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ON MULTIVARIATE LAGRANGE INTERPOLATION

THOMAS SAUER AND YUAN XU

Abstract. Lagrange interpolation by polynomials in several variables is stud-

ied through a finite difference approach. We establish an interpolation formula

analogous to that of Newton and a remainder formula, both of them in terms

of finite differences. We prove that the finite difference admits an integral rep-

resentation involving simplex spline functions. In particular, this provides a

remainder formula for Lagrange interpolation of degree « of a function /,

which is a sum of integrals of certain (n + l)st directional derivatives of /

multiplied by simplex spline functions. We also provide two algorithms for the

computation of Lagrange interpolants which use only addition, scalar multipli-

cation, and point evaluation of polynomials.

1. Introduction

Let IP' be the space of all polynomials in d variables, and let U.d be the

subspace of polynomials of total degree at most n . For a sequence of pairwise

distinct points in Rd, denoted by Sf, we say that the associated Lagrange

interpolation problem is poised for a subspace U^, c Ud , if for any / defined

on Rd there exists a unique polynomial P¡ e U^, which matches / on Sf.

It is well known that there are essential difficulties in solving Lagrange inter-

polation by polynomials in several variables. First of all, there is the problem of

choosing the right polynomial subspace, for there are many linearly independent

polynomials of the same total degree. Secondly, and much more troublesome,
the uniqueness of interpolation depends on the geometric configuration of the

interpolation points. Thus, for example, if \3f\ = dim 11^, then the Lagrange
interpolation problem is poised if, and only if, the node sequence Sf does not

lie on a hypersurface of degree n ; i.e., there does not exist a polynomial in TV*

which vanishes on all of the nodes; equivalently, the Vandermonde determinant

formed by the interpolation points does not vanish. Thirdly, even if the inter-

polation problem is poised, the computation of the interpolating polynomial

can be difficult and there is no known formula for the remainder term in the

general case.

Received by the editor November 17, 1993 and, in revised form, June 2, 1994.

1991 Mathematics Subject Classification.   Primary 41A05, 41A10, 41A63, 65D05, 65D10.
Key words and phrases. Lagrange interpolation, finite difference, simplex spline, remainder

formula, algorithm.

Supported by National Science Foundation Grant No. 9302721 and the Alexander von

Humboldt Foundation.

©1995 American Mathematical Society

1147



1148 THOMAS SAUER AND YUAN XU

One should mention that there have been various efforts to overcome at least

some of these difficulties. One approach is to put conditions on the location

of nodes to guarantee both the uniqueness of the interpolation and a simple

construction of the interpolating polynomials. However, such conditions are

usually too restrictive and difficult to fulfill and apply. After all, the set of

nodes for which Lagrange interpolation is not unique has measure zero, and

interpolation is almost always possible; for literature and a historical account

we refer to the recent survey [2] and the monograph [4], the latter one also

containing a particularly extensive bibliography. Recently, a very interesting

approach has been given by de Boor and Ron (see [1] and the references therein).

They showed that for any given 3? there always exists a particular polynomial

subspace Ylj^ for which the corresponding Lagrange interpolation problem is

poised. In addition to an extensive investigation of the theoretic aspect of their

approach, they also provide an algorithm for the computation of the interpolant.

In this paper, we shall take a different approach, which turns out to be sur-

prisingly close to the classical univariate one. The starting point for our inves-

tigation is the realization that the multivariate problem analogous to univariate

interpolation is what we will refer to as interpolation in block, meaning that the

total number of interpolation nodes is equal to dim Ud and the interpolation

points are grouped in blocks whose cardinality is equal to the dimension of the

polynomial subspaces. This viewpoint allows us to develop a finite difference

approach to Lagrange interpolation that offers formulae very much comparable

to the classical univariate ones. Our finite differences in several variables are

defined by a recurrence relation and lead to a Newton formula for Lagrange

interpolation that allows us to compute just several additional terms for each

block of interpolation points added. But perhaps even more important is the

representation of an «th-order finite difference in terms of a sum of integrals
of «-fold directional derivatives of / multiplied by simplex splines, which is

analogous to the B-spline representation of the univariate divided difference.

This representation leads to an elegant remainder formula for Lagrange inter-

polation, and for d = 1 this formula coincides with the well-known univariate

one.
The usual representation of the interpolation polynomials is given through the

Lagrange fundamental polynomials which are one in one of the points and zero

in all the other ones. Our finite difference approach, however, will use a different

basis of polynomials, which we will call Newton fundamental polynomials. The

name is justified by the fact that these polynomials and the associated finite

differences give a multivariate analog of the univariate Newton formula. Both

polynomial bases can be given in terms of Vandermonde determinants, but for

computational purposes determinants can be difficult to handle and are known

to be highly unstable. As an alternative, we provide two algorithms which seem

to be of independent interest; these algorithms only use the natural operations

on polynomials, i.e., addition, multiplication with scalars and point evaluation.

The first algorithm computes the Lagrange fundamental polynomials and stops

if the Lagrange interpolation problem is not poised; the second one determines

the Newton fundamental polynomials if the interpolation problem is poised, or

it gives an algebraic surface of minimal degree which vanishes on all the nodes.

The paper is organized as follows. In §2, we give the necessary preliminar-
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ies. The finite difference approach to interpolation is contained in §3, and the
algorithms are given in §4. Finally, in §5, we provide an example in R2 which

is analogous to equidistant points in one variable.

2. Preliminaries

We use standard multi-index notation. For example, for a = (ax, ... , af) e

Nq we write \a\ = ai H-+ ad , and for x e Rd we write x = (& ,... , t\d)

and xa = ¿¡"' • --Q ■ For each n e N0 there are rf = (n+d~x) monomials xa

which have total degree n . A natural basis for fldn is formed by the monomials
{xa : 0 < |a| < n) .

Let 3f = {xo, Xi, ...} be a sequence of pairwise distinct points in Rd , and

let 3f^ = {xo.Xff} . If N — dimlT^ , and if there is a unique polynomial

P <iWdn suchthat

(2.1) P(xk) = f(xk),        l<k<N,

for any / : Rd h-> R, then we say that the Lagrange interpolation problem

(2.1) is poised with respect to SfN in Yld , and we denote P by Ln(f). More

general, given ./V points, not necessarily N = dim Yidn for some n, and a

subspace WL cIT'.we say that the Lagrange interpolation problem is poised

with respect to ä?n in Ylj^ if for any f :Rd -*R there is a unique polynomial

P e n^ such that (2.1) is satisfied. From Kergin interpolation we know that

for any choice of pairwise disjoint points x\,..., Xn there always exists (at

least) one subspace U^ c n^_, for which the interpolation problem with

respect to Sf^ is poised; in other words: given any sequence of nodes we can

find a subspace of Ud for which the Lagrange interpolation problem is poised.

Finally, we call the (possibly infinite) sequence Sf poised in block, if for any

« c N0 the Lagrange interpolation problem is poised with respect to 3?^ in
Yldn , whenever N = dim l\dn .

We start from the observation that multivariate monomials are naturally

grouped in blocks; i.e., instead of a single monomial of degree n in one vari-

able, we have a whole block of monomials of degree n in several variables,

namely, the monomials x", \a\ = n . If we arrange the multi-indices \a\ = n

in lexicographical order, we can number the monomials of total degree n as

q\"], ... , qlP , and Yld is spanned by

y4l      I Vl     > ■ • • > H¿     \HX     i ■ ■ ■ Hrà    I   • • •   I HX     > • • • > Hrd    I   • • • I •

From this blockwise viewpoint, it is only natural to group the interpolation

points Sf according to the same structure and rewrite them as

<3* _ j JO) |     (1) (1) |     (2) (2) , ,  y(n) Y(n) , \
it-     —    \      \       Il      >•••' •*(/      Ia]      >  • • •   i ^fd     I    • • •   I -*1       >  • • •  ) -^fd     I    ■ • •   I •

We refer to Lagrange interpolation with Sf arranged in this way as interpolation

in block. As a by-product of Algorithm 4.4 we will show that, whenever 3? is

poised in block, the points xx, x2, ...  can be arranged in such a way.
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If 3f is poised in block, the «th Newton fundamental polynomials, denoted

by pj"1 ellf, 1 < j < rd , are uniquely defined by the conditions

(2.2)     pf(xf]) = 0,k<n,      and    pf(xf) = Su, i = 1, ... , t,,d' • n-

This means that for each level « there are rjf Newton fundamental polynomials

of degree exactly n which vanish on all points of lower level and all points of the

«th level except the one which has the same index. Actually, these polynomials

can be given explicitly as follows. We introduce the vectors

p"(x) := [xa)H<„ ,        p"(x)eRN,     N = dimUdn,

and the Vandermonde determinant

T(p") := det fp"(xi0)), p"(x,(1)), p"^), ... , pn(x\n)), ... , p»(x¡:>)' t
d

which is nonzero if and only if the interpolation problem is poised; likewise,

Tj(v»\x) := det [pn(x¡0)),...,pB(xjn)),... ,p"(xf_)1),p"(x),

P^£\),..., if (*<?)],

for 1 < j < rd. Then it can be easily verified that the polynomials p^ are

equal to

<"> "f'M'tJ^T'   ¡-U....IÍ
T(P")

n ■

With the help of the Newton fundamental polynomials we can also deal with

interpolation problems based on 3?^ for TV < dim Ud . The point is that we

can consider the polynomial subspace U^ = Ud_ ¡ U W, where W is spanned

by some of the pin] such that dim U^ = N. We only consider interpolation of

this type in our first algorithm, and the choice of pin] will become clear from

the algorithm.
Next we recall the definition and some properties of simplex splines, fol-

lowing the fundamental paper of Micchelli [5]. Given « + 1 > d + 1 knots

v°, ... , vn G Rd , the simplex spline M (x\v°, ... , v") is defined by the condi-

tion

(2.4) [ f(x)M(x\v°, ...,vn)dx
jRd

= (n- d)\ Í f(o0v° + ■■■ + onv")do,    / e C(Rd),
Js„

where

Sn := [a = (oo, ... , on) : Oi>0, oo + ■ ■ ■ + an = 1} .

To exclude cases of degeneration which can be handled similarly, let us assume

here that the convex hull of the knots, [v°, ... ,v"], has dimension d. Then
the simplex spline M(-\v°, ... , vn) is a nonnegative piecewise polynomial of

degree « - d, supported on [v°, ... , vn]. The order of differentiability de-

pends on the position of the knots; if, e.g., the knots are in general position,
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i.e., any subset of d + 1 knots spans a proper simplex, then the simplex spline

has maximal order of differentiability, namely « - d - 1. The most important

property for our present purposes is the formula for directional derivatives,

namely

(2.5)

DyM(x\v°, ... ,v") = YfijMix\vi
7=0

In particular, for 0 < i, j < n ,

(2.6)

,vJ-x,vJ+x ,V),

y = YßjVJ, Y^ = 0-
;=0 j=0

Dv,_vJM(x\v°,... ,v") =M(x\v°,...,«'-', vi+x ,...,vn)

- M(x\v  , ... , vJ    , v7-1     ,,7+1
,V").

3. Finite differences and the Newton formula

Let 3f cRd be poised in block. To simplify the notation, we introduce the

vectors

» and    x =

Our definition of finite difference is given as follows:

Definition 3.1. The finite difference in Rd , denoted by

Xn[x°,...,x"-X,x]f,    x&Rd,

is defined recursively as

(3.1) X0[x]f:=f(x)

(3.2)
Xn+x[x°,...,x",x]f:=Xn[x°,...,xn-x,x]f

x°,x1,...

¿^[x0,...,^-1,^]/.^^).

i=i

If d = 1 , and if we assume that our interpolation points are ordered as

Xq < xx < ■ ■ ■ < x„ e K, then for each fixed n there is only one fundamental

polynomial, given by

(3.3) p\n](x^ -
(X - Xq) ■ ■ ■ (X - X„_i)

(xn - Xo) ■ ■ ■ (xn - X„_i)

Let f[xo, ... , xn] be the classical divided difference of a function of one vari-

able; then it can be easily verified from Definition 3.1 that our finite difference



1152 THOMAS SAUER AND YUAN XU

in one variable equals

(3.4)       Xn[xo, ... , xn]f = f[xo, ... , xn] • (x„ — xo)--- (x„ — xn-X),

which suggests the name finite difference. The definition of this new difference

is justified by several nice properties that we present below.

Proposition 3.2. For every f:Rd>->R, « G N, and 1 < k < rd

n    A

(3-5)       fixf)=EE^°- -. ^. x?V'pfi*f)-
7=0 ¡=1

Proof. Using the fact that pf\x{k"') = Sjk and applying (3.2) repeatedly, we

obtain

¿A„[x°,... , x""1, x^\f-pY\xf) = Xn[x°, ... , x"-x, *<">]/
i=i

= X^x[x\...,xn-2,x[n)]f-Y^-i[^\..-^n-\x^X)]f.pY-^))
i=i

= Xn_2[x\...,x"-3,x£)]f-  Y ¿^[x0,...,^-1,^]/.^^)
j=n-2 i=X

= hu^f -YY w*° ,-..,xJ-1, x?]f ■ pU\xW)
7=0 1=1

= Mn)) - EE^tx0,..., x;-1, x^f-^ix^)
7=0 (=1

from which (3.5) follows readily.   D

As an immediate consequence of this proposition we obtain in analogy to the

Newton formula for Lagrange interpolation:

Theorem 3.3. Let the interpolation problem (2.1), based on the points x°, ... ,xn,

be poised. Then the Lagrange interpolation polynomial L„(f) G FI^ is given by

fa

(3.6) Ln(f, x) = ¿¿A,[x°, ■■■ > *;-1 - x^f-p^x).

7=0 ;=1
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For d = 1, it follows from (3.3) and (3.4) that formula (3.6j becomes

n

L„(f,x) = Y*'[xo, ••• , Xi]f • p\'](x)
1=0

n

= YftX°' ■•■ >Xi]-(X-Xo)---(X-Xi-i),
¿=0

which is the classical Newton formula. Moreover, this notion of the finite

difference also leads to the following remainder formula for interpolating poly-

nomials:

Theorem 3.4. For each f : Rd >-> R and « G N

(3.7) f(x)-L„(f, x) = Xn+i[x°, ... , x",x]f.

Proof. Starting with (3.6) and using (3.2) repeatedly, we obtain

rd

f(x) -Ln(f,x) = f(x) - ¿ ¿ Xj[x° ,...,xJ-x, xlj)]f • p[i\x)
7=0 ¡=1

d
n     ri

= ¿o[x]f -Xo^tf.pf\x)    YH^x°> • • • > xJ'~ ' > xPV• Pi\x)
7=1  ¡=1

n     ri

xi[x° ,x]f-YYÁÁx°>--->xJ_1> x\i]v • Pi]w
7=1 1=1

Xdx^xU-Y^ix^x^f-p^x)
i=l

n     rj

-EEm»°.i,-,.*ffli/-j>l/1w
7=2 i=l

n     rj

= x2[x° ,xx,x]f-YYAÁx°>---> x'_1> x^v - Pij]w
7=2 i=l

= A„[X°, ... , X""1 , X]f- Y*»[X°, -.. , X""' , Xln)]f-p\n]\
(=1

„0

X)

= A„+i[x0, ... ,x",x]f   D

Since L„(f, x) interpolates / at all points of level < « , as a consequence of

this theorem we obtain
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Corollary 3.5. For every f : Rd i-> R and « G N

Xn+i[x\...,x",xf]]f=0,    j=l,...,rd, k = 0,...,n.

Next we shall establish a representation of our finite difference in terms of

simplex splines, which requires some additional notation. Let

An:={p = (po,---,Pn)£^n+[ :\<Pi<rd, * = 0,...,«}

be an index set.    Each  p e A„   defines a path among the components of

x°, ... , x" , which we denote by x'',

.(0) («)l
A      .—   \Aft    ,   . . .    ,  *p„   f.

We note that po = 1 by definition; thus, the path described by x'' starts from

x{0), passes through xjt\',... , x^""1', and ends at x^J . One example of the

path for d = 2 is depicted in Fig. 1.

.(2)

.(3)

.(1)

X
(1)

.-(3)

.(3)

,(3)

Figure 1. The path p = (1, 1,3,2). Points of the same level

are aligned in columns

The collection (x'i/iéA,) contains all paths from the sole point x\    of

level 0 to all the points of level « . For any path x'', p G A„ , we define the
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«th directional derivative along that path as

Dxtl := D  (n)_   (a-\)D  („-1)       („_2) • • -D  (l)_   (0) ,        p G A„.
xßn     -*(1„_|       *Pti-t      -X-2 XH      A"0

In addition, we will need the values

n-l

^(xn^Ylp^x^P),   peA„.
1=0

We are now able to state the representation of our finite difference in terms

of simplex splines and directional derivatives.

Theorem 3.6. Let f G Cn+x(Rd). Then

(3.8)

A„+1[x°, ... , x", x]f = Y PÍ?»MX") / Dx xWDnxJ(y)M(y\x'í, x)dy.
M6A„ jRd

In order to prove this theorem, we need to state and prove two preparatory

results first:

Lemma 3.7. Let the Lagrange interpolation problem be poised with respect to

3fN,N = dim n^ , and let i be a fixed integer such that 1 < i < rd_{. Then

there exist d indices ki,... ,kd such that the vectors

prvi;»)«»-^-"), j=i,...,d,
are nonzero and linearly independent.

Proof. Without loss of generality we can assume that k¡ = j , 1 < j < d, and

that the points are rearranged so that

»["-'l/y(»KJV0, \<j<r<rd,
P'      [ j   >\=0, r<f<rd.

Assume that
,n r

rank xf-xi"-" <d;
ij=i

i.e., the points x("  '', x|"', ... , xr    lie on an affine hyperplane of dimension

< d - 1 . Then, there is a nonzero affine function I such that

l(xf-x))=i(xf) = --- = l(xrn)) = 0.

Since p|"-1] vanishes at all points of level < n - 1, except at x(-"_1), and at

Xj   , j = r + I, ... , rd , it is easy to verify that the nonzero polynomial

p)n-X](x).i(x)&ïldn

vanishes at all points of level < « . But this contradicts the assumption that the

interpolation problem is poised with respect to 3f^ .   D

As an immediate consequence of this lemma we obtain the following corol-

lary, which is of independent interest in itself.
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Corollary 3.8. Let the Lagrange interpolation problem be poised with respect to

3ffi, N = dim Yld . Then every convex hull

V(«-D    An)
v(«) /=i,

yd
'     '«"I

has dimension d.

This corollary provides a necessary condition for the uniqueness of Lagrange

interpolation in block. The condition can be seen as an extension of the univari-
ate requirement that the points have to be distinct. The main technical lemma

for the proof of Theorem 3.6 is the following

Lemma 3.9.  Let the Lagrange interpolation problem be poised with respect to

3fN, N = dimlT^ . Then for 1 < i < rd_l and x G Rd,

(3.9) Pri](x) (x - xti))=ypFwp?-"^) (*r - *iB_1))
7=1

Proof. Let / and x be fixed. We choose d indices k¡ as in Lemma 3.7 and

again assume that k¡ = j . We consider the linear system of equations

(3.10)

d

1
7 = 1

YajPri]ixf)(xf-xri))=y,

where

(3.11)

^-'^(x-xr1')- ¿ pf\x)Pri](xf)(xw-x?-i))
j=d+l

Clearly, (3.9) holds if and only if a¡ = pl"\x), j = I, ... , d, forms a solution

of (3.10). From Lemma 3.7 it follows that

0 ¿ A = det [p?-1](xf) (xf - x(rX))]d.

= ( u.pr]i-r])
To simplify the notation, we define

d

det
1 1

An-l)        (n)
X

i=i, Hi

we also introduce the notation

x(X) := det
1 1

,(«-i)    Y(«)
.( Xy xv
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and

Xj(X\x) := det
1 1

v(»-i)    v(")

1 1 1

7-1 7+1
.(») ,    l<j<d.

In particular, we have

(3.12) A-^.n^-'livWA = 7jPxn-lx(x)">)T(X),    j=l,...,d.

Since Jj ^0, which follows from A 7¿ 0, we can apply Cramer's rule on (3.10)

and, replacing y by (3.11), we obtain for 1 < j < d

yj \p\n-"(x)Tj(X\x)- Y p)H\x)p\n-l](x¡tt))Tj(X\x¡

l=d+l

J"-1]/V(n

(«h

Yjpriiix)n>)T(x)

That is, rearranging terms,

(3.13)

ajp?-l\xf)T(X) + Y p\n\x)p^-x\x]"))rj(X\xj"))=p]n-x](x)tJ(X\x).
l=d+l

We now consider the two polynomials

qi(x) :=pf(x)ir\xf)x(X) + Y pf(x)p^-\x^)x¡(X^f),
l=d+l

q2(x):=p^-X](x)Tj(X\x),

both of them belonging to Ud . Notice that qi is the left-hand side of (3.13),
and that q2 is the right-hand side of (3.13). It can now be easily verified that

these two polynomials coincide on all points of level < « , that is,

qi(z) = q2(z),     z = x|0),...,x^.
' n

Hence, owing to the uniqueness of the interpolation polynomial, qi and q2 are

identical. Therefore, for any x G Rd , the choice a¡ = pf\x), j = I, ... , rd ,

is a solution of (3.10). This concludes the proof.   D

It may be of some interest to mention that the quotients t¡(X\x)/x(X),
j = I, ... , d, appearing in the proof, are the barycentric coordinates of x

with respect to the simplex [x|"_1), xj"', ... , xdn)], i.e.,

V *j(X\x)    (n)       I

2-   t(X)   X>   + \       ¿j   r(X)
*jix\x) \ x<n-X)^

7=1

We are now in a position to prove Theorem 3.6
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Proof of Theorem 3.6 .   We use induction on n . For « = 0 the equation (3.8)

states

f(x)= i f(y)M(y\x)dy,
Ju.d

which is nothing but the definition of the simplex spline M(-\x) in the distri-

butional sense.

For « > 0, by the induction hypothesis, we can write

(3.14)
Xn[x°,...,xn-X,x]f

=   Y  ^""MM*") / Dx_xi„-uD"x-xf(y)M(y\x^,x)dy.

Using Lemma 3.9 and recalling the linearity of directional derivatives, we have

pfr-l](x)Dx-xr» = E^)/>t:^,(n))¿v>-,r.>.
1=1

Hence, the right-hand side of (3.14) reads

(3.15)

r
Y   E^Wlr.'W^Mx'4) /   Dx{n)_x^)Dl-xf(y)M(y\x^,x)dy.

By the recurrence relation (3.2) and the induction hypothesis, equation (3.15)

yields

An+1[x°,...,x",x]/ = An[x°,...,x"-1,x]/

<

-YPlr]ix)Xn[x°,...,x»-x,x]n)]f
(=1

=   Y   Yp\n]ixHn~!]ix(in))n^)      DxW_^)D"x;xf(y)M(y\x\x)dy

- Y Yp^m:::^)*^)
H£A„-t 1=1

x  / />,„, xi„-l>D"x-xf(y)M(y\x",x(,n))dy

ri

Y   Ypfix^-^xf)^^) [ D^_^uD:-xf(y)
~   r-f "" jRd   x<     "»-i

x (M(y|x" , x) - M{y\\" , x,(n))) dy.

/J6A„_|  1=1
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Applying the differentiation rule for simplex splines (2.6), we have

A„+I[x°,...,x",x]/

= E E^Wt,11^)^^)
¿¡eA„_i ¡=i

x / Dxin)_xin-l)D^-xf(y)DxM_xM(y\x>l,x)dy

= V^](x)^(x") / Dx_xMD^f(y)M(y\x", x)dy;ßSL jRd

the final step follows from replacing i by p„ and from integration by parts,

which reads

/ f(y)Dvg(y)dy = Yvi [ f(y)^rgiy)dy = -Yv' I ¿r/O^C^y
jRä ^      JRd OÇi ^      JKd OÇj

= -/ Dvf(y)g(y)dy,
jRd

where g is a function with compact support.   D

Defining A„(k) = {p G A„ : p„ = k] , k = 1, ... , rjjf , we obtain a remark-
able compact version of Theorem 3.6:

Corollary 3.10. For « G N and f G C"+1(

(3.16)

Xn[x°,...,x"-X,x^]f

=   Y   Mx") / D^f(y)M(y\x")dy,     k = 1, ... , rdn.
rK    If, J^-d/¿eA„(fe)

For p G A„(k), the sequence x'' is a path from xj0) to x["', and the set

{x'' : p e A„(k)} contains all paths from x\    to x["'. Combining Theorem

3.4 and Theorem 3.6 gives a remainder formula for Lagrange interpolation:

Corollary 3.11. For « G N and f G Cn+x(Rd)

(3.17)

L„(f, x) - f(x) = Y P[;}(x)nß(x») f Dx_xMD»xUf(y)M(y\xK , x)dy.

Moreover, we have the error estimate

(3.18)

\Ln(f, x) - f(x)\ < Y 7-^Tjï \\Dx-xMfWoo • \M*)P%!(x)\,    xeR«,
ß€A„

where it suffices to take the supremum norm over the convex hull of {x°, ... ,

x\x}.
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To end this section, let us take d = 1 in (3.18). We first compute nß(xß),

using the same notation as in the univariate case considered before (for d = 1

there is only a single path),

n-x

i'=0

(x,+ i - Xfj) • • • (X,+ | - X/_ i )n VX,' - Xo) • • • (X/ -x,_i)

_        X2 - Xo     (X3 - Xfj)(X3 - Xi) (X„ - Xo) ■ ■ ■ (X„ - X„-2)

xi-xo   (x2-xo)(x2-xi)      (x„_, -x0)---(x„_i -x„_2)

n-2

=nXn X;

n-1

_0 -*i+l      X\

On the other hand, we clearly have

Dx.XnDXn-Xn_, ■ --Dx¡-xJ(y) = (x- xn) Y[(xi+X - x,)f"+x\y).
i=0

Inserting this into (3.18), we thus obtain

1 i""1
IM/, x) - /(x)| < ——\x -x„\- \H(xi+l - x,)   . ||/C+')||

^ '" 1=0

/n-2

' Vf=o Xj+i - X¡ J  (X„ - Xo) • • • (Xn - X„_i )

Xn -X,   \    (x-X0)---(X-X„-i)

||/("+1)

(« + !)!
|(x-x0)...(x-x„)| ,

which is the well-known estimate for one variable. This shows that (3.18) is a

proper extension of the univariate formula, and it offers another justification

for our definition of finite difference.

4. Algorithms

In this section let 3f = {xx, ... , xn) , N G N, be a finite sequence of

pairwise distinct points and assume that N = dim Yld for some « > 0.

In our algorithms we will use the following notation:  let a", ... , a"d  be
'n

the multi-indices \a\ = n, arranged in lexicographical order. Moreover, by

ax, ... , aN , we denote the ordering a\, a2, ... , a2,, ... , a" , ... , and. The

pseudocode that we will use to formulate the algorithms uses while do ...

done; and for do ... done; loops (the latter one may be ascending or descending;

this will become clear from the argument) as well as the if then ... fi; construc-

tion.
Our first goal is to give an algorithm for the computation of the Lagrange

fundamental polynomials Px , ... , Pn G Yld ; i.e., the polynomials which satisfy

the conditions P¡(Xj) = S¡¡, i, j = I,... , N.
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The basic idea is to successively construct polynomials Pf*1, ... , P^1  for

k = I, ... , N, which satisfy

(4.1) P)k\xJ) = Sl],        i,j=l,...,k<N.

This is trivial for k = 1 since we can take Pf'^x) = 1. Thus, suppose

we already constructed P\k], ... , P^  for some k > 1 .   It is obvious from

(4.1) that these polynomials are linearly independent and span a k-dimensional

subspace of Yld . Thus, we can find polynomials Qk+i, ■ ■ ■ , Qn such that

PJfc', ... , P[k], Qk+i, ... , Qn form a basis of Ud ; moreover, we can assume

that

(4.2) Qk+l(x) = ■■■ = ()N(x) = 0,       xg{xi, ... ,xk],

since otherwise we can replace Qj(x) by

k

(4.3) ß,(x) = Qj(x) - Y Qj(Xi)Pf\x).
i=i

Next, we claim that either there exists some j e {k + I, ... , N} such that

Qjixk+i ) # 0, or the Lagrange interpolation problem is not poised with respect

to 3f. To prove this, assume that the Lagrange interpolation problem is poised

with respect to 3f and let Q be a solution of the interpolation problem

(4.4) Q(Xj) = Sj,k+l,        j = l,...,N;

we write Q with respect to the basis defined above as

k N

Q(x) = Y*iPf]ix)+ y ajQjM-
7=1 7=*+l

Inserting x = Xi, ... , Xk readily gives a, = 0, j = 1,..., k, which yields,
setting x = xk+x ,

N

1 =   E   ajQjixk + \)-
j=k + \

Hence, not all Q¡■, j = k + I, ... , N, can vanish in x^+i , which proves the

claim. Therefore, supposing poisedness, we can, without loss of generality,

assume that Qk+i(Xk+x) / 0. Setting

[fc+i]^ _   Qk+ijx)

Qk+l(Xk+\
^V) =

and

pf+x\x) = pf\X) - pf \xk+x)p[k:;\x),    j=i,..., k,

we obtain the k + 1   Lagrange fundamental polynomials for xi, ... , x^+1,

which completes the inductional step.

In the end, for k = N we either generate the Lagrange fundamental poly-

nomials with respect to 3f in Yld or we find that the Lagrange interpolation

problem is not poised with respect to 3f in Yld .
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Instead of completing P\k], ... , P[k] to a basis of Ud in each individual

step, the following algorithm simultaneously computes P¡k], ... , P^, which

are the Lagrange fundamental polynomials for the subproblem at xx, ... , xk ,

and the polynomials Qk+X, ... , Qn, which vanish at xx, ... , Xk , and com-

plete P\k], ... , Pf] to a basis of Ud for k = I, ... , N. Since for k = 0
there is no restriction imposed on Qi, ... , Qn ,v/e can simply initialize these

polynomials with the monomials. This reads as follows:

Algorithm 4.1.

Input:  N en and Xi, ... , xN eRd .

Initialization:

for k=l,2, ... , N do
Qk ■■= xa* ;

done;
Computation:

for k = 1, 2,..., N do
i := min({k <j<N: Qj(xk) ¿ 0} U {N + 1}) ;
if i = N + I then stop: No unique interpolation; fi;

Pk{x)-QKxT)'

for j = l ,2, ... , k - l do
Pj(x) := Pj(x) - Pj(xk)Pk(x) ;
done;

for j = i, i - 1, ... , k + 1 do

Qj(x) := Qj-i(x) - Qj-i(xk)Pk(x);
done;
for j = i+l,i + 2,...,Ndo
Qj(x):=Qj(x)-Qj(xk)Pk(x);
done;

done;

Output: Pi, ... ,PNend.

The algorithm may also be seen from a different point of view: the polyno-

mials & = {Pi, ... , Pk), constructed in the kth step of the algorithm, are an

orthonormal basis with respect to the scalar product

k

(p,q)k = Yp(xJÎq(xJî>
J=x

while Qk+i, ... , Qn form a basis of the orthogonal complement of the span

of a6 in Yldn. From this viewpoint Algorithm 4.1 is a variation of the Gram-

Schmidt orthogonalization process.

If Algorithm 4.1 ends with stop, then the interpolation problem is not poised;
otherwise, we say that the algorithm terminates properly. From the deduction

of Algorithm 4.1 we finally formalize what the algorithm does as follows:

Proposition 4.2. The Lagrange interpolation problem with respect to 3f is poised

in Ud if, and only if, Algorithm 4.1 terminates properly.



MULTIVARIATE INTERPOLATION 1163

Let us remark that Algorithm 4.1 also works if N < M := dimn^ . Clearly,

the Lagrange interpolation problem with respect to 3? cannot be poised in Ud

if N < M, but we can run the algorithm to compute Lagrange fundamental

polynomials Pi, ... , Pn as before; these polynomials then span a subspace

Ylíy C Ud for which any interpolation problem at 3f is uniquely solvable. On

the other hand, it is also easily verified that, whenever the algorithm does not

terminate properly, the Lagrange interpolation problem at 3f is unsolvable in

general.

Next we make some remarks on the algorithm and introduce some possible

improvements.

Remark 4.3.

( 1 ) This algorithm does not require solving systems of linear equations or

computing Vandermonde determinants. It uses only the natural opera-

tions on polynomials; i.e., addition, multiplication by scalars and point

evaluation.

(2) Owing to its simplicity, the algorithm is easy to implement and, moreover,

very fast. For example, interpolation with polynomials of degree 13

at 100 random points in [0, l]2 takes less than 3 seconds in a C++

implementation on a SUN SparcStation 10.

(3) From Kergin interpolation we know that there always exists a subspace
Hjg, c fldN_x such that the Lagrange interpolation problem with respect

to 3f is poised in N^,. This suggests the following improvement of

Algorithm 4.1: whenever it turns out that the Lagrange interpolation

problem with respect to 3f is not poised in Yldn , then try the same

process in fld+x ; if in this space the Lagrange interpolation problem

with respect to 3f is still not poised, then proceed to Ud+2 and so on;
the above remark guarantees success after a finite number of steps. To be

precise, we modify Algorithm 4.1 as follows, replacing the stop statement

by the while loop below:

Initialization :

M:=N;

Computation:

for k = 1, 2,..., N do
i := min({k <j<M: Qj(xk) ¿ 0} U {M + 1}) ;

while i = M + I do

for j' = 1, ... , rdn+l do
k        „+,

Qm+j(x) := xa"+' - Y x?  piix) >
i=i

done;

M:=dimn^+1 ;
« := « + 1 ;
i := min ({A: <j<M: &(*,) ^ 0} u {M + 1}) ;

done;

The resulting polynomials Pi, ... , Pn then span a subspace of n^_j for
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which the Lagrange interpolation problem is always poised with respect

to 3f.
(4) The algorithm works with any polynomial basis {Qj : j = I, ... , N) of

Ud . In particular, this allows the use of the Bernstein-Bézier polynomial

basis, which is known to be very stable. If the interpolation points lie in

a triangular domain, numerical experiment shows that the change to the

Bernstein-Bézier basis increases stability significantly.

(5) Another way to obtain better stability is to use pivoting strategies when

searching for the index i such that Q¡(xk) ± 0. In particular, two

strategies are possible:
• (Polynomial pivoting): Determine i such that Q¡ has maximal ab-

solute value at xk ; this reads

m:=max{\Qj(xk)\:k<j<N};
i := min {k < j < N : ^(x/t)! = m} ;
if ßi(*jt) = 0 then i := N + 1 ; fi;

• (Total pivoting): Take the maximum on all polynomials Qk, •■■ , Qn

and all points xk, ■. ■, Xjv and switch xk and the point where the

maximum has been attained:

m := max {\Qj(x¡)\:k<j, I <N};
(i, j) := min {(k, k) < (r, s) < (N, N) : \Qr(xs)\ = m} ;

-\   • — -A ¡r •    *\ It   • — -A j •    .A. i   • — .A  ,

if Qi(xk) = 0 then i:= N+l;ñ;

Numerical experiment shows that even polynomial pivoting can increase

the stability of the algorithm significantly. In fact, the quality of interpo-

lation, i.e., the error at the interpolation points, is usually improved by

two decimals.

Our second algorithm, which computes the Newton fundamental polynomi-

als, works for interpolation in block, but it can also be used to check whether

the points xx, ... , xn lie on an algebraic hypersurface of degree «, i.e., if

there is some polynomial Q € Yld such that Q(xx) = ■■■ = Q(xn) - 0. It is

obvious that, in this case, interpolation is not unique in Yld .

A simple but quite illustrative example for this phenomenon is d = 2, n = 3

and six points X\, ..., x¿ lying on some circle in the plane. Since a circle is the

zero set of some quadratic polynomial, the Lagrange interpolation problem has

no unique solution in terms of quadratic polynomials. Nevertheless, there is a

subspace of n2 (i.e., of cubic polynomials) for which the Lagrange interpolation

problem with respect to X\, ... , Xf, is poised. This subspace can be given

explicitly as follows: let £¡ be a nonzero linear function that vanishes on the

edge [Xj, xJ+i] (setting x-j = xx, xg = x2, ...); then the cubic polynomial

Qi(x) = ei+i(x) - ei+2(x). ei+4(x)

vanishes in all points except x,  and can thus be renormalized to obtain the

Lagrange fundamental polynomial P,.
To avoid excessive notation in stating the algorithm, let us first recall the

order of multi-indices  |a| < «  as ax, ... , «\, which we introduced at the
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beginning of this section. We now order pairs (j, k), l<j<rd,0<k<n,

in such a way that (j, k) < (i, I) if, and only if, ak appears before a\ in the

above order of multi-indices.

For the computation of the Newton fundamental polynomials we will modify

Algorithm 4.1 in the following way: instead of proceeding "point by point" from

Xi to Xjv and find a polynomial that does not vanish at the point Xk at the

A:th step, we now do it the other way around, proceeding by polynomials and

searching for points where the polynomials do not vanish.
More precisely:  by induction on k = 0, ... , n  and j = I, ... , rd, we

construct polynomials P//] G Yld and points xf] G 3f, (i, I) < (j, k), and

complementary polynomials Q\l] g Yld , (j, k) < (i, I), such that

(4.5) P)'\xrs)) = SlsSir,        (r,s)< (i, I) < (j, k),

(4.6) ß,[/1(x^) = 0,        (r,s)<(j,k)<(i,l),

and

(4.7) Udn = span ({p,[/] : (i, /) < (j, k)} U {ß,[/] : (j, k) < (i, /)}) .

Initializing ßi'1 = xa¡, we start induction at j = k = 0, for which (4.5),

(4.6) and (4.7) are satisfied trivially. For the case j = I, k = 0 any x[0) G 3f

and P{0] = 1, ß{" = xQ! - (x[0))a! fulfill the above requirements.

Now, suppose that for some (j, k) we have constructed polynomials of

proper degree and points satisfying (4.5), (4.6) and (4.7). Moreover, let p' =

3f \{x¡) : (i, I) < (j, k)} denote the set of points that have not yet been put

into blocks. Assume first that j < rd . If there is no point xj^, G J^ such that

ßy+i(*j+i) # 0, then, taking (4.6) into account, ß^1, vanishes on all of 3f

and, therefore, the interpolation problem cannot be poised in n^. If, on the
other hand, the interpolation problem is poised, then we set

PIk]
Ik]

r+w 0\k] ( (k)
^7+1^7+1 -L

which satisfies PJ^,(x((/)) = SkiS¡j whenever (/', /) < (j + I, k). Replacing

P,[/1(x) by

(4.8) P¡k\x)-P¡k\x%\)P%\(x),        i=l,...,j,

and ß|/](x) by

(4.9) ß!/](x) - Q[!\x{!l)P%\(x),        (j+l,k)< it, I),

we obtain polynomials and points which can easily be seen to satisfy (4.5),

(4.6), and (4.7) with (j, k) being replaced by (j + 1, k). This finishes the
inductional step j —► j + 1. It is important to notice that, in view of (4.8) and

(4.9), we subtract a multiple of P^  only from polynomials of level k and
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higher, i.e., from polynomials of degree at least k . This guarantees that at any

step of the algorithm all the polynomials P¡'] and ß|/] are polynomials of total

degree exactly /. If j = rf. we move on to ß^"*"11 to do the inductional step

k^k + l.
After the final step (rd , «), we have constructed polynomials Pj ' G l\dk and

points xj ', j = I, ... , rf , k = 0,...,« , such that

Pjk](xf]) = SkAj,        1 < j < rd ,   1 < / < rf,  0 < / < k < n.

These polynomials are the Newton fundamental polynomials.

The algorithm can be formulated as follows:

Algorithm 4.4.

Input: N G N and Xi, ... , xN e Rd .

Initialization:

y-.= {xi,... ,xN};

for k = 0, 1, ... , « do
for j =1,2, ... ,rd do

Qk-=xaJ;

done;

done;
Computation:

for k = 0, 1,...,« do
for j =1,2, ... ,rd do

i := min ({1 < / < N : x, G y and ßf ](x/) ¿ 0} U {N + 1}) ;

if i = N +1 then stop: No unique interpolation; fi;

Xj .=   X;   ,

V:=y\{xjk)};

Pm,xy= QfW .

for i = l ,2, ... , j - l do

P\k\x) := P¡k](x) - P}k\x{k))Pf\x) ;

done;

for i = j +1, j + 2, ... ,rdk do

ß[fc](x):=ßiW(x)-ßW(xf)Pf1(x);
done;
for I = k + I, k + 2, ... , n do

for i = 1,2, ... , rd do

ß!"(x):=ß^W-ßi/](xf»)Pf(x);
done;

done;

done;
done;

Output: P\k], ... , Pik] G nd , k = 0,...,n,and x,(0), ... , x{"] G Rd .
Hi "
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We again say that the algorithm terminates properly if it does not reach the

stop. We summarize what Algorithm 4.4 does in the following

Proposition 4.5. The points xx, ... , Xn do not lie on an algebraic hypersurface

of degree «  if and only if, Algorithm 4.4 terminates properly.   Moreover, if

the algorithm terminates properly, it puts the points into blocks; in other words,

Xi, ... , xn are arranged as xi \ j = I, ... ,rf , k = 0,...,« .

Remark 4.6.

(1) The polynomials Pjk] produced by the algorithm are exactly the pjfc]

used in the previous section. If one wants to do numerical work with the

finite differences, we recommend to compute the /?| ' using the above

algorithm instead of evaluating the determinants in (2.3).

(2) If the algorithm stops before producing the interpolating polynomial,

then it not only tells that the points lie on an algebraic hypersurface

of certain degree k < « , it also computes a minimal-degree polynomial

describing the hypersurface, namely Q[k].

(3) The algorithm can also be run with the Bernstein-Bézier basis and it can

also be equipped with pivoting strategies to increase numerical stability.
(4) The polynomials

n        rf

¿f]w- E E^Vf'w,    k = o,...,n, i=i,...yk,
l=k+l 7=1

can easily be seen to be the Lagrange fundamental polynomials of degree

«.

5. Example

In this final section we apply the theory developed in the previous sections

to a simple case, namely, the extension of univariate interpolation at the knots

0, ... , « to d variables. A surprising connection emerged from this study:

our finite differences, restricted to the equidistant points, coincide with the

well-known classical forward differences. Here we just present an example for

d = 2 to illustrate the formulae of §3, omitting all the proofs.

For univariate interpolation, the equidistant points lead to the simplest di-

vided differences and Newton interpolation formula. In Euclidean ¿/-space, our

finite differences and interpolation formula take a prticularly simple form if the

interpolation nodes are the lattice points with all nonnegative components; more

specifically, for each fixed n , we take as interpolation nodes the lattice points

in the standard simplex

§„ = {x : 0 < x,< «, Xi + • ■ ■ + xd < «} c Rd.

For d = 2 the interpolation points are given by

x{jm) = (m-f,j),        0<j<m,    0<m<n.

They are shown in Fig. 2 for « = 5.
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Figure 2. The points for cardinal interpolation of degree 5.

Points of the same level lie on the diagonals; e.g., the bolder

line connects all points of level 4

We remark here that this particular Lagrange interpolation problem has been

studied before, for example in [3].

For x G R2, we denote its components by u and v , i.e., x = (u, v). It is

not hard to verify that the fundamental polynomials are given as follows

M/Vï -(5.1)   pxkmx(x)
1

m—k

(m - k)
^\[(u-i+l)X{(v-i+l),    0<k<m,

i=i i=i

where we define the empty product to be equal to one. From these formulae,

one readily verifies that

(5.2)

and

(5.3)

p[m\x{km+l)) = m + l-k,    p[km}xix(rX)) = k

pf\x[m+x)) = 0,    j¿k,k-l.
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Moreover, if we use the notations Am and Am(k) of §3, we have the following

Lemma 5.1. Let A*m(k) = {p G Am(k) : p¡ < pi+x < Pi + l). Then

n/i(x») = 0,       VpeAm(k)\A*m(k)

and

jtli(\'l) = k\(m-k)\,       VpeA*m(k).

Any p G A*m(k) corresponds to a path from x¿0) = (0,0) to x£m) =

(m - k, k) which lies entirely in {0 < u < m - k, 0 < v < k} , or, geomet-

rically, a path that represents the "shortest way" from (0,0) to (m - k, k).

For each path in A*m(k) the directional derivative Dx„ takes the form

(5-4) D™ = n    d™       ;        v^ G A* (k).
v     ' "      dum~kdvk mK  '

Therefore, in this case, we have

Theorem 5.2. Let x{km) = (m - k, k), 1 < k < m and m < n . If f e C"(§„),
then

(5.5)

A,[x°, ... , x- , *<">]/= (« -k)\k\J  duZdvkfiy)   Y   Miy\#)dy.
peAz(k)

Moreover,

(5.6) An[x«,...,x«-',x<«»]/=^|^/(x*),

where x* eS„.

Formula (5.6) shows that for this configuration of interpolation points the

finite difference A„[x°, ... , x"~x, xk]f is closely related to the «th partial

derivative of /, one more reason to justify our definition. But ties are still
closer: introducing the cardinal forward differences A(-',^f(x) by the well-

known recurrence

A(°>oxf(u,v) = f(u,v),

A(i+lJ)f(u, v) = A{i'j)f(u+l,v)-A{i'J)f(u, v),

AiiJ+xïf(u, v) = Ai¡'jíf(u,v + 1) -tiiJ)f(u, v),

we obtain

Theorem 5.3. For any 0 < k < «

(5.7) A„[x°,...,x''-1,x[',)]/ = A(''-fc''c)/(0,0).
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Thus, if we introduce the spline function

Mg(x) = k\(n-k)\   Y   Mix\*ß),
ß€A'„(k)

which can be easily seen to be a piecewise polynomial of degree « - 2 supported

on [0, « - k] x [0, k], and which is in fact a cube spline, we can combine

(5.5) and (5.7) to identify Mk as the Peano kernel for the forward difference.

Precisely, for any n G N0 and 0 < i < n

(5.8) A(»-'^f(0,0) = l2]J^-f(y)M«(y)dy.

Finally, let us take the interpolation points inside the standard triangle S =

{(u, v) : u, v > 0, u + v < 1}, and give an estimate of the interpolation error.

Corollary 5.4. Let x[m) = (^, £), 1 < k < m and m < n, and Ln(f) be the

Lagrange interpolation polynomials based on these points. If f G C"(S), then

n+l

\Ln(f, x) - f(x)\ <Y
1

k=0

n+\-k

■ n
1=1

n + l-k)\k\

i- 1

dn+l

n;=i

Qun+l-kQvk

i-l

f

v -
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