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ON A CLASS OF ELLIPTIC CURVES WITH RANK
AT MOST TWO

H. E. ROSE

ABSTRACT. In this note we consider the elliptic curves y2 = x3 + px defined
over Q for primes p satisfying p = 1 (mod 8), and review some of their
properties. We then compute and list (in the supplement) their ranks, and
give, when the rank is positive, the generators of the group of rational points
and Mordell-Weil lattice invariant 7 for all primes p < 50000 of the form
m? + 64n? .

1. INTRODUCTION

Considerable progress has been made in the study of elliptic curves defined
over the rational field Q, but many questions remain unanswered. For example,
formulas for, or even estimates of, the rank of many of these curves have not
been found. Hence, it is of interest to study properties of particular classes of
curves in the hope that some of these questions can be answered in these cases.

In this paper we shall consider the class of elliptic curves

Cp:y?=x>+px,

defined over the rational field Q and where p is a prime. Let r(C,) denote the
rank of this curve, that is the number of independent infinite-order generators
of the (Mordell-Weil) group of rational points on this curve. It is known that

if p=7or 1l (mod 16), then r(C,)=0;
ifp=3,5,130r15 (mod 16), thenr(C,)=0or1; and
ifp=1or9 (mod 16), thenr(C,)=0,1o0r2,

see Silverman [8, p. 311]). Bremner and Cassels [1] and Bremner [2] have
considered the class of curves C, for primes p =5 (mod 8) ; they showed that
r(Cp) =1 for p < 20000 and conjectured that this holds for all primes in their
class. Here we shall consider the third case above, that is the curves C, where
p =1 (mod 8). The rank can be zero or two, and it is conjectured that it cannot
equal one. We give some evidence in support of this; also this conjecture is a
consequence of the full Birch and Swinnerton-Dyer conjecture, in particular it
holds when the corresponding Shafarevich-Tate group is finite.
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For primes p = 1 (mod 4), Gauss showed that 2 is a quartic residue modulo
p if and only if p can be expressed as a sum of squares p = x2 4+ y2 where
8 | y. We shall call a prime with this property a G-prime in this paper; it is
necessarily congruent to 1 (mod 8). We can easily show that r(C,) = 0 if
p =1 (mod 8) and p is not a G-prime, see §2. The converse is only partially
true. There are 625 G-primes less than 50000, in 366 cases the rank of the
corresponding curve is two, examples are

73,89, 113,233, ..., 49801 ;
whilst in the remaining 259 cases the rank is zero, with examples !
257,577, 1097, 1201, ..., 49633.

In §2 we reduce the question of finding rational points on C, to the problem
of solving one or more of three simple quartic equations (numbered (I), (II) and
(IIT)) in rational integers. These three quartic equations correspond to the three
‘principal homogeneous spaces’ for C, ; see Silverman [8, Chapter 10]. In §3
we give algorithms which generate solutions to one of these equations provided
solutions for the remaining two are known; this provides an elementary example
of the operation of the Weil-Chételet group for the curve. This also provides
another derivation of the rank estimates quoted above. In §4 we discuss briefly
the problem of showing that the rank of our curves cannot be one. Finally, in
§5, we describe the computations that have been undertaken to calculate the
ranks of our curves for all G-primes less than 50000. The supplement gives the
basic data from which the infinite-order generators of the corresponding groups
can be constructed, the values of 7 for the Mordell-Weil lattice (see final section
of this paper), and values of the L-functions when these groups are finite.

In a forthcoming paper further computations will be presented. This will
include evaluations of the second derivatives of the L-functions at s = 1 for
the rank-two curves C, listed in the supplement (thus giving further data in
support of the full Birch and Swinnerton-Dyer conjecture) and evaluations of
the L-functions for non G-primes. Also, all of these computations will be
extended to primes p < 100000. For example, the order of the Shafarevich-
Tate group III for the curve Cspy77 is 256, and 50177 is the first G-prime larger
than 50000 for which the rank of the corresponding elliptic curve C, is zero.

2. PRELIMINARIES
We shall study the elliptic curves
(1) y2=x3+px for primes p=1 (mod 8).

The group of rational points on (1) will be denoted C,(Q), which we shall
usually abbreviate to C,. Clearly, the point (0, 0) € C, and has order two.
Except for this point and the neutral element, a point belonging to C, has
the form (u/s?, v/s?), where u, v and s are nonzero integers, and (u, s) =

IThere is a possible connection here with real quadratic fields. If cl(p) denotes the class number
of the field Q(\/p), then, for G-primes less than 1097, r(Cp) = 2 if and only if cl(p) = 1. Itis
unclear whether this is a coincidence or not; it is false when p = 1097 and for some larger primes.
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(v, s)=1. We have
(2) (u/s*, v/s%) + (0, 0) = (ps®/u, psv/u®) € Cp,

and so u = r?, for some r,and r|v;or u = pr?, for some ry, and pr | v.
We shall assume from now on that the first case always holds. Therefore, with
the exception of the neutral point and the point (0, 0), a typical point on C,
has the form

(3) (r?/s?, rt/s’) with (r,s)=(t,s)=1 and rst#0.

[For each such point a second point on C, is always given by (2), and vice
versa.] Using this assumption, we can write equation (1), cancelling r2/s%, in
the form

(4) 4 pst =1

with r,s and ¢ as in (3). Note this implies (r,¢) =1. As p =1 (mod 8),
r and s have different parities, and ¢ is odd; we shall consider these cases
separately. This equation has been discussed previously in Mordell [5].

Case 1. Equation (4) has the form 16r% + ps* = > and s is odd.

Rewriting this, we have ps* = (t — 4r2)(t + 4r?). Now ¢ —4r? and ¢ + 4r2
cannot have a common factor, and so each is a fourth power or p times a
fourth power. Eliminating ¢ and renaming the variables (r — ¢ and s — rs)
we obtain two possibilities for equation (4) in this case:

(M r*—ps*=-8* with (r,s)=(s,t)=(t,r)=1 and r, s odd,
or
(1) r*—ps*=8r2 with (r,s)=(s,t)=(t,r)=1 and r,s odd.

We can impose a restriction on p as follows. If either of (I) or (II) is soluble,
and if ¢ (a prime) divides ¢, then r* = ps* (mod ¢), and so the Legendre
symbol (p/q) = (¢/p) = 1 by quadratic reciprocity; this gives (¢/p) = 1.
Therefore, we can find an integer u satisfying 2 = ¢ (mod p), and then we
have ¥8u* = r* (mod p), with the upper sign for (I) and the lower sign for
(II). As p=1 (mod 8), —1 is a quartic residue modulo p, and so 2 must also
be a quartic residue modulo p (that is, p is a G-prime) and both (I) and (II)
are insoluble if this is not so.

Case 2. Equation (4) has the form r* + 16ps* = *> and r is odd.
Arguing as above, we obtain four subcases, with s = s;5, and (51, $) = 1:

t—r?=2st t+r*=8ps},
t—r2=2pst  t+r*=28s3,

t—r*=8s} t+r*=2ps},

t—r2=8pst t+r*=2s3.




1254 H. E. ROSE

The first two subcases are impossible because r is odd. The fourth subcase
gives

(5) r*=s$—4ps},  1=s+4ps},

and so (s3 —r)(s2 +r) = 4ps}. Asin Case 1, this gives s, = uv, (u,v) =1,

and

st4r=2u*, s}-r=2pv*, o or

s34+r=2pv*, sI-r=2"

If the first pair of equations apply, then s3 = u* + pv* and r = u* — pv*, and
the corresponding point on C, , thatis (r?/4s?, rt/8s%) = 2(u*/v?, su/v3), is
a double point. Similarly, if the second pair apply, then the point is
2(u?/v?, —spu/v3), another double point. Hence, as we are mainly concerned
with the generators of C, , we may exclude the fourth subcase completely. Elim-
inating ¢ from the third subcase, we find that s, is even and so, relabelling the
variables (r — t, s; — 2r and s; — s), we obtain the third possibility for
equation (4):

(II1) 64r* — ps* = —1* with (r,s)=(s,t)=(¢t,r)=1 and s, ¢ odd.

Gauss’s result mentioned in the introduction states that ‘2 is a quartic residue
modulo p if and only if p can be expressed in the form x2 4+ 64y%’. The proof
of this classic result can easily be adapted to show that if equation (III) is
soluble, then 2 is a quartic residue modulo p, and so p is a G-prime.

Hence, we need to consider the three equations (I), (II) and (III); they are
the three principal homogeneous spaces for C, (see Silverman [8, Chapter 10]).
For (I) or (II) the corresponding point on the curve C, is

(6) (41%/r2s2, t(r* + ps*)/r3s®)  with r and s odd,
and for equation (III) the corresponding point is
(7) (12/16r2s?, t(64r* + ps*)/64r3s®)  with s and ¢ odd.

In each case p must be a G-prime for a solution to exist. Further, by Gauss’s
result, quadratic reciprocity, and the usual descent arguments, we see that, cor-
responding to the cases (I), (II) and (III) above, p can be expressed by three
distinct quadratic forms as follows:

(8) p =a’+8b% =c? — 8d? = 64e* + .

Note that these may provide solutions to (I), (II) or (III) directly. If a is a
square, then (I) has the solution r = \/a,s = 1,¢ = b; similarly if ¢ is a
square, (II) is soluble, and if e is a square, (III) is soluble. We shall see later
that generators of the group C,, when they exist, are given by solutions of (I)
and (II) using (6).

For later use we have the following consequences of the equations (8):

9) (a/p)=(b/p) = (c/p)=(d/p) =(e/p)=(f/P) =1,

(10) a=1lor7 (mod8) and c¢=1or3 (mod8).
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For (9), we have by (8), a* = p (mod b), and so, by quadratic reciprocity,
(b/p) = 1. Further, as both —1 and 2 are quartic residues modulo p, we
can find an integer n to satisfy n* = —8 (mod p) which, using (8) again, gives
(nb)* = a’b* (mod p) and (+ab/p) = 1 for some choice of the sign. But p = 1
(mod 8), and so (a/p) = 1 follows by the first result. For (10), we have by
(8) and as a is odd, (2p/a) =1, and so (2/a) =1 by (9). Therefore, a = +1
(mod 8) follows using the properties of the Jacobi symbol. The remaining parts
of (9) and (10) are proved similarly.

3. TWO POINTS KNOWN

In this section we show that if two of the equations (I), (II) or (III) are soluble,
then the third is also soluble. We shall also give a characterization of the general
solutions of each of these three equations. These provide an illustration of the
operation of the Weil-Chatelet group of C,, see Silverman [8, Chapter 10].

First we consider the case when a solution {r;, sy, ¢;} of equation (I) cor-
responding to the point P; on the curve C,, and a solution {ry, sy, t,} of
equation (II) corresponding to P, on C,, are known. In this case we shall de-
scribe an algorithm which gives two solutions to equation (III); these solutions
correspond to the points P, + P, and P, — P, on C,. We may assume that
(r1,31, tl) = ("2, 82, t2) =1

We shall work with the following expressions:

A =ri851t) + sy, B =ris1t) — sy,
(11) C = (r}r} —psis?)/8, D =riss+ris?,
K = nsto(rf + pst) — risiti (13 + ps3),

L = rysata(rf + pst) + risity (r + ps?).

A number of identities exist between these expressions; they are given in the
following lemmas. The most important is

Lemma 1. The equation AB = CD holds.
Proof. We have
8A4B = 883r3s? — 8t3r3s3
= (3 = psp)risi + (r} — ps})ris; by (I) and (II)
= rird(ris} + ris?) — psis(ris? + r3s?) =8CD. O

Lemma 2. Let U = rir + ps2s? and V = r2s? — ris. Then

(i) KL= ABU?—-pV?),
(i) 4(42+ B2 =UV,
(it) L? - K2 = (42 — B2)(64C? + pD?).




1256 H. E. ROSE

Proof. (i) We have, using the identity
x34+3x%y - 3xy? —y3 = (x —y)(x* + 4xy + y?)
in the fourth line,

8K L = 863r2s3(r} + pst)? — 863risi(rs + ps3)?

4 4\,2.2/.4 42, (.4 4y,2.2/.4 4\2
= (r; = psy)rysy(ry + psy)” + (r — psy)risi(r; +ps3)
= D[r8r§ + 3prirysiss — 3p*ririsiss

2.2 4.4, 404
— p*s¥s§ — p(rir} — psis3)(r3st + ris})]

= 8DCI[rirs + dpririsis? + pisiss — p(rist + risi))
=8AB(U? - pV?)
by Lemma 1. Propositions (11) and (iii) follow in a similar manner. 0O

Lemma 3. The integers C, D, ry, ..., t, satisfy the following congruence prop-
erties:

(i) r,r,s,sareoddand C €Z,
(i) ptrnsis;andptC,

(i) 2| Dandt =t; (mod 2),

(iv) 2|A,2|B, and2|C.

Proof. Parts (i) and (ii) follow from our assumptions that (r,, sy, ;) =
(r2, $2,t2) = 1. For (iii) and (iv), D is even by (i) but, as D is a sum of
squares, 4 | D would contradict (i). Secondly, if #; and ¢, have different pari-
ties, then both 4 and B are odd, but this conflicts with the evenness of D by
Lemma 1, and so (iii) follows. Consequently, both 4 and B are even, and the
evenness of C follows by Lemma 1. O

Definition. Let the coordinates (see (6) and (7)) of the points P, P, P; +
P, and P, — P, be denoted by (xi, y1), (x2, ¥2), (x12, ¥12) and (x21, y21),
respectively.

The next two lemmas give expressions for x», ..., Vs .
Lemma 4. We have x;; = K?/16A4?B?, x; = L?/16A4%>B2.
Proof. The line through the points (x;, y;) and (x;, y;) has equation
(x2 = x1)y = (y2 = yi)X + yi1x2 = X12.
If we let r\r;s150 = Z, then
X, —x, =4AB/Z?,
yixa—xiy, =4u06K/Z3,
y2 =y = [ristta(r3 + ps3) — sy (rf + ps/ 22,

and our equation for the line becomes

(12) 4ABZy = [risita(ry + ps3) — i3s3ty (r} + ps})]x + 41, K.
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Squaring both sides of this equation and replacing y? by x3 + px, we obtain
a cubic in x whose roots are x;, x, and x|, viz:

(ristx — 4t3)(r3s3x — 413)(164°B*x — K?) =0,
and the result follows. An exactly similar argument gives the value of x;;. O
Lemma 5. We have

(i) yi2=[K(644°C* + pB’D?)]/644°B%,
(i)  ya = —[L(64B*C? + pA>D?))/6443B>.

Proof. By Lemma 4, (i) follows by substituting the value of x;, in (12) and
collecting terms, and (ii) follows similarly. O

Theorem 1. We have
(i) — K? = 644*C* - pB*D?,
(ii) — L? = 64B%*C? — pA*D*.

Proof. (i) As (x12, y12) isa point on C,, we have, by Lemmas 4 and 5, and
dividing by K?/(44B)S,

(6442C? + pB2D?)? = K* + 256pA*B* = K* + 256pA*B*C*D?
by Lemma 1. Hence,
(13) +K? = 6442C? — pB*D*.

To evaluate the sign, suppose 2! || B ; then by Lemmas 1 and 3 we have 22+2 ||
pB2D? and 2%+%| 6442C2. Hence, 2%*2 || K?, which shows that +K?/22/+?
and —pB2D?/2%+? are odd integers congruent modulo 8. Therefore, the only
possible sign in (13) is minus, and (i) follows. The proof of (ii) is similar. O

This theorem provides an algorithm for solving equation (III) in §2 as follows:
In (i) of Theorem 1 cancel the common factors of K, AC and BD (or of
L, BC and AD in part (ii)); then AC and BD become squares (and similarly
for BC and AD), thus providing the required solutions. To justify this, we
consider first the case when 4, B, C and D have a common factor.

Lemma 6. If q divides A, B, C and D, then q* divides both K and L.
Proof. By Lemmas 1 and 3 we note that 2 divides 4, B, C and D, no higher
power of 2 has this property, and, by definition, 4 divides both K and L.
Hence, as p { ¢, we may assume that g is coprime to both 2 and p.

Secondly, with U and V asgiven in Lemma 2, we have U2 +pV? = 64C? +
pD?, andso g% | U2+ pV? and, by Lemma 2, g% | UV . Together, these show
that ¢ | U and ¢ | V. Hence, by Lemma 2 again, we see that ¢* | KL and
q*| L? — K?, and the lemma follows. O

Now let ¢ || A, 9% || B,q"* || C and g¢* || D. By Lemma 7 we may
assume that one of u;, uy, u3 or uy is zero. So, for the first case, suppose u,
is zero, and then (by Lemma 1) u; = u3 + u4. This gives g*s | AC, g¥s*24 ||
BD, g**“ || BC, and g% || AD. Hence, the factor g22 can be cancelled
from both sides of equation (i) in Theorem 1. Now the only occurrence of
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g in this equation is: g*“ in the prime factorization of B2D?. Similarly,
in equation (ii), g?*¢ can be cancelled throughout, leaving the factor ¢** in
B2C?. The cases when u,, u3 or us are zero can be dealt with similarly. If
this process is carried out on all primes dividing 4B, then, via Theorem 1, two
solutions of equation (III) are given by this algorithm.

We shall illustrate this algorithm with the prime 11969. We have (see (8))
11969 = 812 + 8 x 26 = 113% — 8 x 10% = 65% + 64 x 112,

Now 81 is a square, and so we have a solution to equation (I) given by: r} =
9,51y = 1,4, = 26. Secondly, although 113 is not a square, we have
(113 4+ 10v/8)(3 + v/8)% = 2401 + 848+/8 (using the identity 32— 8 x 12 = 1),
and so equation (II) has the solution: r, =49, s, = 1, 1, = 848. Substituting
these values in (11), we obtain

A=28906=2x61x73, B=6358=2x11x 172,
C=22814=2x11x17x61, D=2842=2x17x 73,
K=4x5x11x17x73x2131, L=4x5x17x61x 102301.

Now AC=612x4x11x17x73 and BD=17> x4 x 11 x 17 x 73. Hence,
we can cancel the factor (4 x 11 x 17 x 73)2 from (11) and we obtain the
following solution of (III):

—106552 = 64 x 614 — 11969 x 174,

Similarly, BC =112x 172 x4 x 17 x 61 and AD =732 x 4 x 17 x 61, and so
the second solution is

—5115052 = 64 x 1874 — 11969 x 73*.

Further algorithms. An exactly similar algorithm to the above exists when
solutions of (I) and (III) are known, or when solutions to (II) and (III) zre
known. Suppose {ri, s;, t;} is a solution to (III) corresponding to the point
Q1 = (x,y;) on the curve C, with (r;,s,¢) =1, and {ry, 52, 2} is a
solution to (I) [or (II)] corresponding to the point Q, = (x3, y3) on the curve
Cp, with (ry, 53, t) = 1. Following the procedure above, we define

(14) A = 8risity + rsaty B’ = 8r151t — 18ty

C' = 8rir3 + psis?, D' = 8rs? ¥ ris?,
where the upper signs apply when {r,, s», £} is a solution to (I), and the lower
signs apply when equation (II) is the given one. As in Lemma 1, it is a simple

matter to show that 4’'B’ = C'D’. Also, we define K’ and L' by

K' = ri5it,(r§ + ps3) — rasaty(64r} + pst),

L' = ris1t1(r§ + ps3) + r2sy12(64r] + pst),
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and if Q) + Qs = (x{,, ¥1,) and Q1 — @ = (x3;, y3,), then
x{; =4K"?/A?B?,  y|,=K'(4?C"?+pB?D"?)/A*B"?,
xy =4L?/4?B?,  y5 =-L'(B*C*+pA”?D"?)/4”B".

Corresponding to Theorem 1 we have

Theorem 2. There holds

(l) 4 8K12 — AIZcIZ _ pBIZDIZ ,
(i) +8L?=B?C?-pA*D"?,

where the upper signs apply if {r,, s;, t2} is a solution to equation (1), and the
lower signs apply when a solution to equation (II) is given.

Proof. See the proof of Theorem 1. O

The algorithm described above also applies here. In (i) of Theorem 2 we
cancel the common factors of K, A’C’ and B’D’, and the resulting expressions
provide solutions to (II) [or (I)] as A'C’ and B’C’ are then squares. Note that
we obtain two solutions corresponding to the points Q; + Q> and Q; — O,.
Therefore, if Q; = P, + P, and Q, = P, our new solutions to equation (II)
[or (I)] given by Theorem 2 correspond to the points P, and 2P, + P, on C,.

We shall show now that this is always the case. If we have a solution to
one of our equations (x) (where (x) is (I), (II) or (III)), with corresponding
point P € C,, then, for all points R € C,, there is another solution to ()
corresponding to the point P + 2R, and all solutions of (x) are generated in
this way.

Theorem 3.  Suppose we are given a nontrivial solution to equation (1), (II) or
(IIT) corresponding to the point P € C,; then this equation has infinitely many
solutions, and the corresponding points on C, have the form P + 2R, where R
is an arbitrary point on C, .

Note. We are not assuming that the points P and R are of the same type.

Proof. We use the same method as in the previous two cases. We shall give the
proof for equations (I) and (II); an exactly similar argument applies in the re-
maining cases. Suppose the point P has coordinates (4%/r%s?),
t(r* + ps*)/r3s?, where ¥8:2 = r* — ps*, and R has coordinates (a2/c?,
ab/c3), where b2 = a* + pc* (see (3) and (7)). The coordinates of 2R are

((@* = pc*)?/4a?b’?, (a* — pc*)(a® + 6pa‘c* + p*c®)/8a’b>C?),

and we may assume that r and s are odd, and a and ¢ have different parities.
Following the procedures above, we define

A" = 4tabc + rs(a* — pc*),  B" = 4tabc — rs(a* — pc?),
C" = :Fr2b2 + zps2a2c2 , D' = 2)‘202C2 istZ’
K" = rst(a® + 6pa*c* + p*c?) — abe(r* + ps*)(a* — pc*)/2,
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where the upper [lower] signs apply when equation (I) [(II)] is being used.
Lemma 7. We have A"B" = C"D".
Proof. Using the equations F8¢%> = r* — ps* and b% = a* + pc*, we obtain
C"D" = £2r*a*bc? — r’s*b* + 4pristatc® + 2psta’bic?
= F2a’b*c*(r* — ps*) — r3s?(b* — 4pa‘c*) = A"B". O
Continuing the main proof, we see that the coordinates of the point P + 2R

are

(4KIIZ/AIIZBI/2 , K//(A/IZCHZ + pB/IZD//Z)/A/r3Bu3) ,
and we have

:F8K”2 — A//2 Cuz _ ananz‘

We now cancel the common factors of K", 4”C"” and B”D" in this equation,
and the result is a new solution to equation (I) [or (II)]; the details follow exactly
those given above for Lemmas 2 and 6. O

Example. Let p =73 andlet P and R be the generators of the group C,
corresponding to equations (I) and (II), respectively. Hence, using the supple-
ment table, (I), (3) and (4), we have r=s=1,t=3,a=2,b =77 and
¢ = 3, and substituting these values in the above, we have

A"=-353, B"=17x673, C"=-673, D"=17x2353,
K" =353 x 673 x 873.

These values now give a new solution to equation (I) corresponding to the point
P +2R [as (353,673) =1]:

14— 73 x 17* = —8 x 8732,

Finally, we prove the converse of Theorem 3; again the method of proof is
very similar to that used in the above proofs.

Theorem 4. If {r;, s, 41} and {r, s2, t2} are two solutions to one of the
equations (I), (I) or (111) with corresponding points P, and P,, then there is a
point R € C, with the property P, = P, +2R.

Proof. We give the proof for equation (I); the same argument applies in the
remaining cases. As above, we define

A" =181ty + sy, B* =ris1t; — sty ,

2.2 22 22
C* = rir} + psis?, D* = (ris? —ris?)/8,

K* = nsty(r! + pst) — risiti(r§ + ps3),

L* = rysyta(rf + pst) + risit1(r§ + ps3).

Repeating the arguments of Lemmas 1 to 6, we have
A*B* =C*D",
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the coordinates of P, — P, are
(L*2/164*2B*?, —L*(B*2C*? — 64pA*2D*2)/644*>B*),
and
L*2 = B*2C*2 — 64pA*2D*2,

Note that we have a plus sign on the left-hand side of this last equation, as
2 || C* in this case; see the proof of Theorem 1. The result now follows using
(5)of §2. O

4. ONE POINT KNOWN

In view of the results above a natural question to ask is: suppose we are given
a solution to just one of our equations (I), (II) or (III); is there an algorithm
which will generate solutions to the remaining two equations? This is a much
harder problem; it is not definitely known that solutions exist, but we have the

Conjecture. If p is a G-prime and the rank of the curve C, is not zero, then
it equals 2.

Silverman [8], and others, have shown that this Conjecture is a consequence
of the Shafarevich-Tate Conjecture, which states that the Shafarevich-Tate
group III for C, is finite. Although some progress has been made on this second
conjecture recently, it remains open at this time. The numerical evidence pre-
sented below shows that our conjecture is valid for all primes p < 50000. Also,
this Conjecture can be replaced by the following apparently simpler question.

Suppose we have a solution {r, s, ¢t} to equation (I) [the argument is similar
in the other two cases]. Then we can find solutions to equations (II) and (III)
provided we can find a nontrivial simultaneous integer solution {x,y, z, w}
to the pair of equations

x4+ 16txy — 8r%y? = 8s*2% + pw?,
Xy = zw.
Using (9) and (10), we can easily show that this pair of equations has common
local solutions for all primes g. But this does not necessarily lead to simul-
taneous integer (global) solutions. We note that the second equation above is

identical to that in Lemma 1; there it was the main link in the algorithm, here
it seems to be the main stumbling block to progress; for further details see Rose

[6].

5. NUMERICAL DATA

Extensive computer searches have been undertaken to find the ranks and gen-
erators of the curves (1) for all G-primes p < 50000 ; the results are presented
in the supplement. After some preliminary trials using a HP 28s calculator, the
main searches were made using the package PARI/GP (developed by Cohen
and his collaborators in Bordeaux, France) on a Sun 4. First, attempts were
made to solve one or more of the equations (I), (II) and (III). If these failed
to give solutions, then the value of the L-function for the curve at s = 1 was
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calculated in order to prove that the rank was indeed zero, that is, (I), (II) and
(IIT) are insoluble; see below.

The method used to attempt to solve our equations is as follows. First con-
sider equation (I). Note, by (10), we can choose the sign of a so that a = 1
(mod 8). Rewriting (I) and using (8), we look for integers x and y to satisfy

(@® + 8b%)(x? + 8y?) = (ax £ 8by)? + 8(ay F bx)* = r* + 81> = ps*;
that is, we look for s, x and y to satisfy
(15) x? + 8y? =54, ax + 8by is a square, r2,
and then ¢ = ay ¥ bx. The equation in (15) has the parametric solution
x=(m?-2n%)?-8m?n?, y=2mn(m?-2n%, s=m*+2n’

Hence, using (15), we try various integers m and n until we find a pair such
that

(16)  a((m? —2n?)? — 8m?n?) + 16bmn(m? — 2n?) is a square, r?,

and then the values of s and ¢ are determined using the above. For equa-
tion (II) the left-hand side of (16) is replaced by c((m? + 2n?)? + 8m?n?) +
16dmn(m? + 2n?) [if ¢ =3 (mod 8), put 3¢+ 8d for ¢ and ¢+ 3d for d,
see (8) and (9)], and for equation (III) the left-hand side of (16) is replaced
by +e((m? — 4n2)? — 16m?n?) + fmn(m? — 4n?), where both signs must be
considered.

The method can be extended in the following way. Multiplying (16) by a
and rewriting, we have

(17) w? = 8pu? + av?,
where
(18) u=mn, v=r and w =a(m®-2n?) +8bmn.

Using (9) and (10), we can easily see that equation (17) is soluble by Legendre’s
Theorem. Hence, one way to solve (I) is to look for general solutions to (17)
subject to the conditions (18). In practice we found the most efficient method
was to use (16) directly. First we tried all values of m and n satisfying 0 <
m < 500 and odd, and —250 < n < 250. If this failed, using the first few
primes ¢, we sieved out those values of m and n for which (16) is impossible
modulo ¢, and then tried larger values of m and » to solve (16). For example,
if p =2 (mod 5) (generally the most intractable case), then 5 | r and so the
left-hand side of (16) must be congruent to 25 modulo 100.

It is worth pointing out that, for each G-prime p under consideration, in
all cases where solutions to one of the equations (I), (II) or (III) were found,
solutions to the remaining two equations were also found—the prime 41521
was by far the most refractory—that is, in all 366 cases where the rank of the
corresponding curve is positive, it does, in fact, equal two. Also in all of these
cases, at least one of the three equations has a ‘small’ solution; that is, one
with m and n (in (16) or its replacements for equations (II) or (III)) less than
20, the ‘worst’ case (for primes less than 50000) being p = 47497, where, for
equation (II), the smallest solution is given by m =7 and n = 18. Note that
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the smallest solutions of the two remaining equations can be very ‘large’, for
example with the prime p = 41521. In this example the smallest solutions
for equations (I) and (II) are given in the supplement (for (I) the solution is
generated by m = 156347, n = 41668), but note that equation (III) has the
solution 5, 1, 39 and the corresponding values of m and n in this case are 1
and 0, respectively.

Rubin [7], developing some work of Kolyvagin and others, has proved some
parts of the Birch and Swinnerton-Dyer Conjecture. In particular he has shown
that, if an elliptic curve has complex multiplication (our curves C, have com-
plex multiplication in the field Q(i) of Gaussian numbers), and if the value of
the L-function for the curve at the point s = 1 is nonzero, then the curve has
only finitely many points defined over Q(i); and so the rank of the curve over
Q is zero. We applied this to our numerical work. For those curves C, where
we were unable to find solutions to equations (I), (II) or (III) after fairly short
trials, we calculated the values at s = 1 of the corresponding L-functions. In
all cases we found these values to be positive, and hence, by the result quoted
above, the ranks are zero and no further trials were required. Following Buhler,
Gross and Zagier [3], we used the following formula to calculate the L-function:

= ay(n) —nn
L(Cp,l)—2§ , exp< 4p),

where a,(q) is the trace of Frobenius for primes ¢, and it is extended to all
positive integers in the usual way (see, for example, Cohen [4, p. 406]). [Note
that the curve C, has conductor 64p?, and the factor 2 occurs because the sign
of the functional equation is positive for all of our curves; this was calculated
using the method given in Cohen [4, p. 406].] To keep the computations within
reasonable time bounds, we replaced oc in the above sum by 16p and took
the sum over those n satisfying n = 1 (mod 4), because for all curves under
consideration the coefficients a,(n) are zero otherwise. If we then divided the
resnlt by the product of the real period, the Tamagawa numbers (in all cases
¢p = 2 and the remainder are all equal to 1), and the inverse of the square
of the order of the torsion subgroup of C, (= 1/4 in all cases, see (2)) as
required by the Birch and Swinnerton-Dyer Conjecture, we obtained in all cases
a square integer to at least five decimal places. Hence, as a by-product of these
calculations we obtained (assuming the validity of this conjecture) the values S
of the orders of the Shafarevich-Tate groups III. For all G-primes p for which
r(Cp,) = 0 we found that S = 16 except in the following cases: S = 64 when
p is one of the following 28 primes:

4937 12161 15017 25601 31337 33937 44497
10657 12697 18257 26497 31817 34297 47161
10937 13417 23857 28697 32297 35897 47657
11777 14897 25057 29761 33377 36857 47771

and S = 144 when p is

21577, 28537, 30937.
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Note the connection between the fact that in all cases 16 | S and the 4-descent
described above, and that the structure of III is determined by the correspond-
ing 2-descent and the Cassels pairing Z/v/SZ x Z/v/SZ. Some authors have
suggested that the value of S increases, if only slowly, as the value of the con-
ductor increases. In particular, if S, denotes the order of III for the elliptic
curve Cp, then it is conjectured that for large p the approximate value of S,
is pl/4*e(l) = Our data shows a fairly uniform spread through the range 1—
50000 for the higher values of S, and so no conclusions can be drawn from
our calculations. Owing to the computer time required, we did not calculate
the orders S of the groups III for those primes p where r(C,) = 2; this will
be undertaken in the sequel.

Our calculations have established the values of r(C,) for all primes p less
than 50000 and congruent to 1 modulo 8. For the 629 non G-primes ¢, r(C;) =
0 (see §2), and for the 625 G-primes p the table in the supplement gives either
the value of the L-function at s =1 when r(C,) = 0 (in 259 cases), or the
values of r and s for equations (I) and (II) when r(C,) = 2 from which the
coordinates of the generators of the group C, can easily be calculated using (6)
(366 cases in all). In some cases equations (I) or (II) have two distinct solutions
where both r and s are roughly similar in size; in these cases the solution with
the smaller value of s was chosen. This was not checked in all cases.

Finally, at the referee’s suggestion and after some discussions with John Cre-
mona, we have included some data on the Mordell-Weil lattices of the rank-two
curves. Suppose P; and P, generate C, modulo torsion (that is, C, is gen-
erated by P, P, and (0, 0), see (2)). Let (P;, P;), for i, j =1 or 2, denote
the Néron-Tate height pairing and let R¢, denote the elliptic regulator of C,,
see Silverman [8, p. 232]. Over the complex field C, the generators of the
Mordell-Weil lattice A for C, can be taken to be

w =P, B),
w2 =((P1, P) +i1/Rc,)/ V(P1, P1).

Then the invariant 7, a complex number in the upper half-plane, is defined by

T=w2/w; = (P, )+ {/Rc,)/(P1, P)

modulo transformations by elements of SL(2, Z). Once t has been moved to
the fundamental region of the group SL(2, Z), it is independent of the choice
of the generators P, and P, of C,, and so provides information about the
shape of the Mordell-Weil lattice A.

For each of the rank-2 curves discussed in this paper we computed (using
PARI/GP) the value of 7, and these values are given in the table in the sup-
plement. In some cases, to obtain a value of 7 in the fundamental region of
SL(2,Z), £1 was added to the computed complex number; no other SL(2, Z)
transformation was required. In this region the values of 7 for approximately
half of the curves under consideration lie in a segment of the annular region
bounded by the ellipses 375x% + y2 = 100 and 480x2 + y* = 200, and the
lines 2x + 1 = 0, where x denotes the real part and y the imaginary part.
Only six values of 7 lie below this region, and the remainder above. Also the
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proportion of values of 7 with positive or negative real part is approximately
equal, and those with larger imaginary part tend to correspond with the larger
values of the prime p.
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ON A CLASS OF ELLIPTIC CURVES WITH RANK AT MOST 2

H. E. ROSE

We list below data for the elliptic curve
Cp: v =1 +pz

for each ‘G-prime’ p less than 50000. e give, for each curve in this range, the value of the
L—{function at 1 and the order S of the Shafarevich-Tate group Il as predicted by the Birch and
Swinnerton-Dyer conjecture, if the rank is zero. If the rank = 2, we give the two values of r and s
from which the generators of the Mordell-Weil group can easily be constructed using (6), and the
value of 7 = wa/w, of the Mordell-Weil lattice. where a + ib is written a,b (see last paragraph).

Prime Rank 1 point. rank 2 only 11 pomnt, rank 2 only T
73 2 1,1 3,1 -0.42136, 3.70975
89 2 3.1 7.1 0.25820, 4.79915
113 2 3.1 5.1  0.41331, 4.43636
233 2 11.3 5,1  0.48210, 3.58534
9257 0 L(1) = 7.40907.S = 16

281 2 3.1 47,7 -0.22809, 11.81452
337 2 35. 5.1 -0.05956, 6.23399
353 2 13.3 7.1 -0.44182, 4.20334
577 0 L(1) =6.05276.5 =16

593 2 3.1 5.1 0.48071, 5.03903
601 2 83. 17 7,1 -0.33842, 5.45261
617 2 195. 43 5.1 -0.19632, 5.61055
881 2 3.1 157, 17 -0.48756, 18.15133
937 2 5.3 45,7 -0.42973.11.62307
1033 2 13.3 85,7  0.06569, 7.58315
1049 2 3.1 7,1 -0.49569, 5.99058
1097 0 L(1) =5.15461.5S = 16

1153 2 1.1 9.1 -0.40743, 6.18935
1193 2 47.9 11,1 0.45360, 4.46677
1201 0 L(1) =5.03920.5 = 16

1217 0 L(1) =5.02255.5 =16

1249 2 11.3 7.1 -0.49338.4.91196

© 1995 American Mathematical Society
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