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ON A CLASS OF ELLIPTIC CURVES WITH RANK

AT MOST TWO

H. E. ROSE

Abstract. In this note we consider the elliptic curves y2 = x3 + px defined

over <Q> for primes p satisfying p = 1 (mod 8), and review some of their

properties. We then compute and list (in the supplement) their ranks, and

give, when the rank is positive, the generators of the group of rational points

and Mordell-Weil lattice invariant t for all primes p < 50000 of the form

m2 + 64n2.

1. Introduction

Considerable progress has been made in the study of elliptic curves defined

over the rational field Q, but many questions remain unanswered. For example,

formulas for, or even estimates of, the rank of many of these curves have not

been found. Hence, it is of interest to study properties of particular classes of

curves in the hope that some of these questions can be answered in these cases.

In this paper we shall consider the class of elliptic curves

Cp : y2 = x3 + px,

defined over the rational field Q and where p is a prime. Let r(Cp) denote the

rank of this curve, that is the number of independent infinite-order generators

of the (Mordell-Weil) group of rational points on this curve. It is known that

ifp = 7 or 11 (mod 16),   thenr(Cp) = 0;

if p = 3, 5, 13 or 15 (mod 16), then r(Cp) = 0 or 1 ; and

ifp= 1 or 9 (mod 16), then r(Cp) = 0, 1 or 2,

see Silverman [8, p. 311]. Bremner and Cassels [1] and Bremner [2] have

considered the class of curves Cp for primes p = 5 (mod 8) ; they showed that

r(Cp) =1 for p < 20000 and conjectured that this holds for all primes in their

class. Here we shall consider the third case above, that is the curves Cp where

p = 1 (mod 8). The rank can be zero or two, and it is conjectured that it cannot

equal one. We give some evidence in support of this; also this conjecture is a

consequence of the full Birch and Swinnerton-Dyer conjecture, in particular it

holds when the corresponding Shafarevich-Tate group is finite.
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For primes p = 1 (mod 4), Gauss showed that 2 is a quartic residue modulo

p if and only if p can be expressed as a sum of squares p = x2 + y2 where

8 | y. We shall call a prime with this property a G-prime in this paper; it is

necessarily congruent to 1 (mod 8). We can easily show that r(Cp) = 0 if

p = 1 (mod 8) and p is not a G-prime, see §2. The converse is only partially
true. There are 625 G-primes less than 50000, in 366 cases the rank of the

corresponding curve is two, examples are

73, 89, 113,233, ... ,49801;

whilst in the remaining 259 cases the rank is zero, with examples '

257, 577, 1097, 1201,... ,49633.

In §2 we reduce the question of finding rational points on Cp to the problem

of solving one or more of three simple quartic equations (numbered (I), (II) and

(III)) in rational integers. These three quartic equations correspond to the three

'principal homogeneous spaces' for Cp ; see Silverman [8, Chapter 10]. In §3
we give algorithms which generate solutions to one of these equations provided

solutions for the remaining two are known; this provides an elementary example

of the operation of the Weil-Châtelet group for the curve. This also provides

another derivation of the rank estimates quoted above. In §4 we discuss briefly
the problem of showing that the rank of our curves cannot be one. Finally, in
§5, we describe the computations that have been undertaken to calculate the

ranks of our curves for all G-primes less than 50000. The supplement gives the

basic data from which the infinite-order generators of the corresponding groups

can be constructed, the values of x for the Mordell-Weil lattice (see final section
of this paper), and values of the L-functions when these groups are finite.

In a forthcoming paper further computations will be presented. This will
include evaluations of the second derivatives of the L-functions at s = 1 for

the rank-two curves Cp listed in the supplement (thus giving further data in

support of the full Birch and Swinnerton-Dyer conjecture) and evaluations of

the L-functions for non G-primes. Also, all of these computations will be
extended to primes p < 100000. For example, the order of the Shafarevich-

Tate group III for the curve C50177 is 256, and 50177 is the first G-prime larger

than 50000 for which the rank of the corresponding elliptic curve Cp is zero.

2. Preliminaries

We shall study the elliptic curves

(1) y2 = x3+px    for primes    p = 1 (mod 8).

The group of rational points on (1) will be denoted CP(Q), which we shall

usually abbreviate to Cp . Clearly, the point (0,0) e Cp and has order two.

Except for this point and the neutral element, a point belonging to Cp has

the form (u/s2, v/s3), where u, v and 5 are nonzero integers, and (u, s) =

'There is a possible connection here with real quadratic fields. If d(p) denotes the class number

of the field Q(^/p), then, for G-primes less than 1097, r{Cp) = 2 if and only if cl(p) = 1 . It is

unclear whether this is a coincidence or not; it is false when p = 1097 and for some larger primes.
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(v, s) = 1. We have

(2) (u/s2, v/s3) + (0, 0) = (ps2/u, psv/u2) e Cp ,

and so u = r2, for some r, and r | v ; or u = pr\, for some /*i, and pri | u .

We sAa/7 assume from now on that the first case always holds. Therefore, with

the exception of the neutral point and the point (0, 0), a typical point on Cp

has the form

(3) (r2/s2,rt/s3)    with     (r, s) = (t, s) = 1     and    rst^O.

[For each such point a second point on Cp is always given by (2), and vice

versa.] Using this assumption, we can write equation (1), cancelling r2/s6, in

the form

(4) r4+ps4 = t2

with r, s and t as in (3). Note this implies (r, t) = 1. As p = 1 (mod 8),

r and s have different parities, and / is odd; we shall consider these cases

separately. This equation has been discussed previously in Mordell [5].

Case 1.     Equation (4) has the form 16r4 + ps4 = t2 and s is odd.

Rewriting this, we have ps4 = (t - 4r2)(t + 4r2). Now / - 4r2 and t + 4r2

cannot have a common factor, and so each is a fourth power or p times a

fourth power. Eliminating t and renaming the variables (r —> t and 5 —► rs)

we obtain two possibilities for equation (4) in this case:

(I) r4-ps4 = -St2    with     (r, s) = (s, t) = (t, r) = 1 and r, s odd,

or

(II) r4 - ps4 = 8i2    with    (r,s) = (s,t) = (t,r) = l and r, s odd.

We can impose a restriction on p as follows. If either of (I) or (II) is soluble,

and if q (a prime) divides t, then r4 = ps4 (mod q), and so the Legendre

symbol (p/q) = (q/p) = 1 by quadratic reciprocity; this gives (t/p) = 1.

Therefore, we can find an integer u satisfying u2 = t (mod p), and then we

have +Su4 = r4 (mod p), with the upper sign for (I) and the lower sign for

(II). As p = 1 (mod 8), -1 is a quartic residue modulo p , and so 2 must also

be a quartic residue modulo p (that is, p is a G-prime) and both (I) and (II)

are insoluble if this is not so.

Case 2.     Equation (4) has the form r4 + I6ps4 = t2 and r is odd.

Arguing as above, we obtain four subcases, with s = Sis2 and (si, s2) = 1 :

t - r2 = 2s\ t + r2 = Bpst,

t-r2 = 2ps\ / + r2 = 8j24,

t-r2 = %s\ t + r2 = 2ps42,

t-r2 = %ps4x t + r2 = 2s4.
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The first two subcases are impossible because r is odd. The fourth subcase

gives

(5) r2 = s4-4ps4,        t = s} + 4ps4,

and so (s2 - r)(s2 + r) = 4ps4. As in Case 1, this gives s\ = uv, (u, v) = \,

and

s\ + r = 2u4,    s2-r = 2pv4,      or

s2 + r = 2pv4,    s2 - r = 2u4.

If the first pair of equations apply, then s2 = u4 + pv4 and r = u4 - pv4, and

the corresponding point on Cp , that is (r2/4s2, rt/Ss3) = 2(u2/v2, s2u/v3), is
a double point. Similarly, if the second pair apply, then the point is

2(u2/v2, -s2u/v3), another double point. Hence, as we are mainly concerned

with the generators of Cp , we may exclude the fourth subcase completely. Elim-

inating t from the third subcase, we find that S\ is even and so, relabelling the

variables (r —► t, si -» 2r and 52 —> s), we obtain the third possibility for

equation (4):

(III) 64r4 - ps4 = -t2    with     (r,s) = (s,t) = (t,r)=l  and s,t odd.

Gauss's result mentioned in the introduction states that '2 is a quartic residue

modulo p if and only if p can be expressed in the form x2 + 64y2\ The proof

of this classic result can easily be adapted to show that if equation (III) is

soluble, then 2 is a quartic residue modulo p , and so p is a G-prime.

Hence, we need to consider the three equations (I), (II) and (III); they are

the three principal homogeneous spaces for Cp (see Silverman [8, Chapter 10]).

For (I) or (II) the corresponding point on the curve Cp is

(6) (4t2/r2s2, t(r4 + ps4)/r3s3)     with r and 5 odd,

and for equation (III) the corresponding point is

(7) (t2/\6r2s2,t(64r4+ps4)/64r3s3)     with 5 and t odd.

In each case p must be a G-prime for a solution to exist. Further, by Gauss's

result, quadratic reciprocity, and the usual descent arguments, we see that, cor-

responding to the cases (I), (II) and (III) above, p can be expressed by three

distinct quadratic forms as follows:

(8) p = a2 + U2 = c2 - &d2 = 64e2 + f2.

Note that these may provide solutions to (I), (II) or (III) directly. If a is a

square, then (I) has the solution r = sfä,s=\,t = b; similarly if c is a

square, (II) is soluble, and if e is a square, (III) is soluble. We shall see later

that generators of the group Cp , when they exist, are given by solutions of (I)

and (II) using (6).
For later use we have the following consequences of the equations (8):

(9) (a lp) = (b/p) = (c/p) = (d/p) = (e/p) = (f/p) = 1,

(10) a = 1 or 7 (mod 8)     and     c = 1 or 3 (mod 8).
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For (9), we have by (8), a2 = p (mod b), and so, by quadratic reciprocity,

(b/p) = 1. Further, as both -1 and 2 are quartic residues modulo p, we

can find an integer n to satisfy n4 = -8 (mod p) which, using (8) again, gives

(nb)4 = a2b2 (mod p) and (±ab/p) = 1 for some choice of the sign. But p = 1
(mod 8), and so (a/p) = 1 follows by the first result. For (10), we have by

(8) and as a is odd, (2p/a) = 1, and so (2/a) = 1 by (9). Therefore, a = ±1
(mod 8) follows using the properties of the Jacobi symbol. The remaining parts

of (9) and (10) are proved similarly.

3. TWO POINTS KNOWN

In this section we show that if two of the equations (I), (II) or (III) are soluble,

then the third is also soluble. We shall also give a characterization of the general

solutions of each of these three equations. These provide an illustration of the

operation of the Weil-Châtelet group of Cp , see Silverman [8, Chapter 10].

First we consider the case when a solution {r{, si, ti} of equation (I) cor-

responding to the point Pi on the curve Cp, and a solution {r2, s2, t2} of

equation (II) corresponding to P2 on Cp , are known. In this case we shall de-

scribe an algorithm which gives two solutions to equation (III); these solutions

correspond to the points Px + P2 and Pi - P2 on Cp . We may assume that

(ri,Si, ti) = (r2,s2, t2) = 1.

We shall work with the following expressions:

A = rxsxt2 + r2s2tx, B = rxsit2 - r2s2tx,

(11) C = (r2r2 - ps2s2)/S,       D = r2s22 + r2s\,

K = r2s2t2(r4x + ps4x) - rxS\t\(r\ + ps\),

L = r2s2t2(r4 + psl) + nsitx(4 + ps¡).

A number of identities exist between these expressions; they are given in the

following lemmas. The most important is

Lemma 1.     The equation AB = CD holds.

Proof. We have

SAB = 8í2r252 - &t2r¡s¡

= (r4 - ps4)r2s2 + (r4 - ps4)r2s2 by (I) and (II)

= r2r2(r2s22 + rjs2) -ps2s22(r2s22 + r2s2) = SCD.       D

Lemma 2. Let U = r\r\ +ps\s\ and V = r2s2 - rxs2. Then

(i)      KL = AB(U2-pV2),

(ii)     4(A2 + B2) = UV,

(iii)   L2-K2 = (A2 - B2)(64C2 + pD2).



1256 H. E. ROSE

Proof     (i) We have, using the identity

x3 + 3x2y - 3xy2 - y3 = (x - y)(x2 + 4xy + y2)

in the fourth line,

SKL = St¡r¡s¡(r4 + ps4)2 - St2xr2s2(4 + ps4)2

= (4 -ps¡)rjs¡(r4 + ps4x)2 + (r4x -ps4x)r\s2x(r4 + ps¡)2

= D[r\r\ + 3pr4xrjs2xsj - 3p2r2r¡s4s4

-p3s6xs62 -p(r2r2 -ps2s¡)(r42s4x + r4s4)]

= WC[r4r4 + 4pr2rls2xs22+p2s4xs42-p(r42s4x + r4xs4)]

= 8AB(U2-pV2)

by Lemma 1. Propositions (ii) and (iii) follow in a similar manner.   D

Lemma 3. The integers C, D, rx, ... , t2 satisfy the following congruence prop-

erties:

(i) rx, r2, sx, s2 are odd and C e Z,

(ii) p \ rxr2sxs2 andp \ C,

(iii) 2 || D and tx = t2 (mod 2),

(iv) 2\A,2\B, and2\C.

Proof. Parts (i) and (ii) follow from our assumptions that (rx,sx,tx) =

(r2, s2, t2) = 1 . For (iii) and (iv), D is even by (i) but, as D is a sum of

squares, 4 | D would contradict (i). Secondly, if tx and t2 have different pari-

ties, then both A and B are odd, but this conflicts with the evenness of D by

Lemma 1, and so (iii) follows. Consequently, both A and B are even, and the

evenness of C follows by Lemma 1.   D

Definition. Let the coordinates (see (6) and (7)) of the points Px, P2, Px +

P2 and Px-P2 be denoted by (xx , yx), (x2,y2), (xx2,yx2) and (x2x, y2x),

respectively.

The next two lemmas give expressions for xx2, ... , y2x .

Lemma 4. We have xx2 = K2/16A2B2, x2x = L2/\6A2B2.

Proof. The line through the points (xi , yx) and (x2, y2) has equation

(X2-X\)y = CV2-);l)*+.Vl-K2-X1V'2.

If we let rxr2sxs2 = Z , then

x2 - x, = 4AB/Z2,

yxx2-xxy2 = 4txt2K/Z3,

V2~yx= [r]s3t2(r4+ps42) - r3s3tx(r4 + ps4)]/Z3,

and our equation for the line becomes

(12) 4ABZy = [r3xs3xt2(r42+ps$) - r¡sjtx(r4 + ps4)]x + 4txt2K.
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Squaring both sides of this equation and replacing y2 by x3 + px , we obtain

a cubic in x whose roots are xi, X2 and X12 , viz:

(r2s2x - 4t2)(r¡s¡x - 4t22)(l6A2B2x -K2) = 0,

and the result follows. An exactly similar argument gives the value of X21.   D

Lemma 5. We have

(i)        y\2 = [K(64A2C2 + pB2D2)]/64A3B3,

(ii)       y2x = -[L(64B2C2 + pA2D2)]/64A3B3.

Proof. By Lemma 4, (i) follows by substituting the value of xX2 in (12) and

collecting terms, and (ii) follows similarly.   D

Theorem 1. We have

(i) -K2 = 64A2C2-pB2D2,

(ii)        -L2 = 64B2C2-pA2D2.

Proof. (i) As (xi2, yx2) is a point on Cp , we have, by Lemmas 4 and 5, and

dividing by K2/(4AB)b,

(64A2C2+pB2D2)2 = K4 + 256pA4B4 = K4 + 256pA2B2C2D2

by Lemma 1. Hence,

(13) ±K2 = 64A2C2-pB2D2.

To evaluate the sign, suppose 2' || B ; then by Lemmas 1 and 3 we have 22l+2 ||

pB2D2 and 22'+6 | 64^2C2. Hence, 22'+2 || K2, which shows that ±K2/22t+2

and -pB2D2/22l+2 are odd integers congruent modulo 8. Therefore, the only

possible sign in (13) is minus, and (i) follows. The proof of (ii) is similar.   D

This theorem provides an algorithm for solving equation (III) in §2 as follows:

In (i) of Theorem 1 cancel the common factors of K, AC and BD (or of
L, BC and AD in part (ii)); then AC and BD become squares (and similarly

for BC and AD), thus providing the required solutions. To justify this, we

consider first the case when A, B, C and D have a common factor.

Lemma 6.     If q divides A, B, C and D, then q2 divides both K and L.

Proof. By Lemmas 1 and 3 we note that 2 divides A , B, C and D, no higher

power of 2 has this property, and, by definition, 4 divides both K and L.

Hence, as p \ q , we may assume that q is coprime to both 2 and p.

Secondly, with U and V as given in Lemma 2, we have U2 + pV2 = 64C2 +

pD2, and so q2 \ U2 + pV2 and, by Lemma 2, q2 \ UV. Together, these show

that q I U and q | V. Hence, by Lemma 2 again, we see that a4 \ KL and

q4 I L2 - K2, and the lemma follows.   0

Now let q"' || A, q"* \\ B, qU} || C and qu> || D. By Lemma 7 we may

assume that one of ux, u2, «3 or u4 is zero. So, for the first case, suppose ux

is zero, and then (by Lemma 1) u2 = u} + u4. This gives <?"3 || AC, qu>+2u* ||

BD, q2">+»* || BC, and qu< \\ AD. Hence, the factor q2u> can be cancelled

from both sides of equation (i) in Theorem 1.   Now the only occurrence of
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q in this equation is: q4"4 in the prime factorization of B2D2. Similarly,

in equation (ii), q2u* can be cancelled throughout, leaving the factor q4U} in

B2C2. The cases when u2, «3 or Ua are zero can be dealt with similarly. If

this process is carried out on all primes dividing AB , then, via Theorem 1, two

solutions of equation (III) are given by this algorithm.

We shall illustrate this algorithm with the prime 11969. We have (see (8))

11969 = 812 + 8 x 262 = 1132 - 8 x 102 = 652 + 64 x 112.

Now 81 is a square, and so we have a solution to equation (I) given by: rx =

9, sx = 1, t\ = 26. Secondly, although 113 is not a square, we have

(113+ 10VÍ5)(3 + n/8)2 = 2401 + 848^ (using the identity 32 - 8 x l2 = 1),
and so equation (II) has the solution: r2 = 49, s2 = 1, t2 = 848. Substituting

these values in (11), we obtain

,4 = 8906 = 2x61x73, B = 6358 = 2 x 11 x 172,

C = 22814 = 2 x 11 x 17x61, D = 2842 = 2 x 17x73,

K = 4x 5 x 11 x 17x73x2131,        L = 4x5x 17x61 x 102301.

Now váC = 612 x4x 11 x 17 x 73 and BD = 172 x 4 x 11 x 17x73. Hence,
we can cancel the factor (4 x 11 x 17 x 73)2 from (11) and we obtain the

following solution of (III):

-106552 = 64x614- 11969 x 174.

Similarly, BC = 112 x 172 x 4 x 17 x 61 and AD = 732 x 4 x 17 x 61, and so
the second solution is

-5115052 = 64x 1874- 11969 x 734.

Further algorithms. An exactly similar algorithm to the above exists when

solutions of (I) and (III) are known, or when solutions to (II) and (III) nre

known. Suppose {rx, sx, tx} is a solution to (III) corresponding to the point

ôi = W , y'i) on the curve Cp with (rx, sx, tx) = 1 , and {r2, s2, t2} is a

solution to (I) [or (II)] corresponding to the point Q2 = (x2, y2) on the curve

Cp with (r2, s2, t2) = \. Following the procedure above, we define

(14) A' = 8rxsxt2 + r2s2tx,       B' = Srxsxt2 - r2s2tx,

C = 8r2r22 ± ps\sl, D' = 8r2522 + r¡s2,

where the upper signs apply when {r2, s2, t2} is a solution to (I), and the lower

signs apply when equation (II) is the given one. As in Lemma 1, it is a simple

matter to show that A'B' = CD'. Also, we define K' and L' by

K' = rxsxtx(r¡ + ps2) - r2s2t2(64^ + ps4x),

L' = rxsxtx(4 +ps\) + r2s2t2(64r4x + ps4),
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and if ßi + Ö2 = (x'x2, y'x2) and Qx - Q2 = (x'2x ,y'2x), then

x'x2 = 4Kl2/A'2B'2 ,       y',2 = K'(A'2C'2 + pB'2D'2)/A'3B'3,

x'2x = 4L,2/A'2B'2,        y'2x = -L'(B'2C'2 + pA'2D'2)/A'3B'3.

Corresponding to Theorem 1 we have

Theorem 2. There holds

(i)      ±sk'2 = a'2c2-pB'2d'2,

(ii)        ±8L'2 = 5'2C'2-^'2D'2,

where the upper signs apply if {r2, s2, t2} is a solution to equation (I), and the

lower signs apply when a solution to equation (II) is given.

Proof. See the proof of Theorem 1.   d

The algorithm described above also applies here. In (i) of Theorem 2 we

cancel the common factors of K', A'C and B'D', and the resulting expressions

provide solutions to (II) [or (I)] as A'C and B'C are then squares. Note that

we obtain two solutions corresponding to the points Qx + Q2 and Qx - Q2.

Therefore, if Qx = Px + P2 and Q2 = Px, our new solutions to equation (II)

[or (I)] given by Theorem 2 correspond to the points P2 and 2PX + P2 on Cp .

We shall show now that this is always the case. If we have a solution to

one of our equations (*) (where (*) is (I), (II) or (III)), with corresponding
point P e Cp, then, for all points R e Cp, there is another solution to (*)

corresponding to the point P + 2R, and all solutions of (*) are generated in

this way.

Theorem 3. Suppose we are given a nontrivial solution to equation (I), (II) or

(III) corresponding to the point P e Cp; then this equation has infinitely many
solutions, and the corresponding points on Cp have the form P + 2R, where R

is an arbitrary point on Cp .

Note.  We are not assuming that the points P and R are of the same type.

Proof. We use the same method as in the previous two cases. We shall give the

proof for equations (I) and (II); an exactly similar argument applies in the re-

maining cases. Suppose the point P has coordinates (4t2/r2s2),

t(r4 + ps4)/r3s3, where +8i2 = r4 - ps4, and R has coordinates (a2/c2,

ab/c3), where b2 = a4 + pc4 (see (3) and (7)). The coordinates of 2R are

((a4 - pc4)2/4a2b2c2, (a4 - pc4)(a* + 6pa4c4 + p2c*)/8a3b3c3),

and we may assume that r and s are odd, and a and c have different parities.

Following the procedures above, we define

A" = 4tabc + rs(a4 - pc4),        B" = 4tabc - rs(a4 - pc4),

C" = Tr2b2 + 2ps2a2c2, D" = 2r2a2c2 ± s2b2,

K" = rst(a% + 6pa4c4 + p2c%) - abc(r4 + ps4)(a4 - pc4)/2,



1260 H. E. ROSE

where the upper [lower] signs apply when equation (I) [(H)] is being used.

Lemma 7.     We have A"B" = CD".

Proof. Using the equations +8z2 = r4 - ps4 and b2 = a4 +pc4, we obtain

CD" = zf2r4a2b2c2 - r2s2b4 + 4pr2s2a4c4 ± 2ps4a2b2c2

= +2a2b2c2(r4 - ps4) - r2s2(b4 - 4pa4c4) = A"B".      D

Continuing the main proof, we see that the coordinates of the point P + 2R

are

(4K"2/A"2B"2, K"(A"2C"2 +pB"2D"2)/A"3B"3),

and we have

+8K"2 = A"2C"2-pB"2D"2.

We now cancel the common factors of K", A"C" and B"D" in this equation,

and the result is a new solution to equation (I) [or (II)]; the details follow exactly

those given above for Lemmas 2 and 6.   o

Example. Let p = 13 and let P and R be the generators of the group Cp

corresponding to equations (I) and (II), respectively. Hence, using the supple-
ment table, (I), (3) and (4), we have r = s = \,t = 3,a = 2,b = ll and
c = 3, and substituting these values in the above, we have

¿" = -353,     B" = 17x673,     C" = -673,     D" = 17x353,

K" = 353 x 673 x 873.

These values now give a new solution to equation (I) corresponding to the point
P + 2R [as (353, 673) = 1]:

l4-73x 174 = -8x8732.

Finally, we prove the converse of Theorem 3; again the method of proof is

very similar to that used in the above proofs.

Theorem 4. // {rx, sx, tx} and {r2, s2, t2} are two solutions to one of the

equations (I), (II) or (III) with corresponding points Px and P2, then there is a

point R e Cp with the property P2 = Px + 2R .

Proof. We give the proof for equation (I); the same argument applies in the

remaining cases. As above, we define

A* = rxsxt2 + r2s2tx,        B* = rxsxt2 - r2s2tx,

C = r2r2 + ps2s22 , D* = (r2s2 - r2s2)ß ,

K* = r2s2t2(4 + ps4) - rxsxtx (r4 + ps¡),

L* = r2s2t2(r4 + ps4) + rxsxtx(r4+ps¡).

Repeating the arguments of Lemmas 1 to 6, we have

A*B* = CD*,
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the coordinates of P2 - Px are

(L*2/16A*2B*2, -L*(B*2C*2 - 64pA*2D*2)/64A*3B*3),

and

L*2 = B*2C*2 - 64pA*2D*2.

Note that we have a plus sign on the left-hand side of this last equation, as

2 || C* in this case; see the proof of Theorem 1. The result now follows using

(5) of §2.   D

4. One point known

In view of the results above a natural question to ask is: suppose we are given

a solution to just one of our equations (I), (II) or (III); is there an algorithm

which will generate solutions to the remaining two equations? This is a much

harder problem; it is not definitely known that solutions exist, but we have the

Conjecture. If p is a G-prime and the rank of the curve Cp is not zero, then

it equals 2.

Silverman [8], and others, have shown that this Conjecture is a consequence

of the Shafarevich-Tate Conjecture, which states that the Shafarevich-Tate

group III for Cp is finite. Although some progress has been made on this second

conjecture recently, it remains open at this time. The numerical evidence pre-

sented below shows that our conjecture is valid for all primes p < 50000. Also,

this Conjecture can be replaced by the following apparently simpler question.

Suppose we have a solution {r, s, t} to equation (I) [the argument is similar

in the other two cases]. Then we can find solutions to equations (II) and (III)

provided we can find a nontrivial simultaneous integer solution {x, y, z, w}

to the pair of equations

x2 + I6txy-8r4y2 = 8s4z2+pw2,

xy = zw.

Using (9) and (10), we can easily show that this pair of equations has common

local solutions for all primes q. But this does not necessarily lead to simul-

taneous integer (global) solutions. We note that the second equation above is

identical to that in Lemma 1 ; there it was the main link in the algorithm, here

it seems to be the main stumbling block to progress; for further details see Rose

[6].

5. Numerical data

Extensive computer searches have been undertaken to find the ranks and gen-

erators of the curves ( 1 ) for all G-primes p < 50000 ; the results are presented

in the supplement. After some preliminary trials using a HP 28s calculator, the

main searches were made using the package PARI/GP (developed by Cohen

and his collaborators in Bordeaux, France) on a Sun 4. First, attempts were

made to solve one or more of the equations (I), (II) and (III). If these failed

to give solutions, then the value of the L-function for the curve at 5 = 1 was
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calculated in order to prove that the rank was indeed zero, that is, (I), (II) and

(III) are insoluble; see below.

The method used to attempt to solve our equations is as follows. First con-

sider equation (I). Note, by (10), we can choose the sign of a so that a = 1

(mod 8). Rewriting (I) and using (8), we look for integers x and y to satisfy

(a2 + Sb2)(x2 + 8y2) = (ax ± %by)2 + %(ay + bx)2 = r4 + St2 = ps4 ;

that is, we look for s, x and y to satisfy

(15) x2 + 8y2 = s4,       ax ± 8¿Vp is a square, r2,

and then t = ay + bx. The equation in (15) has the parametric solution

x = (m2 - 2n2)2 - Sm2n2,    y = 2mn(m2 - 2n2),    s = m2 + 2n2.

Hence, using (15), we try various integers m and n until we find a pair such

that

(16) a((m2 - 2«2)2 - Sm2n2) + I6bmn(m2 - 2n2) is a square, r2,

and then the values of 5 and / are determined using the above. For equa-

tion (II) the left-hand side of (16) is replaced by c((m2 + 2n2)2 + 8m2«2) +

I6dmn(m2 + 2«2) [if c = 3 (mod 8), put 3c ± Sd for c and c ± 3d for d,
see (8) and (9)], and for equation (III) the left-hand side of (16) is replaced

by ±e((m2 - 4n2)2 - 16m2«2) + fmn(m2 - 4n2), where both signs must be

considered.
The method can be extended in the following way. Multiplying (16) by a

and rewriting, we have

(17) w2 = 8pu2 + av2,

where

(18) u = mn,    v = r    and    w = a(m2 - 2n2) + Sbmn.

Using (9) and (10), we can easily see that equation (17) is soluble by Legendre's

Theorem. Hence, one way to solve (I) is to look for general solutions to (17)

subject to the conditions (18). In practice we found the most efficient method

was to use (16) directly. First we tried all values of m and n satisfying 0 <

m < 500 and odd, and -250 < n < 250. If this failed, using the first few
primes q , we sieved out those values of m and n for which (16) is impossible

modulo q , and then tried larger values of m and n to solve (16). For example,

if p = 2 (mod 5) (generally the most intractable case), then 5 | r and so the

left-hand side of (16) must be congruent to 25 modulo 100.

It is worth pointing out that, for each G-prime p under consideration, in

all cases where solutions to one of the equations (I), (II) or (III) were found,

solutions to the remaining two equations were also found—the prime 41521

was by far the most refractory—that is, in all 366 cases where the rank of the

corresponding curve is positive, it does, in fact, equal two. Also in all of these

cases, at least one of the three equations has a 'small' solution; that is, one

with m and n (in (16) or its replacements for equations (II) or (III)) less than

20, the 'worst' case (for primes less than 50000) being p = 47497, where, for

equation (II), the smallest solution is given by m = 7 and n = 18. Note that
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the smallest solutions of the two remaining equations can be very 'large', for

example with the prime p = 41521. In this example the smallest solutions

for equations (I) and (II) are given in the supplement (for (I) the solution is

generated by m = 156347, « = 41668), but note that equation (III) has the
solution 5, 1, 39 and the corresponding values of m and n in this case are 1

and 0, respectively.

Rubin [7], developing some work of Kolyvagin and others, has proved some

parts of the Birch and Swinnerton-Dyer Conjecture. In particular he has shown

that, if an elliptic curve has complex multiplication (our curves Cp have com-

plex multiplication in the field Q(z') of Gaussian numbers), and if the value of

the L-function for the curve at the point 5 = 1 is nonzero, then the curve has

only finitely many points defined over Q(z') ; and so the rank of the curve over

Q is zero. We applied this to our numerical work. For those curves Cp where

we were unable to find solutions to equations (I), (II) or (III) after fairly short

trials, we calculated the values at 5 = 1 of the corresponding L-functions. In

all cases we found these values to be positive, and hence, by the result quoted

above, the ranks are zero and no further trials were required. Following Buhler,

Gross and Zagier [3], we used the following formula to calculate the L-function:

oo ,    *

L(CP, l) = 2£»lexp
n=l

-Tin~4p~

where ap(q) is the trace of Frobenius for primes q, and it is extended to all

positive integers in the usual way (see, for example, Cohen [4, p. 406]). [Note

that the curve Cp has conductor 64o2, and the factor 2 occurs because the sign

of the functional equation is positive for all of our curves; this was calculated

using the method given in Cohen [4, p. 406].] To keep the computations within

reasonable time bounds, we replaced co in the above sum by \6p and took

the sum over those « satisfying « = 1 (mod 4), because for all curves under

consideration the coefficients ap(n) are zero otherwise. If we then divided the

result by the product of the real period, the Tamagawa numbers (in all cases
cp = 2 and the remainder are all equal to 1), and the inverse of the square

of the order of the torsion subgroup of Cp (= 1/4 in all cases, see (2)) as

required by the Birch and Swinnerton-Dyer Conjecture, we obtained in all cases

a square integer to at least five decimal places. Hence, as a by-product of these

calculations we obtained (assuming the validity of this conjecture) the values S

of the orders of the Shafarevich-Tate groups III. For all G-primes p for which

r(Cp) = 0 we found that S = 16 except in the following cases: S = 64 when

p is one of the following 28 primes:

4937 12161 15017 25601 31337 33937 44497
10657 12697 18257 26497 31817 34297 47161
10937 13417 23857 28697 32297 35897 47657
11777 14897 25057 29761 33377 36857 47777

and S = 144 when p is

21577,  28537,  30937.
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Note the connection between the fact that in all cases 16 | S and the 4-descent

described above, and that the structure of LU is determined by the correspond-

ing 2-descent and the Cassels pairing Z/\fSZ x Z/\[SZ. Some authors have
suggested that the value of S increases, if only slowly, as the value of the con-

ductor increases. In particular, if Sp denotes the order of LU for the elliptic

curve Cp , then it is conjectured that for large p the approximate value of Sp

is p1l4±°W, Our data shows a fairly uniform spread through the range 1—

50000 for the higher values of S, and so no conclusions can be drawn from

our calculations. Owing to the computer time required, we did not calculate

the orders S of the groups LU for those primes p where r(Cp) = 2; this will

be undertaken in the sequel.
Our calculations have established the values of r(Cp) for all primes p less

than 50000 and congruent to 1 modulo 8. For the 629 non G-primes q, r(Cq) =

0 (see §2), and for the 625 G-primes p the table in the supplement gives either

the value of the L-function at 5 = 1 when r(Cp) = 0 (in 259 cases), or the

values of r and 5 for equations (I) and (II) when r(Cp) = 2 from which the

coordinates of the generators of the group Cp can easily be calculated using (6)

(366 cases in all). In some cases equations (I) or (II) have two distinct solutions

where both r and 5 are roughly similar in size; in these cases the solution with

the smaller value of 5 was chosen. This was not checked in all cases.

Finally, at the referee's suggestion and after some discussions with John Cre-

mona, we have included some data on the Mordell-Weil lattices of the rank-two

curves. Suppose Px and P2 generate Cp modulo torsion (that is, Cp is gen-

erated by Pi, P2 and (0,0), see (2)). Let (P,, P7), for i, j = 1 or 2, denote

the Néron-Tate height pairing and let Rç, denote the elliptic regulator of Cp ,

see Silverman [8, p. 232]. Over the complex field C, the generators of the

Mordell-Weil lattice A for Cp can be taken to be

a), =i/(Pi,Pi),

C02 =((P, , P2) + Íy¡R¿,)l V(Pi , Pi).

Then the invariant x, a complex number in the upper half-plane, is defined by

T = co2/tox = ((Pi , P2) + i^Rc~)/(Px, Pi)

modulo transformations by elements of SX (2, Z). Once x has been moved to

the fundamental region of the group SL(2, Z), it is independent of the choice

of the generators Pi and P> of Cp, and so provides information about the

shape of the Mordell-Weil lattice A.
For each of the rank-2 curves discussed in this paper we computed (using

PARI/GP) the value of x, and these values are given in the table in the sup-

plement. In some cases, to obtain a value of x in the fundamental region of

SL(2 ,Z), ±1 was added to the computed complex number; no other SL(2, Z)
transformation was required. In this region the values of x for approximately

half of the curves under consideration lie in a segment of the annular region

bounded by the ellipses 375x2 + y2 = 100 and 480x2 + y2 = 200, and the
lines 2x ± 1 = 0, where x denotes the real part and y the imaginary part.

Only six values of x lie below this region, and the remainder above. Also the
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proportion of values of x with positive or negative real part is approximately

equal, and those with larger imaginary part tend to correspond with the larger

values of the prime p .
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ON A CLASS OF ELLIPTIC CURVES WITH RANK AT MOST 2

H. E. ROSE

We list below data for the elliptic curve

c. if = x3 + px

for each 'G-prime' p less than 50000. We give, for each curve in this range, the value of the

L-function at 1 and the order S of the Shafarevich-Tate group LU as predicted by the Birch and

Swinnerton-Dyer conjecture, if the rank is zero. If the rank = 2, we give the two values of r and s

from which the generators of the Mordell-Weil group can easily be constructed using (6), and the

value of t — uij/uii of the Mordell-Weil lattice, where o + ib is written a, b (see last paragraph).

Prime    Rank    I point, rank 2 only    II point, rank 2 only r

73

69
113
233
257
281
337
353

577

593
601
617
881
937

1033
1049

1097
1153
1193

1201
1217
12-19

2
2
2

2
0

2
2
2

0

2

2
•2

2
2

2
2
0
2
2
0

0

2

1,

3.
3.

11.

3.
35.
13.

3.

83.
195.

3.
5,

13,
3.

1,

¿(1) = 7.40907

3,
7.

5,
5,

S =
47,

L{\

17

43
1

3
, 3

1

1

9

Ml

/.(I

11,3

5, 1
7. 1

= 6.05276, S = 16

5, 1
7, 1
5. 1

157, 17
45, 7

85,7
7, 1

= 5.15-161.5= 16

9. 1
11, 1

= 5.03920,5= 16
= 5.02255.5= 16

7. 1

-0.42136,3.

0.25820, 4.
0.41331,4.
0.48210, 3

-0.22809, 11.
-0.05956, 6
-0.44182, 4

0.48071,5
-0.33842, 5
-0.19632,5

-0.48756, 18
-0.42973. 11

0.06569, 7
-0.49569, 5

-0.40743,

0.45560,

70975
79915
48636

58534

81452
23399
20334

03903
45261
61055
15133
62307
58315

99058

.18935

.46677

-0.49338.4.91196
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