"+1 : y0 > ■■ ■ > y„ , ¿ N: = rf

= ^(« - 1, rf) + A(n, d - « - 1).

1179

1=0

«- 1 I

Lemma 2. G/ve« a nondegenerate simplex Tn in R", let u = (ui, ... , u„) be

the map u: R" -> K" tífe/í«é>í/ Z>y

(3.11) Mt(x) = E[^-W-^(0.0,... ,0)f+1 ,   /c = l,...,«,
7=0

and, for every multi-index a = (ax, ... , an) G N" , let uQ of i«f polynomial
ua = u?1 • • •uan". Then

(a) The interior of the set U = o(R") is not empty.

(b) T/ze set of polynomials {uQ : a G N"} is linearly independent in £P.

Proof. First of all, denote

^•(x) = A;(x)-A;(0,0,... ,0) ,  7 = 0,... ,«.

Then, given that X^Lo^/M = 1, we have X,;=o.u7'(x) - ® an<^ hence /¿o(x) =

Yfj=x -Pji'n) ■ Therefore, we can write

(3.12) u(x) = z(M(x)),

where fi = (px, ... , p„), z = (zx, ... , z„) and

in \k+X

(3.13) zk(M) = Yp)+x+\Y-pj\       ,  k=l,...,n.

Now the Jacobian of the map u, say I fjj I, can be written as

du

dx

19x1

dz

dfi

dp

dx

Note that dx,   ~~   dx¡ and, given that the simplex  T„  is nondegenerate, this

implies that the Jacobian is constant and different from zero.   On the

other hand, differentiating (3.13), we get

dzk
j± = (k + l)(pf - pko) ,   i,k=l,... ,«.

But

Pl-Po     •■•     Pn-ßO

ß\-ßl   ...   Pl-Po

ß" - R K-ßö

l    l

ßo    ßl

ßo   ß2i

ßno    ß"l

..   1

••     ßn

■■     ßl

ßl
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and therefore

g =(n + l)\Y[\pj-pi\.
j>i

In conclusion, we have proved that the Jacobian ||*| is different from zero in

all points of R" except in those belonging to the hyperplanes defined by

Pj(x) - pi(x) = 0 ,   i, j = 0, ... ,n ,  j > i.

Now, use the Inverse Function Theorem and the result (a) follows immediately.

To prove (b), suppose that for a finite set / c N" we have a polynomial

p(x) = 5Zae/ aau(x)a such that p(x) = 0 for every xel". This means that the

polynomial ^(u) = J2aei flaU° vanishes for all u G U . Given that the interior

of U is not empty, and that the monomials ua are linearly independent when

considered as polynomials in the variables ux, ... , u„ , this implies aa = 0 for

every a £ I, and the result follows.   D

Lemma 3. For every «, d G N , n > I , let A(n , d) be given by (3.5) and let

(3.14) B(n , d) = card J a G N" :  ¿(i + l)a,< d 1 .

Then, B(n , d) = A(n , d)  .

Proof. Given that the relations (3.8), (3.9) and (3.10) determine the value of

A(n, d) for all «, d G N , « > 1 , it is sufficient to show that also B(n, d)
satisfies those relations. For n = 1 , we have B(l, d) = card {a i : 2ax < d} =

1 + \d/2\ . On the other hand, when « > 2 the values that an can take in

(3.14) are a„ = 0, 1, ... , [d/(n + 1)J . Then, fixing an = k , we have

cardi (ax, ... , a„_,, k) e N" :  E(/+ l)a' + ("+x-)k<d>

= card Ja G N""1 :  J^(i+ l)a¡<d-k(n+ 1)1 ,

and hence

[d/(n+\)\

(3.15) B(n,d)=    Y    B{n-l,d-k(n+l)),
k=0

which proves that B(n , d) = B(n-l , d) when d < n . Finally, when d > n+l ,
we can use (3.15) to write

[d/(n+l)\-\

B(n,d-(n+l))=      Y      B(n - I, d - (k + ])(n + I))
k=0

[d/(n+\)\

=    Y    B(n-],d-k(n + l)) .
k=\

Then we have that

B(n,d)-B(n,d-(n+l)) = B(n-l,d) ,

which completes the proof,   o



CONSISTENT STRUCTURES FOR THE n-SIMPLEX 1181

Theorem 2. Let a nondegenerate simplex Tn be centered at the origin and, for

every a G N" , let ua = w"'u°£ -■ ■ u'H" , where Uk = Uk(x) , k = I, ... , «, are

the polynomials defined by (3.11 ). Then

(3.16) r/ = span J ua : aeN" ,   ¿(/ + l)a, = ú? I ,

n

(3.17) ^; = span   ii°:aeN",   £(/ + l)a, < </ L
i=i

(3.18) ^* = span{ua: a G N"} .

Proo/ It follows from (3.11) that each Uk is a homogeneous polynomial of

degree d = (k + 1). Moreover, given that the simplex Tn is centered at the

origin, we can write (3.11) as

n    r i     -\k+l

(3.19) uk(x) = Y Xj(x)

7=0 L
« + 1

,   k= I, ... ,n ,

which shows that the polynomials m*(x) are also invariant under permutations

of the barycentric coordinates A,(x). Therefore, we have that each uQ is a

homogeneous and invariant polynomial of degree d = J2"=x(i + l)a¡. On the

other hand, using Lemma 3, we have that

(3.20) card j ua : a G N" ,   ¿(i +l)al<d\= dim^; ,

since the polynomials ua , a G N" , are linearly independent (Lemma 2). Now

(3.17), and hence (3.16) and (3.18), follow immediately.   D

4. Consistency conditions

We now return to the problem of constructing an invariant quadrature rule

(2.9) with a given degree of precision d. In what follows the simplex T„ will

be supposed to be centered at the origin, and we shall use the basis of a°¿ given

by (3.17). Therefore, we shall refer to

n

(4.1) ß(uQ)-/(ua) = 0 ,   tt€N":  E(/+1)a'-i/

i=i

as the moment equations that the rule must fit to have degree of precision d .

Note that the rule structure (K0, Ki, ... , KM„) determines the functional de-

pendence on the unknowns (free parameters) in the nonlinear system of moment

equations.

On the other hand, the number of nodes of the rule and the number of

unknowns of the system of moment equations are given by (2.10) and (2.11),

respectively, where the values of u, and (n + 1 ) for each type of basic rule

are listed in Tables 1 and 2. This situation suggests that there are types of

basic rules that are better than others, in the sense that they produce more free

parameters with a smaller number of nodes. Nevertheless, it is not possible to
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construct an invariant quadrature rule with a given degree of precision if we

choose arbitrarily the numbers K¡ which define the structure. This is because

the existence of a solution of (4.1 ) requires a certain minimum number of basic

rules of each type. These restrictions on the numbers K¡ are called consistency

conditions and were introduced in [14, 18 and 19] for fully symmetric multi-

dimensional quadrature rules. In this section we derive general consistency

conditions for invariant quadrature rules for the «-dimensional simplex T„ , in

a convenient and systematic form.

Before deriving the consistency conditions, let us try to clarify the mean-

ing of this concept. We consider the system of moment equations (4.1) and

note that Lemma 2 guarantees that there is no linear dependence between these

equations. Under the hypothesis that there is no other form of algebraic depen-

dence between the moment equations, it is commonly assumed that a necessary

condition for this nonlinear system to have a solution is that the number of

unknowns of the system be greater or equal than the number of equations, i.e.,

(4.2) Yir' + l)Kt > dim^; .
1=0

However, we can also obtain linear combinations of equations (4.1) that make

some of the unknowns disappear. These kinds of subsystems will be obtained

by applying the equation Q(p) - I(p) = 0 to polynomials p belonging to some

special subspaces of ¿Pj . When the equations of these subsystems are linearly

independent, a condition that is guaranteed by the linear independence of the

polynomials p used to obtain them, it is natural to impose, as a necessary

condition for the existence of solutions, that the number of unknowns that

remain in the subsystem be greater or equal than the number of equations of

the subsystem. In order to translate these ideas into conditions on the rule
structure of a quadrature rule, that is, into inequalities similar to (4.2), we

consider, for a given n , the classes %, i = 0, ... , Mn , with the order relation

-< defined in § 1.

Definition 7. A set J c {0, ... , M„} is said to be a consistency set if it has

the property that for every i, j £ J such that i ^ j , % -fK% and %;/ % .

That is, a consistency set is a set of indices of classes that are not related by -<.

Definition 8. Given a consistency set J, the null space â°d(J) is the linear

space of invariant polynomials given by

(4.3) &>j(J) = {p£ 9>; : V/ G / , Vx G % , p(x) = 0}.

Now, for every consistency set J denote by /' the set J' c {0, 1, ... , M„}

defined by

(4.4) J' = {i i J : V; G 7 , % + %\,

and consider any equation of the form

(4.5) Q(p)-I(p) = 0 ,  p£^d*(J),

that is obtained as a linear combination of the moment equations (4.1). Note

that in such an equation the parameters that correspond to basic rules of types

% such that % = Wj or % <Wj for some j £ J do not appear. Given that
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the maximum number of linearly independent equations of the form (4.5) is

equal to the dimension of &d(J), we have a consistency condition associated

with every consistency set J and hence the following

Definition 9. A rule structure (A^0, K{, ... , KM„ ) is d -consistent when the

consistency condition

(4.6) 2(r, + l)/:i>dim^;(7)
¡eJ'

is satisfied for every consistency set J c {0, 1, ... , M„}.

We note that, taking J = 0, we have @d(J) = ^d and /' = {0, 1, ... ,

Mn). Hence, the first consistency condition we obtain is (4.2). On the other

hand, given that WMn = [1, 1,... , 1] = R" , taking J = {Mn} , we have J' = 0

and dim^(J) = 0. Hence, the corresponding consistency condition reduces
to the trivial inequality 0 > 0.

Now, we need to use several spaces of polynomials whose set of variables

is different from x = (xx,... , x„). As usual, we shall refer to these spaces

by specifying the set of variables between brackets, that is, denoting them as

^[yi, ■■■ ,yr], &d\yi, • ■ • , y A  or ß^d[yx, ... , yr\ , for instance.

For every / = 0, ... , Mn , let % = [mo, mx, ... , mr¡], and let V¡ be the

/•¿-dimensional affine manifold such that {s(V¡) : s e I,} coincides with the

set of points of class % . According to Definition 3, each point x g V¡ has a

barycentric representation

mo times m i times m,(. times

(4.7) X(x) = (a0, ... , a0 , ax, ... , ax , ... , ar¡, ... ,ar,),

with X/7=o mJaJ = 1 • If we call

(4-8) yy = fly.___ ,   j = 0,... ,r,,

with Yl'jLo mjyj = 0 , we can translate (4.7) into

(4.9) x = h,(vi,... ,y«),

and Vj can be written as

(4.10) j/. = {x = h,(y,,... ,yr,) :(v.,... ,yr,)£Rr'}.

Then, for every i = 1, ... , Mn , we can define a linear map, usually called

comorphism, w,: 9°* —» S?[yi, ... , yr,]  given by

(4.11) w,(p)(yi,... ,yri)=p(h,(yx,... ,yri)) ,  p£&*.

For / = 0, we have % = [n + I] and r0 = 0. Then, w0: ¿P* —» M is given by

w0(p)=p(0,... ,0) , P£&* .

On the other hand, given that ¿P* = span{ua : a G N"} (see Theorem 2),

we can define the comorphisms w, , i = 0, ... , M„ , by calculating Wj(ua)

for a £ N" . It is clear that

Í   1       if  Q = (0, ...   ,0),
(4"12) w>o(uQ)= { '       '     '

(0        if   Q ,é (0, . . .   , 0) ,
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and, for i= I, ... ,Mn and k = I, ... , n , using (3.19), we have

n

(4.13) Wi(uk)(yx,... , yr¡) = YmJykj+X '

7=0

where y0 = —^ ££,, mjyj ■ Therefore,

(\ k+l

Ymjyj)   +Ymjyki+X >

7=1 / 7=1

and

n

(4.15) wi(ua) = H(wl(uk)r ,   aGN",   i=l,...,Mn.
k=l

Note that in view of (3.16), (4.14) and (4.15), it is straightforward to prove that

(4.16) P£j?d*^wl(p)£j?d[yx,... ,yn] ,   i=l,...,Mn.

Now, for every consistency set J = {ix, ... , is} ,   J # 0, let wj be the

map

(4.17) wj'.^-iH&lyi,... ,yn]
i€J

defined by

(4.18) wj(p) = (wh(p),... ,wis(p)) ,  P£&*.

Then, it is clear that the corresponding null space â°d(J) can be written as

(4.19) ^(J) = {p£^ :v»j(p) = (0,... ,0)}.

Lemma 4. For every consistency set J ^ 0,

d

(4.20) dim W/ (^ ) = ^ dim wj (%*k* ).
k=0

Proof. When J = {0}, we have wj = w0. Then, using (4.12), we easily see

that dimiuoG^;) = 1 , dimu;o(^*) = 1 and dimw0(J£*) = 0 for k > 1.
When / ^ {0} , we have that 0^7 (see Definition 7). In this case, we prove

that

(4.21) wji&j) = Y,j(ßC) © ••• © y/j(T/).

Given that y/j is linear and ¿Pj = %*Q* © • • ■ © ß^d* , it is clear that for ev-

ery p G SP^, we have wj(p) = T,dk=owj(Pk) , where yvj(pk) G w/(££*) for

k = 0, ... , d.   On the other hand, let Pk £ ^k  ,   k = 0, ... , d , such

that Y?k=oVjÍPk) = 0. Then, Y?k=owiiPk) = 0 for every i £ J. But (4.16)
guarantees that w¡(pk) £ %k\yi, ■•• , >vj for k = 0, ... , d , and this im-
plies that Wi(po), ... , u>i(Pd) are linearly independent. Therefore, we must

have w,(Pk) = 0, k = 0, ... , d , i £ J. That is, wj(Pk) = 0 for k =
0, ... , d .   a
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Theorem 3. Let the simplex Tn be centered at the origin and let J ^ 0 be a

consistency set. Then, for every d £ N ,

d

(4.22) dim&*d(J) = A(n,d)~Y dim ™JÍ%k) ■
k=0

Proof. Let vij\&>- denote the restriction of wy to £Pd . From (4.19) it is obvi-

ous that the null space ¿PdiJ) is the kernel of v/j\&>- . But w/l^.  is a linear
" d d

map, and hence

(4.23) dim^y = dimKer(wy|^.) + dim Im(wy \&>. ) ,

that is,

(4.24) A(n, d) = dim&*d(J) + dimw7(^;) .

Now, use Lemma 4, and the result follows.   G

5. ON THE COMPUTATION OF CONSISTENT STRUCTURES

In this section we describe the more relevant aspects of the method we have

used for computing optimal d-consistent structures, that is, ¿/-consistent struc-

tures with a minimal number of nodes. We can also use a similar procedure for

computing ^-consistent structures that have a number of nodes that is near the

minimal one. We shall refer to this kind of structures as quasi-optimal.

First of all, for a given range of values of « and d, we use the recurrence

relations given in Lemma 1 for calculating the numbers A(n, d) or dimJ^*

and store them in a file. For every dimension «, the set of classes {W¡, i =

0,... , Mn} is obtained, starting with the class WM„ - [1, 1, ... , 1], by using

the order relation -<, with the concept of contracted version explained in the

comments to Definition 3. At the same time we construct the relation tree, with

branches connecting the classes related by -<, and store it as a matrix 4* = (y/¡j)
given by

{5A) ^ = {o   *% + %.

For each class we also calculate the numbers v¡ and r¡. Using the matrix 4*,

we easily obtain all the consistency sets J and the corresponding /', which

allows us to construct the left-hand sides of the consistency conditions (4.6).
Now, for a given « , the next step is to obtain the right-hand sides of (4.6).

We first note that if J = 0 , then dim¿Pd(J) = A(n, d). For other consistency

sets J t¿ 0, Theorem 3 shows that it is sufficient to calculate dimw/(^*) for

the desired range of values of d . It is well known that dimw/(^*) coincides

with the rank of the matrix that represents the linear map v/j\jp>, i.e., the

restriction of vtj to %fd*. When the consistency set has only one element, say

/ = {/}, this matrix consists of the coefficients of the polynomials Wj(ua),

for the a G N" such that Xw=i(' + l)a¡ = d , when they are written as linear

combinations of the standard basis of monomials of the space ß?d[yx, ... ,yr¡].

When / = {/i, ... , is), then v/j = (w^, ... , w¡s) and the corresponding

matrix associated with / is the matrix (E¡l \E¡2\ ■■- \E¡s), where each Eij
stands for the matrix associated with J = {ij} as shown before. We illustrate

this with two examples for « = 3 and d = 6.
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Example 1. Consider the consistency set J = {3} corresponding to the class

W$ = [2, 1, 1]. According to (4.14) the polynomials Wi(Uk) are

«>3("i) = y\ + y\ + x2(yi + y2)2 = \(ly\ + 2yxy2 + 3y¡),

w3(u2) = y¡ + y¡ - \(yx +y2)3 = |(3y? - 3y\y2 - 3yxy\ + 3y|),

^3(«3) = y\ + y\ + sCvi + v2)4 = |(9yf + 4y?y2 + 6y2y22 + 4yxy¡ + 9y¡).

Then, the images of the corresponding homogeneous polynomials uQ of degree

d = 6 are

w3(u\) = i(27yf + 54y?y2 + llly\y\ + U6y\yl + \\ly\y\ +54yxy52 +27y26),

wM) = ±(9y¡ - lSy¡y2 - 9y\y\ + 3by\y\ - 9y\y\ - l%yxy\ + 9y\),

w3(mi«3) = Ts(27vf + 30y\y2 + 53y?y22 + 3by\y\ + 53y2y24 + 30yxy\ + 21y\).

Therefore, the associated coefficient matrix is

.    /54    108    234   232   234    108    541
E= —     9    -18    -9     36     -9    -18    9

16 \27     30      53      36     53      30     27

Given that rank(£) = 3 , we have dimwy(<^*) = 3 .

Example 2. Consider now J = {1,2}, with % = [3, 1] and W2 = [2,2].

Then,

wx(ux) = y\ + \y\ = \y\, w2(ux) = 2y\ + 2y\ = Ay],

wx(u2) = y\- \y] = |y?, w2(u2) = 2y\ - 2y\ = 0,

wx (m3) = y\ + jjy\ = ffy4, w2(u3) = 2y\ + 2y\ = 4y4x .

Now, the images of the homogeneous polynomials uQ of degree d = 6 and

their corresponding matrices are

wx(u\) = %y\, f%\ w2(u]) = 64yl

wi(u22) = 6^yl        Ex=     |f     , w2(u\) = 0, E2 =

wx(uxui) = x-gy\, \*g) w2(uiu3)= 16yf,

Then, the matrix associated with the consistency set J is

rank(£'i | E2) = 2,

and hence, dimw/(^*) = 2 .

In the general procedure the rank of these matrices is calculated by a standard

singular value decomposition routine. Some savings can be effected in practice

by taking into account some special situations. For example, when for a given

degree d we find a consistency set J such that the rank of its associated matrix
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Table 3. Minimal number of nodes vL(n, d)

1187

d
d

d

d

d

d

d

d

d

d

d

d

d

d

d

d

d

d

d

d

d

d
d

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

n

1

3

4

6

7

12

13

16

19

24

27

33

36

42

46

52

58

66

70

78

85

93

100

« = 3

1

4

5

11

14

24

30

43

52

68

81

117

133

163

190

233

266

318

355

415

472

539

602

« = 4

1

5

6

16

21

41

55

90

120

171

206

306

381

485

616

766

931

1161

1396

1750

2060

2421

2826

n = 5

1

6

7

22

28

68

84

164

210

325

470

736

917

1272

1662

2218

2734

3649

« = 6

1

7

8

29

36

98

140

267

351

644

848

1456

1911

2870

3816

« = 7

1

8

9

37

45

136

192

431

578

1076

1511

2715

3633

« = 8

1

9

10

46

55

183

255

622

835

1699

coincides with its number of rows, then we know that this rank holds for any

other consistency set that contains J. On the other hand, some precautions

must be taken when using a singular value decomposition routine for calculating

the rank of matrices that can be very large. We have used 32 digits of accuracy

and a standard test which takes into account the dimensions of the matrix,

the biggest modulus of the singular values and the precision of the machine to

decide whether a singular value is equal to, or different from, zero. In addition,

the result is only accepted if there is a significant ratio (of at least 1010 ) between

the smallest modulus of the nonzero singular values and the biggest modulus of

the singular values considered zero. These precautions limit considerably the

range of values of « and d that can be considered, but they are necessary to

insure confidence that the computed ranks are correct. This is why some entries

in Table 3 are missing.

Now, for obtaining an optimal ¿/-consistent structure we have to solve a

problem of integer linear programming in which the objective function to be

minimized is the number of nodes given by (2.10), subject to the constraints
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Table 4. Optimal consistent structures for T2 and r3

9
10
11

12
13
14
15
16
17
18
19

220
221
222
223

Kq Ki K2

1

0
1
0
1
0
1

1

1

0
0
0
0
0
1
1
1
0
1

0
1

0
1

1

1
2
2
2
2
3
4

4

5

5

6
6
7

7
7

1

1

1
1

2
2
3
3
4

4

5
6

8 7
9 7

10    8
10 9
11 10
11  11

Np(Q)
1

2
3
4

5
7

8
10
12
14
16

19

21
24
27
30
33
37
40

44

48
52
56

"(Ö)
1

3
4

6
7

12

13
16
19
24
27
33
36
42

46

52
58
66
70
78

85
93

100

Kq Ki K2 Kt, Ki,

1
0
1

1
0
0
0
1

0
0
1

1

1

1

0
1

0
0
1

1

0
1

0

1

1
1   1
2
3
3
3
4

5
5
5
6
6
7
7

1
0 1
1 1

2
2
3
4
5    1
6    1

1

2

2
2
2
2
3    8    1
3 10    1
4 11

8 3 14
9 3 16
9 3 19
9    5 21

10    4 24
10 5 27
11 5 30

Np(Q)

1
2
3
5
6
9

11
15
18
23
27
34
39
47

54
64
72
84
94

108
120
136
150

HQ)
1
4
5

11
14
24
30
43
52
68
81

117
133
163
190
233
266
318
355
415
472
539
602

(4.6) and Ko < 1 . A standard implementation of the branch and bound method

with a linear programming code is used to determine the minimal number of

nodes. At this stage we obtain at least one optimal ¿/-consistent structure as

solution of the integer programming problem, but not necessarily all possible

ones. On the other hand, we note that when dim ^d(J) = 0, then the corre-

sponding constraint in the programming problem is always feasible and can be

removed. For example, for « = 8 the number of consistency conditions is 573,

but only when d > 72 are all of them effective. When d = 10, for instance,

only 83 consistency conditions have a right-hand side different from zero.

Table 3 contains the results obtained by the method described above. We give,

for a wide range of values of « and d, the number of nodes of an optimal

¿/-consistent structure. This number is of course a possibly unattainable lower

bound on the number of nodes required by an invariant quadrature rule with

degree of precision d for the «-dimensional simplex Tn .

Once we know the minimal number of nodes, say vj_(n ,d),it is not difficult

to obtain all the optimal and quasi-optimal ¿/-consistent structures for each

value of « and d. For this, we use a combinatorial method for generating all

the possible rule structures that have a fixed number of nodes v^(n, d) + k,

for k = 0, 1, 2, etc. Then, we check the consistency conditions (4.6) and

reject those rule structures which result not to be ¿/-consistent. We found all

the optimal ¿/-consistent structures to be unique.
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Table 5. Optimal consistent structures for T4

41

41
414
4J15

16
17

18

19
420
421
422
423

Ko Ki K2 K3 K4 K$ K(,

1
0 1
1 1

1 1
1
1

0
0
0
1

1

1

1

2
2

5
4
4

4

5
5

6

1

1
1 1
2 1

0 7
1 7

2
3
3
4

4

5

5

1 1

2 1
3
4

6
6

2
2
2
4

6

1

1
1

2
3
4

6

5 10 7
1 7 7 12 8
1 8 7 14 10
1 8 8 16 12
1 9 7 19 14 8
0 10 8 21 16 10 1
0 10 9 24 18 13 1
1 10    9 27 22 16    1
1  11  10 30 23 21    1

Np(Q)

1

2
3
5
7

10
13
1

23
30
37
47

57
70
84

101
119
141
164
192
221
255
291

"(Ö)
1

5
6

16
21
41

55
90

120
171
206
306
381
485
616
766
931

1161
1396
1750

2060
2421
2826

The unique optimal ¿/-consistent structures, for the same range of values of

« and d as in Table 3, are presented in Tables 4, 5, 6 and 7. In each table,

the column corresponding to K¡ has been suppressed if it contains only zero
entries. On the other hand, extensive listings of quasi-optimal structures are

given by the authors in [17].
An important remark is that the hypothesis that the simplex T„ is centered

at the origin is relevant only for the theoretical results (Theorems 2 and 3) that

support the method we have used for computing the right-hand sides of the

consistency conditions (4.6). However, the consistent rule structures and other

numerical results given in this paper are valid for a general (nondegenerate)

simplex in the «-dimensional Euclidean space R" .
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Table 6. Optimal consistent structures for T$ and T6

Kq Ki K2 Kt, K4 K$ K(, K-¡ Kg Np(Q)HQ)
1

2
3
4

5
6
7

8
9

10
11
12
13
14
15
16
17
18

1

0 1
1 1

1 1

1 2

0
1

0
1

0
0
0
1

0
0
1

1

1

1

1

0 1
1 1

2

3
3
4

4

4

4

6
7

7

1

1

1  1
2
3
4
5
7

9

1

1

2
4

4

6
9

3 10 11 1
3 12 14 1

3 14 18 2
3 16 22 2

1 1
1 1
0 1

2

3
4

6

1

2
2
4

2
3
5
7

11
14

20
26
35
44

58
71

90
110
136
163
199

1
6

7
22
28
68
84

164
210
325
470
736
917

1272
1662
2218
2734
3649

Ko Kx K2 Kt, K4 Ks K(, K-¡ Kg K¡)

1

0 1
1 1

1 1 1
1 2 1

0 3 0 11
0 3 2 11
13 3 111
14 3 2 2 1

0 5 3 2 3 2 1
15 4 3 4 3 1
0 6 4 4 5 4 1  1  1

0 6 5 4 7 6 2 1  1
0 7 5 5 8 9 3 1  1  1

1 7 6 4 10 12 4 2 2 1

Np(Q)

1
2
3
5
7

11
15
21
28
38
49

65
82

105

131

v(Q)

1
7

29
36
98

140
267
351
644
848

1456
1911
2870

3816
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Table 7. Optimal consistent structures for Tj and T$
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Ko Kx K2 Kt, Kh AT5 Kf, K7 Kg K9 Kx0 Np(Q)HQ)
1
2

3
4

5

6
7

8
9

10
11

12
13

1

0 1
1 1

1 1
1

0
0
1

0

2
3
3
3
4

0 5
1 5
1 5

1 6

1
1

0
2
2
3
3
4

4

4

1    0    1
1    0    1

1

1
0
1

1
2

2

2
3
4

6
7

1    0     1

1    0     1

2

3
5
7

11

15
22
29
40
52
70
89

1

8
9

37
45

136
192
431
578

1076
1511
2715
3633

Ko Kx K2 Kt, Kt, Ki K(, Kj Np(Q)HQ)
i
2
3
4

5
6
7

8
9

10

1
0 1
1 1
1

1

0
0
1
1

1

1

1

0    10    1
2    10    1
2
3
4

0    1
1

1    3

1
2
3
5
7

11
15
22
30
41

1

9
10
46
55

183
255
622
835

1699

6. Previously published structures which are incorrect

Our investigation has uncovered some errors in a list of structures in Keast,

[12, pp. 345 and 346]. We found that at least fourteen rule structures of degrees

6, 7 and 8 listed there do not satisfy our consistency conditions (4.6). These

are:

- The first four rule structures of degree 6.

- The first six rule structures of degree 7.

- The first four rule structures of degree 8.

Dr. Keast subsequently reexamined some of his calculations (carried out in
1980). We have been informed that he has found at least one computational

error which accounts for these particular errors.
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