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INTERIOR MAXIMUM-NORM ESTIMATES
FOR FINITE ELEMENT METHODS, PART II

A. H. SCHATZ AND L. B. WAHLBIN

Abstract. We consider bilinear forms A(-, •) connected with second-order

elliptic problems and assume that for uh in a finite element space S¡,, we have

A(u - U),, x) = F(x) for x m Sh with local compact support. We give local

estimates for u - Uf, in L^ and W^ of the type "local best approximation

plus weak outside influences plus the local size of F ".

1. Introduction

This is the second in a series of papers on local estimates for finite element

methods. Our main aim here is to extend the maximum-norm interior estimates

given in the first part, Schatz and Wahlbin [10], and to give some new interior

estimates in W^ . As a by-product of our proofs we also obtain an extension

of the global W^ stability results of Rannacher and Scott [9] from two to an

arbitrary number of space dimensions. In order to describe the results, we shall

first need some notation. Some familiarity with the first part of this paper would

be helpful to the reader.
Let then 3 be a bounded domain in RN , N > 1, and let Sh = Sh(3¡) ç

W^\\ß), 0 < h < 1/2, be a one-parameter family of finite element spaces
o

(the " /z-method"). We shall use standard terminology for W™ , W™ and their

associated norms and seminorms. For a domain fi ç 3) we let Sh(£l) denote
o

the restrictions of functions in Sh to Q, and we let Sh(Q) denote the set

of those functions in Sh(3) with compact support in the interior of fi. We

consider a basic domain fi0 and also fi¿ with fio ce fi¿ ç Q¡, where d =

dist(í9fio, <9fi¿). We shall assume that the meshes are locally quasi-uniform of

size h ; we shall then require

(1.1) d > Coh   for   Co > 0   large enough.

Let now « be a function on Qd and uh e Sh(Qd) be such that

(1.2) A(u-uh,x) = F(x)   for   Xe°Sh(Qd).
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Here,

N N

(1.3)    A(v,w) = j (^Y^ au(x)g~. dx~ + ^ al(x)-^w + a(x)vw^jdx,
i,j=l ' ^       i=l '

where the coefficients a¡j, a, and a are sufficiently smooth in fi¿ and the a¡j

satisfy the uniform ellipticity condition

( 1.4) Y, "uWZitj > ̂ eiiKI2 for   Í € R" ,
1,7=1

with Ceii > 0 independent of x in fi¿. No coercivity condition, local or

global, will be assumed for our main results. Further, F(q>) is a bounded linear
o

functional on W\(Çld).
In the first part of this paper, [10], we gave local maximum-norm estimates

for the error e = u - uh satisfying (1.2) in the case of F = 0. Here we shall

extend those results to the case of nontrivial F , and also give estimates for the

gradient of the error.

Nonvanishing functionals F as in (1.2) arise in a variety of situations. Typ-

ically, they represent a perturbation term for quantities which do not quite sat-

isfy the original Ritz-Galerkin equations: For example, in Nitsche and Schatz

[8] and in Cayco, Schatz and Wahlbin [2], they occur naturally in proving su-

perconvergence estimates for difference quotients. Again, in [2], they will be

necessary in analyzing the behavior of finite element methods on meshes which

are locally isoparametric approximations of smooth mappings of translation

invariant grids. In Schatz, Sloan and Wahlbin [12] they arise in investigating

superconvergence on meshes which are locally symmetric with respect to a point.

In this paper (§5) we shall give an application to local maximum-norm esti-

mates for gradients when numerical integration is taken into account.

We proceed to state our two main results. The technical assumptions A.0-

A.5 referred to below are given in detail in an appendix. We first give a local

maximum-norm error estimate. As in [10], 7 = 0 or 1 according to whether

the optimal order r of approximation in Lp is greater than or equal to two,

respectively.

Theorem 1.1. Given 1 < q < oo and s a nonnegative integer, there exists a

constant C depending only on q, s, N, the constant cq in (I.I), the ellipticity

constant ceXX in (1.4) on fi¿ , the maximum norm of the coefficients of A and

a sufficient number of their derivatives in Yld , and also the constants involved in

A.0-A.5 over fi¿ , such that if e = u - uh satisfies (1.2), then

Iklkoodv,) < C(\ndlhy~vain \\u - xh^a,)

(h5) + Cd-s-N">\\e\\wr{Cld) + Chdnd/hYlWFWl^^^

+ C(lnrf/A)|||F||i_2,oo.iv

Here,

(1.6) llalli-.,oo,o„=      sup      F(tp),
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and

(1-7) |||F|||_2,oo,ii„ =      sup      F(q>).

9€W](Çlâ)

Our second main result is a corresponding estimate for gradients.

Theorem 1.2. Under the conditions of Theorem 1.1,

klriW + ^'lMUœvOo)

(1.8) < Cmm (\u - x\w^(cid) + d~x\\u - xh^a,))

+ Cd-l-s-N^e\\wr{C¡d) + Cln(d/h)\\\F\\\_x,00,rld.

o

Remarkl.l. In some applications, F(tp) (for tp e ^¡(fi^) ) is "naturally" given
o

from F(x) (for x £ Sh(Qd)), see, e.g., [2], [12]. In other applications, e.g.,
our present one to numerical quadrature in §5, useful estimation of F involves

steps which require that x G Sh • In (1.2) the functional is seen only by how
o o o

it acts on Sh(Qd). Since Sh(Qd) ç W\(Q.d), we may then assume by the

Hahn-Banach extension theorem that we actually have

llliHH-i.oo.n^      sup     F(x)
xe°sh(iid)

in Theorem 1.1.   D

We shall next discuss the relationship of these results with earlier work. In

the analogous cases of local error estimates in Li and W^ , respectively, they

were given in [8]. As already remarked, the case of Theorem 1.1 for F = 0 is

contained in [10]. To the best of our knowledge, a complete proof of Theorem
1.2, even in the case F = 0, has not been published. (In Chen [3] the author

assumes that the global two-dimensional results of [9] generalize to arbitrary

space dimension TV. He also makes an intuitively reasonable claim concerning

suitable mesh perturbations [3, p.3, following Eq.(3.1)] which, however, appears

hard to substantiate in a rigorous manner.) Our proofs are based on the tech-

niques of [10] and the idea of a regularized Green's function from [9]. Without

using a regularized Green's function, a straightforward application of the tech-

niques of [10] would introduce an unnecessary factor (lnd/h)r in Theorem 1.2,

cf. Remark 3.1 below. For the necessity of the factor (In d/h)r in Theorem 1.1

we refer the reader to Haverkamp [6].

As a by-product of our proof we also obtain an extension of the global In-

stability results of [9] in two space dimensions to arbitrary space dimension.

This is briefly discussed in §4.
An outline of the paper is as follows. In §2 we collect various preliminary

results, which will be used in the proofs of Theorems 1.1 and 1.2, given in

§3. As already mentioned, in §4 we will show how global results follow from

our techniques and, in §5, we give an application to numerical quadrature. We

conclude with an appendix in which we state our basic assumptions A.0-A.5.
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2. Preliminaries

For the convenience of the reader we shall first collect some technical results

which will be used in our proofs of Theorems 1.1 and 1.2. As we will see at the

beginning of §3, we shall only need these technical lemmas in the case that the

domains are balls of unit size. Let thus Br denote a ball of radius r around a

point xo ■
Our first result pertains to the following conormal Neumann problem in

B3 cc 3 :

(2.1) Lv = finB3,  p^=0   on   8B}.

Here, L is the second-order differential operator naturally associated with the

form A in (1.3), which is in this context assumed to be coercive over H/21(53),

i.e.,

(2.2) A(v , v) > CcolM|^,(Bj) with   cco > 0.

From Krasovskii [7], e.g., we have the following:

Lemma 2.1. Let the form A be coercive over W^By). There exists a constant

C such that for G(x, y), the Green's function for the problem (2.1),

\D°DJJG(x,y)\<C\x-y\-N+2-l"+ßl   for   \a +ß\> 0, x, y e B3.

The constant C depends on a, ß, ceXX, various norms of the coefficients and

their derivatives, and on the coercivity constant cco .

We shall also need a priori estimates in L?-based norms for the problem

(2.1), as well as for the problem

(2.3) Lv = DJ in Bi,  ^- = 0   on   dB3,     i=l,...,N.
onL

Lemma 2.2. Let the form A be coercive over Wj(B-¡). There exists a constant

C independent of q,  1 < q < 2, such that for v satisfying (2.1),

C
IMI^(ß3) ^ -—fifWmBiy

Similarly, for v in (2.3),

C
IMk'(«3) ̂ ¿zr\\\f\\mB})-

Essentially, these results can be found, e.g., in Schechter [13]. In the lemma

above we require a rather exact dependence on q . For this, one needs to trace

the constants through a proof (and we have found Gilbarg and Trudinger [5,

Chapter 9] a convenient place for doing so, with appropriate modifications in

that they treat a Dirichlet problem rather than a Neumann problem). Let us

remark that Lemmas 2.1 and 2.2 also hold for the adjoint operator L" and, in

§3, will be applied to this case without explicit mention.

Our next lemma has to do with cutting down functions in Sh to have compact

support. It is an easy, indeed trivial, consequence of our superapproximation

hypothesis A.3, cf. [10, Prop. 2.2].
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Lemma 2.3. Let Dx CCÖ2 CC £>3 . There exists a constant C such that given
o

X € Sh(D3), there exists n g Sh(D3) with n = x on D2 such that

ll*->7lln'2>(D3\o2) £ CWzWrjiDiVh)

and

hlk,(ö3) < C\\x\\l,(d3)   for   l<q<oc.

We now state a well-known error estimate for Galerkin approximations in

the problem (2.1).

Lemma 2.4. Let the form A be coercive over W^(B^). There exists a constant

C such that if v satisfies (2.1) and vh e Sh(B^) satisfies

(2.4) A(v-vh,x) = 0   for   x^Sh(B3),

then

\\v - WaIIlj'íj) + h\\v - vh\\w¡(Bi) < Ch2\\f\\LAB}).

The standard proof uses extensions of functions beyond 53 and relies on the

fact that the mesh on 2?3 is actually formed by intersecting 53 with a "quasi-

uniform" mesh having the appropriate approximation properties for extended

functions.
Our final technical preliminaries are concerned with local estimates in W^ .

Lemma 2.5. Let the form A be coercive over Wj(Bi). Let xq g ¿?3, d¡ = 2~J

and Clj = {x e j?3 : d¡ < \x - xq\ < d¡-X), for d¡ > Coh, Co > 0 large enough
(cf. (1.1)). Further let

( Qj+X u fi, u fi^-i   if íVm cc ß3,

(2.5) fi] = -j pQy+i U fiy U fi;_i U {x e Bi : dist(x, dB3) < dj}

{ if fiJ+i U Qj u fi;_i meets dß3.

There exists a constant C independent of j such that for v-vh satisfying (2.4),

\\v - Vhll^^ < C(hr-X\\v\\wm) + d~N/2-l\\v - vaLÁa])).

If fiy CCÍ3, this result is contained in [8]; it was extended up to boundaries

in [10, Lemma 4.4].

Remark 2.1. The reason for the change in fij in (2.5) to include a "collar"

around the boundary if we are close to öß3 is as follows. The proof in-

volves use of cutoff functions to and superapproximation, Assumption A.3.

The proof of superapproximation typically involves inverse properties. If we

are at the boundary, and if the cutoff function œ is not identically constant

near the boundary, superapproximation may fail since, for elements x meeting

the boundary, x n ß3 may not satisfy inverse properties.   □

Our last result in this section is a special case of [8, (5.6)]. Here we do not

assume that the form A is coercive over W^B^). Instead it is merely assumed
o

to be coercive on W\(Çi) for fi sufficiently small (cf. [8, Rl, p. 940]). Such is

obviously the case in our present situation.
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o

Lemma 2.6. Let wh G Sh(B3) satisfy A(wh, x) = F(x) for x G Sh(B3), with
o

F(') a linear functional on Wx2(Bj). For any 1 < q < oo and s > 0 there

exists a constant C independent of wn and F such that

\\Wh\\lV>(Bt) < C\\Wh\\w-^B,) + CKF'

where
KF =      sup     F(q>).

9<îW\(Bt.)

We finally remark that we shall also use two other results from Part I, viz.,

[10, Lemma A.l and Lemma 5.3]. These will not be stated here but will be

referred to at the appropriate places in §3.

3. Proofs of Theorems 1.1 and 1.2

It turns out to be convenient to first prove Theorem 1.2.

3.A. Proof of Theorem 1.2. We start with some preliminary reductions. First,

since the norms W~s and |||/r|ll-s,oo,n,/ are based on duality with respect to
o

Ws, spaces, it suffices to prove our results with fio replaced by a ball Bd and

fi¿ by a concentric ball Bid (say), cf. [8, Lemma 1.1]. Secondly, we shall now

show that it suffices to consider the case d = 1 . Let us thus assume that we have

proven the following form of the theorem in the case d = 1 : If A(e, x) = F(x)

for x£Sh(B3), then

(3.1)     lkll^(fio^cllwll^(ß3) + clkll^(S3) + c(lnl/^)lll^lll-i,oo,ß3.

We claim that then Theorem 1.2 would follow for general coh <d<l. For, if
we scale the situation from Bid to Z?3 by introducing a new variable y = x/d ,

we have with e~(y) = u(y) - ùh(y) = u(yd) - Uf,(yd) and with

(3.2)

Ä(v,w) = J   (53 a¡j(yd)^ ~ + dYa^yd)v^y. + d2a(yd)vw}dy

that A(e, x) = dN~2A(e, x) ■ Hence (1.2) becomes

(3.3) A(e, x) = d2~NF(x) = F'x)   for   x~eS>"d(B3).

The parameter h is now replaced by h/d. In this we appeal to our scaling

hypotheses A.4. (Note that h/d < l/c0 is assumed sufficiently small. This

means that the difference domain ß3 \ Bx contains sufficiently many (scaled)

elements to allow operations such as "cutting down to local support", "local

approximation", ... .) Note also that A has the same modulus of ellipticity

as A and that the norms of coefficients and their derivatives have certainly not

increased. Thus, from (3.1) we have

(3.4) ^^(«o^cilSll^^ + cii^^-^ + canrf///)!!^!!!-,,^,^.

It is elementary to check that

(3-5) \e\w^(Bd)+ d-x\\e\\Loo(Bd) = d-x\\e\\WL(Bx),
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(3-6) PHh-ic*) = d\u\w^(Bu) + IMkoo^)

and

(3-7) mw->m = d-s-Nl«M\wr(Bu).

Finally,

|||^|||_i,oo,«3 =     sup    F(ç),

lfi„,i=>

where

F{¡¡¡) = d2~NF(<p)

<d~    |||^|||-l)oo,i3rf|Ç!'|^1l(BM)

= d2-N\\\F\\\-l,0O,BudN-i\?\Wín¡h).

Hence, IH-FM-i,«,,«, < d\\\F\\\.lt00,Bu ■ Using this and (3.5)-(3.7) in (3.4),
we obtain

\e\w^Bd) + d~x \\e\\Lao(Bä)

(3.8) <c(\u\w^Bld) + d-x\\u\\Lx(Bid))

+ Cd-l-s-N^e\\wr,BM) + C(lnd/h)\\\F\\\-l,00<B}d.

Writing here e = u - uh = (u - x) - (uh ~ X) for a general x G Sh , we obtain

(1.8) of Theorem 1.2.
In the rest of §3.A we shall thus give a proof of the inequality (3.1). This will

be accomplished through a sequence of lemmas.

In our first lemma we take S , as in A. 5, to be a Wx function supported in

an element t^ ç B2 and satisfying

(3.9) llalla + A||Va|U,<C7TA'(1-*)    for    1 < q < oc.

We assume that the form A is coercive over rV2x(B3) and let v e W2x(Bt¡) be

defined by

(3.10) L*v = Djô,     ^=0   on   <9ß3    (i=l,...,N).
onL

Further, we let vh G Sh(B3) be given by

(3.11) A(X,v-vh) = 0   for   X e Sh(B3).

Lemma 3.1.  With the form A coercive over IV2X(B3), with x°h G B2, and with

further notation as above, we have

(3.12) \\v-vk\\Wi{Bj)<C,

where C depends on the quantities specified in Theorem 1.1 and also on the

coercivity constant of A (cf. (2.2)).

Proof. Let x0 G xüh and set d¡ = 2~J. Introduce

Qj = {x : dj <\x - x0\ <dj-X}n ß3.



914 A. H. SCHATZ AND L. B. WAHLBIN

With C» to be chosen (sufficiently large) and /, = [ - ]j1í§y1} so that 2~J- ~
C*h, we let

n; = *3\( U °>)-
7=-3

Further, we set fij = fi^_^ U • • • U fi;+¿ for ¿ = 1, 2, 3, with the modification

as in (2.5) to include an annulus at dB3 if Qj+e meets <9ß3. Note that this

modification occurs only if d¡■ = 0( 1 ), since x\ G B2 .

With e = v - vn we then have

j.

(3.13) IHw^Bi) = WeWw^a;) + ( E Mw^a,))•
y=-3

Using Holder's inequality, the standard error estimates for the Neumann prob-

lem of Lemma 2.4, and (3.9), we obtain

\\e\\^{a;)<(C,hfl2\\e\\Wi{B,

(       } <CCf/2^/2+,||A¿||¿(rO)<CCÍv/2.

Further, again using Holder's inequality and then the local error estimates of

Lemma 2.5, we get

IMI»7(£i,) < d^l2\\e\\W}(Q¡)

(3'15) < Cdfl2[h^\\v\\wm + d¡N/2-i\\e\\Lí{a]) .

With G the Green's function for the problem (3.10) we have

(3.16) Dav(x) = [ DaxG(x, y)DiS(y)dy = - [ (D,,yD°G(x, y))ô(y)dy.

Since x c fi] satisfies \x - y\ > Cd¡ for v G x°h , the estimates of Lemma 2.1

give, with \a\ < r in (3.16),

\irv(x)\ < cd-N+2-^\\ô\\Li{xl) < cdfN+2^r+lK

where we used (3.9) in the last step. Thus,

(3.17) ll«||*j(oj) < cd;Nß~r+l.

Yet us pause here to give credit to Rannacher and Scott.

Remark 3.1. If we had followed a straightforward adaption of [10], our final

result would have ended up with an unnecessary factor (In l/h)r. The integra-

tion by parts performed in (3.16) (following [9]) is precisely the reason why this

logarithmic loss is now avoided.   D

Continuing now with the proof of Lemma 3.1, from (3.15) we have

£ IMIW) < C( ¿ rfj-')*-« + C ¿ d-x\\e\\LdÇl])

(3.18) ;=-3 j=~3       y>

<C(C) + cJTd-x\\e\\Li{il]).
y=-3
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Let us introduce

(3.19) /^¿Iklk^j+Ê^'lHk,^,.
;'=-3

From (3.13), (3.14) and (3.18) we thus obtain (since modifications of fi^ at

the boundary are done only if d¡■■ = 0( 1) )

(3.20) \\e\\Wi(By)<C(C.) + CI.

Now, again using the L2 error estimates for the Neumann problem (Lemma

2.4) and (3.9), we have

¿lk¡1i,(0¡)<CÍr^-IA^1||eBi.Wi)

(3-21) <C(Ct)Nl2-xhNl2+'\\D~o\\LÁxl)

<C(C*)N'2-1.

In the following estimations we take C* > Co , C0 large enough. It is then

easily seen that the constants appearing below can be taken independent of

G. We shall perform a duality argument to estimate ||t?||¿,(n ). Thus, with

(e, t]) = Jendx,

(3.22) IMkl(o,,)=       sup      (e,n).

llfll¿oo(nj)=1

Let now L*y/ = n in B3 with homogeneous conormal Neumann boundary

conditions. Then, for x G Sh(B-s),

(e, t]) = A(e, ip) = A(e, tp - x)

(3.23) -2 clkllw;(-s3\o;2)llV - X\\w^(B,\çi))

+ CWeWfy^çi^Wip - xWwiytfy

By our approximation assumption A. 1, and using also the estimate for the

Green's function, Lemma 2.1, we have for a suitable x

\W - X\\w^(B,\o.)) ^ ChWvWwKB^o.))

(3.24)
^ CAZ

Also,

\\v -xWwim < c/zllHu^)
(3 25) '

< CAHifll^o,, < Chdf2.
Thus, from (3.23)-(3.25),

(3.26) \(e, r¡)\ < C/i|k|U|l(fiAnj) + Chdfl2\\e\\w¡(Q)).

Here, again using the local W2X estimates of Lemma 2.5, essentially as in (3.15),
we get

(3-27) \\e\\w}(a]) < ChMwfW + CdjW-^eWma*),

<Ch (  dJN\n(y)\dy < CA||if||¿„(Q,) = Ch.
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where, by the Green's function estimates of Lemma 2.1, IMI^qS) < CdJNI2~l

(for G large enough). Hence, by (3.26), (3.27) and (3.22),

|klli,(Q;) < C^lklln^'(Ä3\Qj)

(3.28) +Chd^hd-N'2-l+dJN^\\e\\Li{a}j)]

< Ch2djx + CA||e||^i(z>j) + Chd]-l\\e\\Lt{aij).

From (3.19), (3.21) and (3.28) we now have

/ < C(G)^2-1 + Ch2 ¿ dj2 + CIMI^jA JT dfx

(3.29) JJ~3

+ ChYd-2\\e\\Li{Cl]).
;=-3

As already remarked, the constants C occurring may be taken independent of

G provided that constant is large enough. Since now

J. r
he V" d"e < 1 = 12

and

h
*E0M)aE {tW^wSjJ** At)1*1 = c;1 >

j=-3 ;=-3 J

we have from (3.29) that

/ < C(G)"/2-' + ^ + §-J\e\\Wi{B}) + £/.

Hence, for G large enough,

/<c(c^2-' + |ww.

Recalling now (3.20), i.e., IMI^i^ < C(G) + CI, we obtain the lemma by

choosing, if needed, G even larger.   D

In our next result we do not assume that the form A is necessarily coercive

over WX(B3).

o

Lemma 3.2. Assume that wh G Sh satisfies A(wn , x) = (/, x) f°r X G Sn(B3).
Then

WvhWw^Bo < cWwhWwfw + cil/IUood»,).

Remark 3.2. This result is not optimal with respect to the norm of / involved,

but it suffices for our present purposes. A better result is obtained by taking

u = 0 in Theorem 1.2.   D

Proof of Lemma 3.2. Let k be such that the bilinear form

(3.30) Ak(v, w) = A(v , w) + k(v , w)
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is coercive over W2x(B-¡). We note that this can be accomplished with k

bounded in terms of ceXX and quantities involving the coefficients and their

derivatives. We shall also let S = Sj,Xa be such that, for xo G Bx ,

DjX(xo) = (DjX,S), all   X G Sh.

By Assumption A.5, ô can be taken to satisfy the hypotheses of Lemma 3.1.

We let v and vh be as in Lemma 3.1 (see (3.10), (3.11)), but now based on the

operator L*k = L* + kl, which thus satisfies the coercivity hypothesis of that

lemma.

We shall need to cut down wn to have compact support in 53. Our purpose

is to estimate DjWn(xo), for xo G Bx.   Using Lemma 2.3 (with Dx = 0,
o

Y>2 = Bia and D3 = BX5 ), we have nh G Sh(Bx.$) with r\h = wh in BX4 such

that

(3.31) \\"h\\w<(BL5) <C|K||^,(¿,,.5),

and

(3-32) H^llicd»..,) < C\\wh\\Lx(B,5).

We then obtain, for Xo G Bx,

DjWn(x0) = Djnh(xo) = (Djnh , Ô)

(3-33) = ~(Vh , DjS) = Ak(nh , v)

= Ak(nh , vh) = A(nh , vh) + k(nh , vh).

o

Let now Xh G Sh(BXA) (recall that nh = wh on BXA ) with Xh = vh in 5i.3

such that

(3.34) \\vh - XnWw'iB^Bu) < C\\Vh\\w>(BL5\Bi.2)

and

(3-35) \\Xhhl{Bl,) < C\\vh\\Ll(B¡í).

Again, such a Xh is found from Lemma 2.3. From (3.33) we then have, using
o

our basic assumption about wh (i.e., that A(wh , x) = (f, X) f°r X G Sh(B3) ),
and the fact that nh = wn on the support of Xh >

(3.36) DjWh(xo) = A(nh , vh - Xh) + k("h , vh) + (f, Xh)-

Here, by (3.31) and (3.34),

(3.37) \A(t]h , vh - Xh)\ < Cll^ll^tß.^ll^ll^iß,^^).

By Lemma 2.6 (with a nonessential change of domains) we have, since now

trivially KF < C\\f\\Loo{B}),

(3.38) IKII^(b,5) < C\\wh\\w-,,Bj) + C\\f\\Loo{Bi).

o

Further, since A(x ,vh) = 0 for x G Sh(B2\BXA), again from Lemma 2.6 (now
with F = 0 ), we obtain

(3-39) 11^11^(5,5^.2) ̂  CWVhWfT'iBABu)-
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Using Lemma 2.1 and Lemma 3.1, we conclude that

(3.40) \\Vh\\fV¡(B3\Bu) < IMIh^VB,.,) + C\\V - VhWw^Bj) ^ c-

Hence, from (3.37)-(3.40),

(3.41) \A(r,h , vh - Xn)\ < C\\wh\\wrm + C||/HWj,).

Further, again using Lemmas 2.1 and 3.1, and (3.35),

\(f,Xh)\ < WfhniBjWxhWLtM.t)

1 ' <C\\f\\Loo{Bi)(l + \\v\\Ll{By))

< C\\f\\Loa{B}).

From (3.36), (3.41) and (3.42) we now have

(3.43) \DjWh(x0)\ < C\\wh\\w-,(B3) + C||/||ioo(Äj) + \k(nh , vh)\.

It remains to estimate the last term in (3.43), \k(nh, vh)\. We note that if

the basic form A had been (uniformly) coercive, we could have taken k = 0.

Recalling that k may be bounded in terms of ceXX and the coefficients of A,

we have from (3.32) and Lemma 3.1 (since ||f Hl,^) < C) that

(3.44) \k(nh , vh)\ < C\\wh\\Loo(Bli)\\vh\\Ll(Bi) < C\\wh\\Loo{Bli).

It is, thus, a "lower-order" term. A technique for treating a similar situation

was given in Appendix 1 of [10]. We shall not repeat the full arguments here

but merely apply a result from that appendix. Let thus L\p = f in ß3, with

now y/ satisfying homogeneous Dirichlet boundary conditions. (Shrinking our

domains, if necessary, we may assume that this problem has a solution.) Then

A(<p-wn,x) = 0   for   xeSh(Bi).

Lemma A. 1 in [10] now applies exactly to this situation and says that

\\W - Wh\\Lœ(Bh) < C(\\y/\\wio{Bi) + \\ip- to*-lln^'(a,))-

Hence,

\\wh\\L^{Bi5) < c\\\p\\WLm + qiDty^-^).

Since, as is easily seen, ||^||^(Bj) < C||/||¿.^(g3), we thus have from (3.44) that

\k(nh,wh)\ < C\\wh\\Loo{Bli) < C\\f\\LxlB}) + CHwaII^-.^,.

Together with (3.43) this completes the proof of the lemma.   D

We now come to our final lemma in this subsection.

Lemma 3.3. Assume that the form  A  is coercive over  W2x(Bi)  and let co G

W0°°(Bi).  Let w and wh G Sh(B3) satisfy A(w -wh, x) = F(™X) for X G

Sh(B3). Then

\\w - WaIIh/i (Ä2, < C||w;||n(Ä0 + C(ln l/A)|||FÏ||_i,«,.«,-
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Proof. With xo G Xq ç B2 and ô the delta function for the z'th first derivative,

see (A.5), we have

(3.45) DiWh(x0) = (Dtwh , Ô) = (D¡w ,ô) + (w-wh, D,ô).

With v and vh as in (3.10), (3.11) we then have

(3 46)        (w~wh> Dià) = A(w ~wh,v) = A(w -wn,v-vh) + F(tovh)

= A(w ,v-vh) + F(covh) = Ix + I2.

Here, by Lemma 3.1,

(3.47) |/i| < C||u;||^(A3)||í; - vh\\w¡](Bi) < C\\w\\w¿b(Bj).

o

Further, since tov„ G W\(B3),

\h\< III^III-i.oo.ajIIûîuaII^i^,)

(3.48) <C\\\F\\U<00<Bi(\\v-vh\\Wim + \\v\\Wim)

<C\\\F\\U^tBi(l + \\v\\Wi{Bi)),

where we used Lemma 3.1 in the last step.

By Lemma 2.2, with 1 < q < 2, and (3.9),

IMIW < C\\v\\WqllBi) < ~rll¿llMrS) < ^-¡h-N{l-'] < C(lnl/h),

if we choose q = 1 + l/(ln 1/A). Hence from (3.48)

(3.49) \I2\<C(lnl/h)\\\F\\\-i,oo,B3.

From (3.46), (3.47) and (3.49) it follows that

\(w - wh , Diô)\ < CllwH^^) + C(ln l/A)|||F|||_1;00jÄ3.

Since also ||f5||L, < C the desired result now follows from (3.45).   D

We are now set to prove Theorem 1.2, or, in light of our preliminary reduc-
o

tions, the estimate (3.1). Recall that A(u - un , x) = F(x) for x G Sh(B3). Let
co G W0°°(B3) be such that co = 1 on B2. Then with ù = cou,

(3.50) A(U-uh,x) = F(œx)   for   X G Sh(B2).

Let k be such that Ak(v , w) = A(v , w) + k(v , w) is coercive over W2(B3).

Note again that k may be assumed bounded in terms of cen and the coefficients

of A . Define then (ù)h G Sh(B3) by

(3.51) Ak(u-(u)h,x) = F(coX)   for   X G Sh(B3).

Hence, from Lemma 3.3,

II" - (")*ll»i(B2) < C||M||^(ß3) + C(ln l/A)|||F|||_i ,oo,ß3

( '    ' ^CINI^^ + Canl/AJIIIFIH.Loo.i,,.
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o

We now have for x G Sh(B2)

F(cox) = A(u -uh,x)= A(u - (u)h , /) + A((u)h -uh,x)

= Ak(u - (u)h , x) - k(u - (u)h , x) + A{(u)h -uh,x),

i.e., by (3.51),

A((ù)h-uh,x) = k(ù-(ù)h,x)   for   X£°Sh(B2).

Thus, from Lemma 3.2 (after an inconsequential change of the domains in-

volved) we have, using the triangle inequality, the fact that co = 1 on ß2, and

(3.52),

II(")a - "All»£(*,) < C||(«)A - uh\\w-S{Bi) + C\\U - (Ü)n\\Lao(Bl)

= C\\((u)h -u) + (u- uh)\\w-,,B) + C\\u - (ù)h\\Loo(B2)

(3.53) _ '
< C||w - (u)h\\Loo(B2) + C\\u - uh\\w-,,Bi)

< C\\u\\WLm + C(ln 1/A)|||F||]_1)00)B, + C\\e\\w-,m.

Hence, by (3.52) and (3.53),

II» - Uh\\WL(Bl) < \\Ù-(Ù)h\\WL(Bl) + \\(Ù)h - "AII»£(•*.)

<C||M||lyjo(ß3) + C(lnl//7)|||F|||_1)00ifi3 + C||<?||^-S(jß3)

which is the desired estimate (3.1).

This completes the proof of Theorem 1.2.   D

3.B. Proof of Theorem 1.1. As in the previous subsection (cf. (3.1 )—(3.8)) it

suffices to show, taking d = 1 , that

IHk-W) < C(m l/Af|M|£oo(2>j) + C\\e\\wr(Bi)

+ Ch(\n l/Af|||F|||_, ,00,53 + C(ln l/A)|||F|||_2,oc,A3.

Following the last part of §3.A, we let co G fê^^-f) with co = 1 on B2,
ù = cou, and we let (5)/, be defined by (3.51). As in (the first parts of) (3.53)
we then have

IK")* - "A.kooCB,) ^ IK«)* - "Alibis,)

<C\\ù-(ù)h\\Loo(B2) + C\\e\\w-S(Bi).

It thus remains to estimate ||w - («)a||loc(b2) , which we recall satisfies (3.51),

Ak(u-(ü)h,x) = F(cox)   for   reS*(Ä3).

In §3.A we relied on Lemma 3.3 for this. Below we shall describe how a suitably

modified version of Lemma 3.3 ((3.62) below) follows from the results above

and those of [10]. With S now such that

X(xo) = (X,S)   for   x&Sh(B3), x0eB2,

we have with w = ù, wh = (w)A ,

(3.56) wh(x0) = (wh ,ô) = (w,ô) + (wh - w , Ô).

By A.5 we may again assume that ô is supported in the element x°h (xo G x\\)

and satisfies the estimate (3.9).
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Here, by (3.9),

(3.57) \(w,S)\ < C\\w\\LM\\ô\\Li(Tho) < C\\u\\Loo{Bi).

We now let v be defined by L*kv = ô in B3, with homogeneous conormal

Neumann conditions in dB3. Similarly, vh G Sh(B3) is given by Ak(x, v-Vi¡)

= 0,for xtSh(B3). Then

(w - wh , ô) = Ak(w -wh,v) = Ak(w -wh,v-vh) + Ak(w - wh , vh)

(3.58) =Ak(w, v -vh) + F(covh)

= Ak(co ,v-vh) + F(co(vh - v)) + F(cov).

We now further assume, as we may, that co is supported in B25. Then so

is w = cou. In Ak(w , v -Vf,) we then integrate by parts over each element x'h

meeting B25 to obtain

Ak(w ,v-vh)=    J]     ( / wL*k(v - vh)dx + j ( w^-(v - vh)dcry

With IHIj^./pffl j the piecewise W2 norm over elements meeting 526 we then

have, using the trace inequality A.O (cf. [10, page 430]),

\Ak(w,v-vh)\<C\\w\\Loo(Bu)Q,

where Q = h~x\\v - vh\\wi{B2t) + \\v - vh\\wi,*{Bif¡). Now [10, Lemma 5.3] says

exactly that Q < C(ln l/h)r and hence, recalling that w = cou,

(3.59) \Ak(w, v - vh)\ < C(ta l/h)7\\u\\Lao,Bi).

Furthermore, again from [10, Lemma 5.3, (5.9)],

\F(co(vh - v))\ < C|||F|||_,,oo,^||»» - ^11W,)

<CA(lnl/Añ||F|||._Koo,a,.

For the last term in (3.58), we have

\F(cov)\ < ClWFWU^^Mlw^)

and, using Lemma 2.2, with q = \ + l/(ln 1/A), and (3.9),

Mwfto) < C\\v\\^{Bj) < ^jll^lk^o) < £jk-"ll-lM < C(ta 1/A).

Thus,

(3.61) |F(wV)|<C(lnl/A)|||F|||_2,00,Ä3.

From (3.58)—(3.61) we now have that

|(w - wh, S)\ < C(\n l/hY\\u\\Loo{B}) + CA(ln l/hY\\\F\\\.x^,B}

+ C(lnl/A)|||F|||_2,00,«3.

Combining this with (3.57) in (3.56), we obtain

(3 62)        H" " (")*lk~<*> < C(ln l/A)7||«||i«<*,, + CA(,ln l/MkflPIII-i.oc.*
+ C(lnl/A)|||F|||_2,0O,Ä3.
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(Apart from minor changes in notation, this is the counterpart of Lemma 3.3

referred to above.)

Combining next (3.62) with (3.55) yields the desired estimate (3.54).
This completes the proof of Theorem 1.1.   D

4. Global estimates

Let 3 be a fixed bounded domain in RN with 33 sufficiently smooth,

and let A (for simplicity) be coercive on W2X(3). Here we shall give global

estimates for the Neumann problem with homogeneous boundary conditions.

Let thus u be a given function on 3 and un G Sh = Sh(3) satisfy

(4.1) A(u-uh,x) = F(x)   for   X G Sh,

where F is a linear functional on W}(3).

For our global estimates we shall need some modifications of the assumptions

used for our local estimates. In particular, we need assumptions pertaining to

those elements which are near or at the boundary. In this regard we shall

assume that 3 is partitioned into disjoint elements x1- which are globally

quasi-uniform of size h. For simplicity we assume that the elements which

meet 33 are curved to fit 33 exactly (an assumption which is not unrealistic

in a Neumann problem if one disregards numerical integration). Regarding the

assumptions A.0-A.5 we assume the following: A.O, A.4 and A.5 hold without

changes. As for A.l and A.2, we assume that they hold for all domains Gx ç

G2 ç 3 arising as the intersections of 3 with two concentric balls Bx and

B2,  dist(ßi, 3B2) > c0h ;  G¡ = B¡ <~)3 ,  i = 1, 2.   Of course, statements
o

such as functions "being in Sh(G) " are now suitably modified if we are at the

boundary. For A. 3 we assume (with the same notation as above) that it holds

with co G W°°(BX) and n with support in G2 .

Theorem 4.1. Under the above conditions there exists a constant C independent

of u, un and h such that for u-u^ as in (4.1),

(4.2) \\u-uh\w\,3)<c{   min   llM-xll^i^j + Onl/AJHIflll-i,«,,^).

Here,

lll*ïll-i,oo,<* =      sup      \F(y)\.

Remark 4.1. In the case of F = 0, Theorem 4.1 represents an extension of the

global two-dimensional results given in [9] to any number of space dimensions.

Remark 4.2. The obvious analogue of Remark 1.1 applies.

Proof of Theorem 4.1. We shall give the essential modifications necessary in

§3.A. No preliminary scaling arguments need to be performed. We first observe

that the principal Lemma 3.1 now holds with 3 replacing B3 and, more im-

portantly, with ô in (3.9) supported in any basic element t° g 3. The reason

for this is that with our present modified assumptions, the modification in (2.5)
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when we are close to the boundary, is not needed; cf. Remark 2.1. It is now

easy to trace through the proof of Lemma 3.1 to see that

\\v-Vk\\w}<p) ^c>

where v and vh are as in (3.9)—(3.11), with x\e3 .

Since we are now in a global setting, Lemma 3.2 will not be needed. Instead,

we go directly at (4.2) following the proof of Lemma 3.3. (Again, the concluding

arguments for the local case are now superfluous.) In fact, the cutoff function co

there is now not involved and any x\ G 3 is allowed. The proof now consists

of reading through the proof of Lemma 3.3 with the appropriate minor (and

simplifying) modifications.   D

One may similarly derive maximum-norm estimates for function values for

the Neumann problem in (4.1); in the case F = 0 and the harder case of the

Dirichlet problem, this was done in [11].

5. Application to numerical integration

In this section we shall apply Theorem 1.2 to derive interior estimates in

W^ , taking into account the presence of numerical integration. For simplicity,
let fii be a domain of unit size and let u satisfy

(5.1) ¿(ii, *) = (/,*) far afl *€lH(ßi).

We shall assume that our approximate solution izA g pSA(fii) satisfies

(5.2) Ah(uh ,x) = (f, X)h for all x G S'(ßi).

Here, An(-, •) is an approximation to the bilinear form A(-, •) and (•, •)„ an

approximation to the L2 -inner product (•, •). Note that e = u- Uf¡ satisfies

(5.3) A(e, x) = (Ah - A)(uh , X) + (f, X) - (f, X)h for x G °Sh(Qx).

We shall next state some assumptions on An(-, •), (•, •)„ and the subspaces

(in addition to those of the Appendix). We shall discuss the first two of these

assumptions at the end of the section. Assume then that

|(^-^)(^,^)|<CAr-1||^||^-1,*(iii)||x||rF.(r2,)

for^G^(fi,), /e5*(fi|),

and that for / smooth enough,

(5.5) \(f, x) - (f, X)h\ < C(/)A'-1||;r||„V(ni) for x e °Sh(Clx).

Furthermore suppose that, given v, there exists Xv G Sh(Slx) such that the

following (rather weak) estimates hold:

(5-6) ||u - Julian,) < Ch^pWw^+ch)

and

(5-7) H^lli^-i.*^) < CHt/Hirç^n.+cA)-

Finally, it will be assumed that the inverse property A.2 (see the Appendix)

holds over the wider range

(5.8) 0<i<j<r-l.

As an application of Theorem 1.2 we then have
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Corollary 5.1. Let u and uh satisfy (5.1) and (5.2) in fi- . Suppose that the
general conditions of the Appendix hold and, in addition, (5.4)-(5.8). Then for

fio CC fii ,

(5-9) IMI^(Qo) < C[/.'-'(ln l/AKlMk^o,) + 1) + lklLr(0,)].

Proof. We shall need to introduce a few subdomains contained between fi0

and fii. Abusing notation, we shall call them all fii although they may be

different at each occurrence.

Applying Theorem 1.2 to (5.3) and using (5.4), (5.5) and Remark 1.1 (and
approximation theory), we get

IMIw^fio) < C/.'-'llull^tn,) + C\\e\\w-,(0l)

+ C(lnl/h)hr-x(\\uh\\w^^Cll) + C(f)).

Choosing x as an approximation to u satisfying (5.6) and (5.7) and then using

inverse estimates, we have

II"*IIw£-'-*(o.1) - Wuh — ̂Hh^-1 "(n,) + H^lln^-'^n,)

< Ch2-'\\uh - z||nM,(n.) + C\\u\\w^)

< Ch ~r\\e\\Wio{cil) + G||m||h^(£íi)-

Thus, from (5.10),

ll^ll^iino) < CÄ''-1(ln l//í)(l + ||w||^¿o(í2l)) + C||^||H^ .^^-t-C/ííln 1///)lkl|n^cn,)-

Repeating the argument M times, using that hin 1/A < 1, we find that

Ikll^(Oo) £ CAr-'(ln 1/A)(1 + HuIIhs,(0i)) + C\\e\\w-¡{rií)

+ (Ch\nl/h)M\\uh\\lvr-í.>{íít),

whereupon an application of an inverse estimate leads to

Ikll^tnot^CA-'dnl^d + llMll^^^ + Clkll^-^

+ (Chlnl/h)Mh^-x^-N^\\uh\\ivr(íl¡).

Writing ||«/,||^-S(n|) < IklL-^n^ + llMlU-^n,) and taking M large enough, we

have our desired estimate (5.9).   O

We conclude this section with some comments about the two major assump-

tions (5.4)—(5.5). For (5.4), let us consider only Lagrangian elements on sim-

plices and the highest-order terms in A. Then with p = |£ G nr_2 (the

polynomials of total degree < r - 2 ), q = §f- G flr-2, consider /t a¡j(x)pqdx

over a simplex x. Let £,k , k = \, ... , K, be quadrature points and cok T

corresponding weights so that the error over a simplex is

f r
E = Er(aupq) = / aupqdx - ^ cok x(a,jpq)(à,k).

k=\
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Assume that the method is exact on n2r_4 , i.e., E(\p) = 0 for y/ G n2r_4 . By

the Bramble-Hilbert lemma one then has

\E\<ChN+V<-V\\aijPq\\w»-hx)

<C(alJ)hN^2^\p\\w^(x)\\q\\wL-1(T)

<C(au)hr-x\\p\\lvr-2{T)\\q\\Ll{T),

where the last step used inverse inequalities. With the lower-order terms of A

treated similarly, clearly (5.4) would follow.

We also remark that the case of tensor-product elements is somewhat trickier,

unless one uses a quadrature method of sufficiently high accuracy. If not, one
has to employ a sharp form of the Bramble-Hilbert lemma (only those deriva-

tives are involved which annihilate the finite elements under consideration). A

template for a verification of (5.4) can be found in the stepwise procedure in

the proof of Ciarlet [4, Theorem 28.2]; we forego the details.

The estimate (5.5) is similar, for / smooth enough, cf. [4, Theorem 28.3]

for ideas for sharper estimates.

Let us also note that (5.4) and (5.5) are rather trivially satisfied if the coef-

ficients a¿j, a¡ and a, and the function /, are replaced by suitable "inter-

polants" and then the resulting integrals done exactly by a suitable quadrature
rule.

Appendix

Here we shall state the basic assumptions, A.0-A.5, on the finite element

subspaces which are used in proving Theorems 1.1 and 1.2. Let fi, fi CC

3 c RN, be fixed throughout this discussion. We remark that A.0-A.4 are

essentially as in [10]. (Of course, the very minor changes done do not change

the results of [10].)
We shall make use of spaces defined relative to partitions of fi. Let 0 < h <

1/2 be a parameter, and for each h let r* , 0 < i < 1(h), be a finite number of

disjoint open sets such that fi ç [j'io *? • The sets xh n fi induce a partition of

fi, and relative to each such partition, we define W^h(Çi) (Cs-h(Q)) as the

space consisting of those functions which belong to W/(t* n fi) (C*(ta n fi)),

0 < i < 1(h). We introduce the seminorms

/i(h) \Ui

(£l<w«<r?nn)J        forl<«<oo,

max     \v\w¡ tT*n£i)     for i? = oo,
i=0.1(h) °°v •      '

and the corresponding norms  || • ||,y».*(0).   Note that if » e  W*(Çl), then

IMI»y.*(0) = H»ï(0) ■
For each 0 < h < 1/2, Sh(Q.) will denote a finite-dimensional subspace

of W^(fi) n C2-h(Q). Our first assumption relates to the geometry of the

partitioning sets xh . We shall assume that a certain trace inequality holds on

each of the xht .

\w..k (O.)



926 A. H. SCHATZ AND L. B. WAHLBIN

A.O. Trace. There exists a constant C such that, for 0 < h < 1/2, and any

feW2(xh), ¿ = 0,... ,I(h),

jjVf\do<c{\\f\wí(xh¡) + \f\w^)}.

We remark that the assumption A.O is satisfied for a large class of partitions

of fi. For example, it holds if the x\ are taken to be zV-simplices or N-
dimensional parallelepipeds of diameter c, h , c¡ < C, provided the ratio of the

diameter and the radius of the largest inscribed sphere is uniformly bounded.

Briefly, to verify A.O in these cases one maps each of the x\ onto a standard

domain. The inequality can then be proven, with h = 1, using integration by

parts. The desired inequality is then obtained by mapping back to xh .

For G ç fi, Sh(G) is defined as the restriction of Sh(Q) to G, and

°Sh(G) = {x \X G Sh(G), supp x ce G}.

Let r > 2 be a given integer. We shall assume that there exist positive constants

G , C2 , C3, G , ko, y, and 0 < A0 < 1/2 such that the spaces Sh(Q) satisfy

the following conditions A.1-A.4 for 0 < h < ho .
A.l. Approximation. Let G ce fi with dist(G, dfi) > kr>h . Then for each

v there exists a x € Sh(G) such that for Gx ce G2 c G with dist(t7. ,3G2)>

koh,

(A.1) llv-*lk^Gl)<Ci^~>lk(G2)

for0</<s<¿</\   1 < «7 < oo,  f = 0,l,2.

o

Furthermore, if supp v ç Gx , then x G Sh(G2).

Remark A. 1. The approximation hypothesis above contains a full norm of v

on the right of (A. 1 ) rather than a seminorm. It is thus satisfied for example by

certain curved isoparametric elements, cf. [4, (37.27) and discussion, p. 246,

7~ et seq.].   G

A.2. Inverse properties. Let p > -1 be an integer and Gx cc G2 with

dist(Gi, 3G2) > k0h . Then for x G Sh(G2),

\\x\\w¡(Gx)<C2h-W\\X\\wri(h),

and

11*11*».*«;,) < C2h>-s-N^-^\\x\\K>{Gi) for0<t<s<2,l<qx<q<œ.

A.3. Superapproximation. Yet Gx cc G2 with dist(C?i, 3G2) > k$h , and let
o o

co g C°°(GX). Then for each x G Sh(G2) there exists an n e Sh(G2) satisfying

\\oiX - V\\w¡(G2) < C3h\\co\\w^Gx)\\x\\wi(Gx),   l<tf<l, 5 = 0,1,

and

IMIl,«^ < CWxWl^gj for 1 < q < oo.

Furthermore, let G-X cc G0 cc Gx cc G2 with dist(G_(, 3G0) > k0h and
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dist((?o, 3GX) > koh . Then, if co = 1 on Gx, we have r\ = x on Go and

l|û>* - n\\w¡(G2) < QAIIwllwiíGjjll^llw^xc-,)-

Remark A.2. The superapproximation hypothesis above has been discussed in

[8] and [10] and, as seen there, is valid for many finite element spaces met in

practice. Here we wish to emphasize that, for tensor-product elements, its verifi-

cation often depends on a sharp form of the Bramble-Hilbert lemma (involving

only derivatives which annihilate the finite elements under consideration), cf.

also Bramble, Nitsche and Schatz [1, Appendix]. Isoparametric cases are, of

course, handled by mapping to a reference element. In particular, A. 3 is satis-

fied for the 4-node (isoparametric) quadrilateral, cf. [4, (37.33)].   D

We shall further make the assumption that if a sphere or radius d in fi is

transformed by similarity to a sphere of unit size, then the transformed finite

element space satisfies A.l, A.2, and A.3 with h replaced by h/d and with the

constants occurring the same as before.

A.4. Scaling. Let Bd cc fi be a sphere of radius d > C4A with center

at Xo. The linear transformation y = (x - Xo)/d takes Bd into a sphere B

and Sh(Bd) into a new function space S(B). Then S(B) satisfies A.l, A.2,

and A.3 with A replaced by h/d. Furthermore, the constants occurring in A. 1,

A.2, and A.3 remain unchanged, in particular, independent of d.

Our final basic assumption is concerned with the existence of regularized

delta functions, cf. [9].

A.5. There exists a constant G such that the following holds.

(i) For any Xo G fi with x0 G t*  there exists a function d0 G Wx  with

support in xh such that

X(xo)= I xSo for all x G Sh ,
yT*

and

(A.2) Polk, < G/T""-*»,   HVJollz, < CsA-^1-*)-' for 1 < q < oo.

(ii) Similarly, for j — I, ... , n , there exists SXj such that

d     t    ^       Í   dXl

and (A.2) holds.
To verify A.5, say, in the second form, for a typical finite element space, it

suffices to consider a reference element x with h = 1 ; the general case then

follows by mapping and scaling. Let co be a fixed nonnegative C1-function

with compact support in ? and J co = 1 , and let (v, w) = fcvwcodx be

the corresponding weighted inner product. Let nx , ... ,nD be an orthonormal

basis for the finite-dimensional space |^-1~ with respect to the weighted inner

product above. Then

D

öx j(x) := J2 n,(xo)n¡(x)co(x)

/=i

is the desired function.
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